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Abstract

We present a real-time algorithm for simultaneous localization and local mapping (local

SLAM) with detection and tracking of moving objects (DATMO) in dynamic outdoor en-

vironments from a moving vehicle equipped with a laser scanner, short range radars and

odometry. To correct the vehicle odometry we introduce a new fast implementation of in-

cremental scan matching method that can work reliably in dynamic outdoor environments.

After obtaining a good vehicle localization, the map surrounding of the vehicle is updated

incrementally and moving objects are detected without a priori knowledge of the targets.

Detected moving objects are finally tracked by a Multiple Hypothesis Tracker (MHT) cou-

pled with an adaptive Interacting Multiple Model (IMM) filter. The experimental results

on datasets collected from different scenarios such as: urban streets, country roads and

highways demonstrate the efficiency of the proposed algorithm.

Key words: occupancy grid, simultaneous localization and mapping, moving object

detection, multiple object tracking, interacting multiple model, laser radar data fusion

1 INTRODUCTION

Perceiving or understanding the environment surrounding of a vehicle is a very im-

portant step in driving assistant systems or autonomous vehicles. The task involves

both simultaneous localization and mapping (SLAM) and detection and tracking of

moving objects (DATMO). While SLAM provides the vehicle with a map of static

parts of the environment as well as its location in the map, DATMO allows the ve-

hicle being aware of dynamic entities around, tracking them and predicting their

future behaviors. It is believed that if we are able to accomplish both SLAM and

DATMO reliably in real time, we can detect critical situations to warn the driver in

advance and this will certainly improve driving safety and prevent traffic accidents.

Preprint submitted to Elsevier 26 November 2009
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Fig. 1. Architecture of the perception system

In the literature, SLAM and DATMO have been attracted considerable research

works [1] [2] [3] and they also are essential parts of the perception modules in

driverless cars [4] [5] winning the recent series of DARPA Grand Challenge com-

petitions 1 . However, for highly dynamic outdoor scenarios like in crowded urban

streets, there still remains many open questions. These include, how to represent

the vehicle environment, how to obtain a precise location of the vehicle in presence

of dynamic entities, and how to differentiate moving objects and stationary objects

as well as how to track moving objects reliably over time.

In this context, we designed and developed a generic perception architecture ad-

dressing these problems focusing on outdoor dynamic environments [6]. The ar-

chitecture (Fig. 1) is comprised of two main parts: the first part where the map of

vehicle environment is constructed and dynamic objects are identified; the second

part where detected moving objects are verified and tracked.

In the first part of the architecture, to model the environment surrounding the ve-

hicle, we employ the occupancy grid framework proposed by Elfes [7]. In order

to perform mapping or modeling the environment from a moving vehicle, gen-

erally a precise vehicle localization is necessary. To correct vehicle locations from

odometry, we introduce a new fast laser-based incremental localization method that

can work reliably in dynamic environments. When good vehicle locations are es-

timated, by integrating laser measurements we are able to build a consistent grid

map surrounding of the vehicle. And when new laser measurements are coming,

dynamic objects can be then detected based on their discrepancies with the con-

structed grid map. Related results have been presented in our previous publication

[8] and in this paper we employ the radar data combined with object detection

1 www.darpa.mil/grandchallenge/index.asp
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results from laser data in order to obtain a more robust performance.

In the second part, previously detected moving objects in the vehicle environment

are passed to the tracking process. Since some objects may be occluded or not de-

tected, some are false alarms, tracking helps to identify occluded objects, recognize

false alarms and reduce missed detections. In general, the multiple object tracking

problem is complex: it involves the definition of filtering methods as well as the

data association methods and maintenance of the list of objects currently present in

the environment [9]. Regarding the filtering techniques, Kalman filters [10] and

particle filters [11] are mostly used. These filters require the definition of a spe-

cific dynamic model of tracked objects. However, defining a suitable motion model

is not trivial and Interacting Multiple Models (IMM) [12] have been successfully

applied in practice. In our previous works [13], we have developed a fast method

to adapt on-line IMM according to trajectories of detected objects and so that we

obtain a suitable and robust tracker. To deal with the data association and track

maintenance problem, we extend our approach to multiple objects tracking using

the Multiple Hypothesis Tracking (MHT) approach [14][15].

1.1 Experimental platform

Fig. 2. Left: the Daimler demonstrator car. Right: an example of sensor data, laser measure-

ments are displayed in small red dots and radar measurements displayed as bigger dots.

The proposed algorithm for solving SLAM and DATMO is tested on data collected

from the Daimler demonstrator car equipped with a camera, two short range radars

and a laser scanner (Fig. 2). The laser scanner can detect obstacles at a range of

70m under a field of view of 160◦. It provides raw data as a list of impacts with an

angular resolution of 1◦. The radars detect targets up to 30m within a field of view

of 80◦ and return pre-filtered data as a list of ”dot” objects with their estimated

positions and Doppler velocities (Fig. 2 right). In addition, vehicle odometry infor-

mation such as velocity and yaw rate are provided. The measurement cycle time of

the sensor system is 40ms.

In our implementation, laser data is used to perform mapping as well as detection

and tracking of moving objects. Radar data is then fused with laser data to confirm

the results obtained by laser data in order to give a more reliable results on detection
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and tracking objects in the radar field of view. Images from camera are only for

visualization purpose.

2 RELATED WORK

Before discussing in detail our approach to problems of SLAM and DATMO, it is

interesting to recall some notable works in the domain.

One of the first works on SLAM with DATMO was that of Prassler’s group [1].

They described a first system on automated wheelchairs for static and dynamic ob-

ject detection, moving object tracking and obstacle avoidance. The environment is

represented by a time stamp grid map that provide a interesting way to detect and

track moving objects. However, this method rely completely on odometry informa-

tion with suppose that the odometry is ideal and it cannot detect objects moving

slowly. Although the proposed solution is not really complete, it identified the need

of both SLAM and DATMO for automated mobile systems.

Haehnel et al. in [2] used a feature-based approach to identify pedestrians from

laser range scans and use Joint Probabilistic Data Association particles filters [16]

to track moving pedestrians indoor. The corresponding measurements are then fil-

tered out and classical scan registration and mapping techniques in static environ-

ment are used. However, this approach is not able to work in outdoor environment

where various dynamic objects can not be described by simple features.

Wang [3] developed the first outdoor real-time system solving both SLAM and

DATMO simultaneously for urban environments from a ground vehicle. To correct

the vehicle odometry he used an ICP-based matching scan method and moving

objects are detected based on a simple geometric analysis. He also presented a

mathematical framework integrating both SLAM and DATMO and showed that

they can be mutually beneficial from each other. The idea is that the results of

SLAM will be more accurate if moving objects can be filtered out and thanks to a

more accurate pose estimation and a better map from SLAM, DATMO can detect

and track moving objects more reliably.

Recently, in the DARPA Urban Challenge competition, we have been witnessed

significant advances in efforts of building autonomous vehicles. It is shown that

driverless cars, for instance: Boss [5] and Junior [4], are capable of operating au-

tonomously and safely through urban-alike environments. However, testing scenar-

ios for the competition contains only vehicles as moving objects which limits their

approaches to be only able to detect and track vehicles. In addition, to obtain a good

performance, participant vehicles are equipped with so many precise and expensive

sensors, such as 3D laser scanners, 2D laser scanners, radars, vision, precise inertial

sensors...
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Inspired by the pioneer work of Wang on SLAM and DATMO, our objective here

is trying to put forward the state-of-the-art solutions to these tasks in order to build

a general and reliable vehicle perception system with affordable sensors (e.g. 2D

laser scanner, short-range radars). To this end, we introduce a new fast grid-based

laser scan matching method to correct vehicle odometry that works extremely well

even in the presence of dynamic entities. It will be shown later that this is an im-

portant step to build an accurate map of the environment and help to detect moving

objects reliably. We also present a new approach of multiple object tracking capa-

ble of online adapting movements of moving objects which results in a more robust

tracker. Parts of this work have been published separately in [8] [13].

In the following section, we describe in detail our approach to vehicle localization

and environment mapping. Algorithm for detecting moving objects is presented in

Section 4. Multi objects tracking approach is detailed in Section 5. Experimental

results are reported in Section 6 and finally conclusions and future works are given

in Section 7.

3 LOCAL SLAM

To model the environment surrounding of vehicle, we employ the occupancy grid

framework proposed by Elfes [7]. Compared with feature-based approaches [17],

grid maps can represent any environment and are especially suitable for noisy sen-

sors in outdoor environments where features are hard to define and extract. Grid-

based approaches also provide an interesting mechanism to integrate different kinds

of sensors in the same framework taking the inherent uncertainty of each sensor

reading into account.

To perform mapping, only laser data is used. For our purpose of safety vehicle

navigation, a good global map is not necessary, so that the problem of revisiting or

loop closing in SLAM is not considered in this work. For this reason, we propose

an incremental mapping approach based on a fast laser scan matching algorithm

in order to build a consistent local vehicle map. The map is updated incrementally

when new data measurements arrive along with good estimates of vehicle locations

obtained from the scan matching algorithm. The advantages of our incremental

approach are that the computation can be carried out very quickly and the whole

process is able to run online.

3.1 Notation

Before describing our approach in detail, we introduce some notations used. We

denote the discrete time index by the variable t, the laser observation from vehicle
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at time t by the variable zt = {z1
t , ...,z

K
t } including K individual measurements cor-

responding to K laser beams, the vector describing an odometry measurement from

time t− 1 to time t by the variable ut , the state vector describing the true location

of the vehicle at time t by the variable xt .

3.2 Occupancy Grid Map

In this representation, the vehicle environment is divided into a two-dimensional

lattice M of rectangular cells and each cell is associated with a measure taking a

real value in [0,1] indicating the probability that the cell is occupied by an obsta-

cle. A high value of occupancy grid indicates the cell is occupied and a low value

means the cell is free. Assuming that occupancy states of individual grid cells are

independent, the objective of a mapping algorithm is to estimate the posterior prob-

ability of occupancy P(m |x1:t ,z1:t) for each cell m of the grid, given observations

z1:t = {z1, ...,zt} at corresponding known poses x1:t = {x1, ...,xt}.

Using Bayes theorem, this probability is determined by:

P(m |x1:t ,z1:t) =
P(zt |x1:t ,z1:t−1,m) .P(m |x1:t ,z1:t−1)

P(zt |x1:t ,z1:t−1)
(1)

If we assume that current measurement zt is independent from x1:t−1 and z1:t−1

given we know m, P(zt |x1:t ,z1:t−1,m) = P(zt |xt ,m). Then after applying Bayes

Theorem to P(zt |xt ,m), equation (1) becomes:

P(m |x1:t ,z1:t) =
P(m |xt ,zt) .P(zt |xt) .P(m |x1:t ,z1:t−1)

P(m) .P(zt |x1:t ,z1:t−1)
(2)

Equation (2) gives the probability for an occupied cell. By analogy, equation (3)

gives the probability for a free cell:

P(m |x1:t ,z1:t) =
P(m |xt ,zt) .P(zt |xt) .P(m |x1:t ,z1:t−1)

P(m) .P(zt |x1:t ,z1:t−1)
(3)

By dividing equation (2) by (3), we obtain:

P(m |x1:t ,z1:t)

P(m |x1:t ,z1:t)
=

P(m |xt ,zt)

P(m |xt ,zt)
.
P(m)

P(m)
.
P(m |x1:t−1,z1:t−1)

P(m |x1:t−1,z1:t−1)
(4)

If we define Odds(x) = P(x)
P(x) = P(x)

1−P(x) , equation (4) turns into:

Odds(m |x1:t ,z1:t) = Odds(m |xt ,zt).Odds(m)−1
.Odds(m |x1:t−1,z1:t−1) (5)
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The corresponding log Odds representation of equation (5) is:

logOdds(m |x1:t ,z1:t)

= logOdds(m |zt ,xt)− logOdds(m)+ logOdds(m |x1:t−1,z1:t−1) (6)

In (6), what we need to know are two probability densities, P(m |xt ,zt) and P(m).
P(m) is the prior occupancy probability of the map cell which is set to 0.5 rep-

resenting an unknown state, that makes this component disappear. The remaining

probability P(m |xt ,zt), is called the inverse sensor model. It specifies the probabil-

ity that a grid cell m is occupied based on a single sensor measurement zt at location

xt . Fig. 3 shows the function we use to compute the occupancy probability of grid

cells along a laser beam measuring a distance of d.

Fig. 3. Profile of an inverse sensor model illustrates the occupancy probability along a laser

beam measuring a distance of d.

From the log Odds representation, the desired probability of occupancy P(m |x1:t ,z1:t)
can be easily recovered. And since the updating algorithm is recursive, it allows for

the map updated incrementally when new sensor data arrives.

The second image in Fig 6 shows an example of an occupancy grid map constructed

from laser measurements during the vehicle’s movement. The color of grid map cell

indicates the probability that corresponding space being occupied: gray=unknown,

white=free, black=occupied.

3.3 Localization in Occupancy Grid Map

In order to build a consistent map of the environment, a good vehicle localization

is required. Because of the inherent error, using only odometry often results in an

unsatisfying map (see Fig. 4 left). When features can not be defined and extracted,

direct scan matching techniques like ICP [18] can help to correct the odometry

error. The problem is that sparse data in outdoor environments and dynamic en-

tities make correspondence finding difficult. One important disadvantage of the
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direct scan matching methods is that they do not consider the dynamics of the ve-

hicle. Indeed we have implemented several ICP variants [19] and found out that

scan matching results are unsatisfactory and often lead to unexpected trajectories

of vehicle. This is because matching only two consecutive scans may be very hard,

ambiguous or weakly constrained, especially in outdoor environment and when the

vehicle moves at high speeds.

Fig. 4. Hit maps build directly from raw laser data collected from a vehicle moving along

a straight street: with vehicle localization using odometry (left); and using results of scan

matching (right). Note that the scan matching results are not affected by moving objects in

the street.

An alternative approach that can overcome these limitations consists in setting up

the matching problem as a maximum likelihood estimation. In this approach, given

an underlying vehicle dynamics constraint, the current scan position is corrected

by comparing with the local grid map constructed from all observations in the past

instead of only with one previous scan. By this way, we can reduce the ambiguity

and weak constraint especially in outdoor environment and when the vehicle moves

at high speed. Mathematically, we calculate a sequence of poses x̂1, x̂2, ... and se-

quentially updated maps M1,M2, ... by maximizing the marginal likelihood of the

t-th pose and map relative to the (t−1)-th pose and map:

x̂t = argmax
xt

{P(zt |xt ,Mt−1) .P(xt | x̂t−1,ut)} (7)

In the equation (7), the term P(zt |xt ,Mt−1) is the measurement model which is the

probability of the most recent measurement zt given the pose xt and the map Mt−1

constructed so far from observations z1:t−1 at corresponding poses x̂1:t−1 that were

already estimated in the past. The term P(xt | x̂t−1,ut) represents the motion model

which is the probability that the vehicle is at location xt given that the vehicle was

previously at position x̂t−1 and executed an action ut . The resulting pose x̂t is then

used to generate a new map Mt according to (6):

Mt = Mt−1∪{x̂t ,zt} (8)
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Fig. 5. The probabilistic velocity motion model P(xt |xt−1,ut) of the vehicle (left) and its

sampling version (right).

Now the question is how to solve the equation (7), but let us first describe the

motion model and the measurement model used.

For the motion model, we adopt the probabilistic velocity motion model similar to

that of [20]. The vehicle motion ut is comprised of two components, the transla-

tional velocity vt and the yaw rate ωt . Fig. 5 depicts the probability of a vehicle

being at location xt given its previous location xt−1 and control ut . This distribution

is obtained from the kinematic equations, assuming that vehicle motion is noisy

along its rotational and translational components.

For the measurement model P(zt |xt ,Mt−1), mixture beam-based model is widely

used in the literature [21][22]. However, the model come at the expense of high

computation since it requires ray casting operation for each beam. This can be a

limitation for real time application if we want to estimate a large amount of mea-

surements at the same time. To avoid ray casting, we propose an alternative model

that only considers end-points of the beams. Because it is likely that a beam hits an

obstacle at its end-point, we focus only on occupied cells in the grid map. A voting

scheme is used to compute the probability of a scan measurement zt given the vehi-

cle pose xt and the map Mt−1 constructed so far. First, from the vehicle location xt ,

individual measurement zk
t is projected into the coordinate space of the map. Call

hitk
t the grid cell corresponding to the projected end-point of each beam zk

t . If this

cell is occupied, a sum proportional to the occupancy value of the cell will be voted.

Then the final voted score represents the likelihood of the measurement. Let P(Mi
t )

denote the posterior probability of occupancy of the grid cell Mi estimated at time

t (following (6)), we can write the measurement model under the sum following:

P(zt |xt ,Mt−1) ∝
K

∑
k=1

{P(M
hitk

t

t−1) so that M
hitk

t

t−1 is occupied} (9)

The proposed method is just an approximation to the measurement model because

it does not take into account visibility constraints, but experimental evidences show

that it works well in practice. Furthermore, with a complexity of O(K), the compu-

tation can be done rapidly.

9



Fig. 6. An example of scan matching. From left to right: reference image; map constructed

so far Mt−1 with previous vehicle location xt−1; new laser measurement zt ; and matching

result is obtained by trading off the consistency of the measurement with the map and the

previous vehicle pose.

It remains to describe how we maximize (7) to find the correct pose x̂t . Hill climbing

strategy in [23][22] can be used but may suffer from a local maximum. Exploiting

the fact that the measurement model can be computed very quickly, we perform an

extensive search over vehicle pose space. A sampling version of the motion model

(Fig. 5 right) is used to generate all possible poses xt given the previous pose xt−1

and the control ut . The resulting pose will be the pose at which the measurement

probability achieves a maximum value. Because of the inherent discretization of

the grid, the sampling approach turns out to work very well. In practice, with a grid

map resolution of 20 cm, it is enough to generate about four or five hundreds of

pose samples to obtain a good estimate of the vehicle pose with the measurement

likelihood that is nearly unimproved even with more samples. The total computa-

tional time needed for such a single scan matching is about 10 ms on a low-end

PC. An example of scan matching result is shown in Fig. 6. The most likely vehicle

pose is obtained when the laser scan is aligned with the occupied parts of the map

and at the same time the vehicle dynamics constraint is satisfied.

Besides the computational effectiveness, one attraction of our algorithm is that it

is not affected by dynamic entities in the environment (see Fig. 4 right). Since we

only consider occupied cells, spurious regions in the occupancy grid map with low

occupancy probability that might belong to dynamic objects do not contribute to the

sum (9). The voting scheme ensures that measurement likelihood reach a maximum

only when the laser scan is aligned with the static parts of the environment. To some

meaning, measurements from dynamic entities can be considered as outliers of the

alignment process. This property is very useful for moving object detection process

that will be described in the next section.

3.4 Local mapping

Because we do not need to build a global map nor deal with loop closing problem,

only one online map is maintained representing the local environment surrounding

of the vehicle. The size of the local map is chosen so that it should not contain loops

10



and the resolution is maintained at a reasonable level. Every time the vehicle arrives

near the map boundary, a new grid map is reinitialized. The pose of the new map

is computed according to the vehicle global pose and cells inside the intersection

area are copied from the old map.

4 MOVING OBJECTS DETECTION

In the previous section, we represent how to obtain precise vehicle localization

and how to build local vehicle grid map from laser data. In this section we will

describe how to identify moving objects by using the previously constructed grid

map. Detected objects are then confirmed using radar data and their velocities are

estimated.

4.1 Using Occupancy Grid to detect Moving Objects

After a consistent local grid map of the vehicle is constructed, moving objects can

be detected when new laser measurements arrive by comparing with the previously

constructed grid map. The principal idea is based on the inconsistencies between

observed free space and occupied space in the local map. If an object is detected

on a location previously seen as free space, then it is a moving object. If an object

is observed on a location previously occupied then it probably is static. If an object

appears in a previously not observed location, then it can be static or dynamic and

we set the unknown status for the object in this case.

Another important clue which can help to decide whether an object is dynamic or

not is evidence about moving objects detected in the past. For example, if there

are many moving objects passing through an area then any object that appears in

that area should be recognized as a potential moving object. For this reason, in

addition to the local static map M constructed as described in the previous section, a

local dynamic grid map D is created to store information about previously detected

moving objects. The pose, size and resolution of the dynamic map is the same as

those of the static map. Each dynamic grid cell Di store a value α i indicating the

number of observations that a moving object has been passed by that cell. The

bigger value of α i, the more probability that object seen at Di is moving.

From these remarks, our moving object detection process is carried out in two steps

as follows. The first step is to detect measurements that might belong to dynamic

objects. Here for simplicity, we will temporarily omit the time index. Given a new

laser scan z, the corrected vehicle location and the local static map M and the dy-

namic map D containing information about previously detected moving objects,
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Fig. 7. Moving object detection example. See text for more details.

state of a single measurement zk is classified into one of three types following:

state(zk) =



















static if Mhitk
= occupied

dynamic if Mhitk
= f ree or Dhitk

> α

undecided if Mhitk
= unknown

where Mhitk
and Dhitk

are the corresponding cells of the static and dynamic map

respectively at the end-point hitk of the beam zk, α is a pre-defined threshold.

The second step when measurements that might belong to dynamic objects are

determined, moving objects are then identified by clustering end-points of these

beams into separate groups, each group represents a single object. Two points are

considered as belonging to the same object if the distance between them is less than

a threshold of 0.2 m that is chosen empirically .

Fig. 7 illustrates the described steps in detecting moving objects. The leftmost im-

age depicts the situation where the vehicle is moving along a street seeing a car

moving ahead and a motorbike moving in the opposite direction. The middle im-

age shows the local static map and the vehicle location with the current laser scan

drawn in red. Measurements which fall into free region in the static map are de-

tected as dynamic and are displayed in the rightmost image. After the clustering

step, two moving objects are identified (in green boxes) and correctly corresponds

to the car and the motorbike.

4.2 Fusion with radar

The general purpose of the data fusion is to provide a more reliable and more ac-

curate model than a single data would provide. After moving objects are identified

from laser data, we confirm the object detection results by fusioning with radar data

and estimate velocities of the detected objects.

With the radar sensors being used, a built-in preprocessing of the radar measure-

ments takes place, wherein reflections with a similar distance, relative velocity, and
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amplitude are grouped together. The radar sensors return pre-filtered data as lists of

potential moving objects. The object lists of the two radars are independent from

each other. Each object is provided with information about the location and the

Doppler velocity. For each moving object detected from laser data as described in

the previous section, a rectangular bounding box is calculated and the radar mea-

surements which lie within the box region are then assigned to corresponding ob-

ject. The velocity of the detected moving object is estimated as the average of these

corresponding radar measurements.

Fig. 8 shows an example of how the fusion process takes place. Moving objects

detected by laser data are displayed in red with green bounding boxes. The targets

detected by two radar sensors are represented as small circles in different colors

along with corresponding velocities. We can see in the radar field of view, two

objects detected by laser data are also seen by two radars so that they are confirmed

and their velocities are estimated. Radar measurements that do not correspond any

dynamic object and fall into other region of the grid are not considered. Since the

radar is setup with the field of view much smaller than the laser field of view (Fig.

2), the fusion process indeed did not help much to improve the overall detection

results but we can see how detection results could be improved if more sensors

available.

Fig. 8. Moving objects detected from laser data are confirmed by radar data.

5 MULTIPLE HYPOTHESIS TRACKING USING ADAPTIVE IMM

The aim of multi-object tracking is to estimate the number and the states of real

objects evolving in the environment by generating and maintaining during time a

set of tracks according to detected (observed) objects 2 obtained at each step. For

convenience we call track a tracked object that is composed by a list of the same

object detected over time. This involves a choice of filtering methods, but also

2 usually the term observation is used in such a case but as in our work raw sensor ob-

servations are treated to obtain detections, the term detected object will be used for more

clarity
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Fig. 9. Architecture of multi-object tracking system

data association methods and a maintenance of the list of objects currently present

in the environment. The most known techniques are the the Global Nearest Neigh-

borhood (GNN) combined with filtering, Joint Probabilistic Data Association Filter

(JPDAF) and the Multiple Hypothesis Tracking (MHT) [9][20]. In the conventional

GNN only the most likely assignment is considered at each step, allowing only to

associate at most one detected object to one track. The JPDAF method permits to

assign several detected objects to one track by a weighted probabilistic sum. Nev-

ertheless, it works with a fixed number of tracks and increase the track state uncer-

tainty since several objects with different positions can update on unique track. In

MHT alternative association hypotheses are built over time. In conflict situations,

instead of taking an immediate decision (GNN) or combining hypotheses (JPDAF),

hypotheses are propagated into the future in anticipation that it will resolve the pos-

sible association ambiguities.

The basic principle of MHT is to generate and update a set of association hypothe-

ses during tracking process. An hypothesis corresponds to a specific probable as-

signment of detected objects with tracks. By maintaining and updating several hy-

potheses, none irreversible association decisions are made and ambiguous cases are

solved in further steps. Reid introduces first a complete algorithm given a system-

atic way in which multiple data association hypotheses can be formed and evaluated

for the problem of multiple target tracking [24]. It permits to systematically gen-

erate and evaluate hypotheses by building track trees. For these reasons, we based

our MHT on this efficient algorithm.

Regarding tracking techniques, Kalman filters [10] or particle filters [11] are gener-

ally used. These filters require the definition of a specific dynamic model of tracked

objects (ie, a motion model). However, defining a suitable motion model is a real

difficulty. To deal with this problem, Interacting Multiple Models [12][25] have

been successfully applied in several applications.

The IMM approach overcomes the difficulty due to motion uncertainty by using

more than one motion model. The principle is to assume a set of models as possible

candidates of the true displacement model of the object at one time. To do so,

a bank of elemental filters is ran at each time, each corresponding to a specific
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motion model, and the final state estimation is obtained by merging the results of

all elemental filters according to the distribution probability over the set of motion

models. By this way different motion models are taken into account during filtering

process. In previous works [26] [13], we have developed a fast method to adapt

on-line IMM according to trajectories of detected pedestrian and so we obtain a

suitable and robust tracker. In this work we extent this method in order to track

dynamic objects in the vehicle environment.

As shown in Fig. 9, our multi-object tracking method is composed of four different

parts:

• The first one is the gating. In this part, taking as input predictions from previ-

ous computed tracks, we compute the set of new detected objects which can be

associated to each track.

• In the second part, using the result of the gating, we perform object to tracks

association and generate association hypotheses, each track corresponding to a

previously known moving object. Output is compoed of the computed set of

association hypotheses.

• In the third part called track management, tracks are confirmed, deleted or cre-

ated according to the association results and final track trees are output.

• In the last part corresponding to the filtering step, estimates are computed for

’surviving’ tracks and predictions are performed to be used the next step of the

algorithm. In this part we use an adaptive method based on Interacting Multiple

Models (IMM).

5.1 Gating

In this part, taking as input predictions from previous computed tracks and newly

detected objects, a gating is performed. It consists in, according to an arbitrary dis-

tance function, determine the detected objects which can be associated with tracks.

Also during this stage, clustering is performed in order to reduce the number of

association hypotheses. It consists in making clusters of tracks which share at least

one detected object. In the next stage, association can be performed independently

for each cluster decomposing a large problem in smaller problems which induce

generation of less hypotheses.

If we take as an example the situation depict by the Fig. 10, in this stage one set is

computed as T1 and T2 share object O2. Also according to gates, objects O1 and O2

can be assigned to T1 and objects O2 and O3 to T3.
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T1’s gate T2’s gate

O1
O2

O3

T1
T2

Fig. 10. Example of association problem

5.2 Association

In this part, taking as input clusters of tracks and detected objects validated by the

gating stage, association hypotheses are evaluated. By considering likelihood of

objects with tracks, new track apparition probability and non-detection probability,

an association matrix is formed.

Let be L(oi, t j) the function giving the likelihood of object i with track j, PNT the

new track apparition probability and PND the non detection probability. Alway tak-

ing as an example the situation in the Fig. 10, the association matrix is written:

















L(o1, t1) −∞ PNT

L(o2, t1) L(o2, t2) PNT

−∞ L(o3, t2) PNT

PND PND −∞

















Thus a possible association hypothesis corresponds to a valid assignation in the

matrix of detected objects with tracks i.e one unique element in each row and each

column is chosen to compose the assignation. In order to reduce the number of

hypothesis, only the m-best association hypotheses are considered as done in Cox

work [27] using this matrix. This m-best implementation of the Reid’s algorithm

permits to reduce the number of hypotheses and thus to control the trees’ growth

in width. So for each cluster (each set of tracks sharing at least one detected ob-

jects) the m-best assignment in the association matrix are computed using the Murty

method [28] which computes the m-best assignations in the matrix and by this way

be obtain the m-best Hypotheses.
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5.3 Track management

In this third stage, using the m-Best Hypotheses resulting of the association stage,

the set of track trees, is maintained i.e tracks are confirmed, deleted or created.

The track management consists in only kept the branches with leafs attached to the

m-best hypothesis and prune all other branches. New tracks are created if a new

track creation hypothesis appears in the m-best hypotheses. A new created track is

confirmed if it is updated by detected objects after a fixed number of algorithm steps

(three in our implementation). Thus spurious measurement which can be detected

as objects in the first step of our method are never confirmed.

If a non-detection hypothesis appears and so to deal with non-detection cases (which

can appear for instance when an object is occulted by an other one, tracks without

associated detected objects are updated according to their last associated objects

and next filtering stage becomes a simple prediction. But if a track is not updated

by a detected object for a given number of steps, it is deleted.

Furthermore, to reduce the continuously tracks’ growth, an other pruning is per-

formed. Typically trees’ growth is controlled in length by the so called N-Scans

pruning technique which consists in only kept the N last scans in the trees. By this

way, the maximum length of tracks trees is N and it permits to apply the MHT

algorithm on realistic problems.

5.4 Adaptive Filtering using Interacting Multiple Models

Predictions

Pruned Track Trees

Filtering

To Users

Most Probable trajectories

IMM Filter

TPM adaptation

Trajectories

Adapted TPM

Estimated Track Trees

Fig. 11. Principle of our adaptive filtering program

As the quality of gating relies directly on the quality of filtering and especially the

prediction step, we have chosen Interacting Multiple Models (IMM) [12][25] to

deal with motion uncertainties in this filtering part.
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Besides, we developed an efficient method in which critical parameter of the IMM

is on-line adapted [26][13] according to the most probable trajectories formed by

tracks. Thus as Fig. 11 shows our filtering stage is composed of three parts : an

IMM filtering part, a part in which most probable trajectories are computed and a

last part in which we adapt the IMM filter.

Principle:

As explained, the IMM approach overcomes the difficulty due to motion uncer-

tainty by using a set of M elemental filters at each time, each corresponding to a

specific motion model, and the final state estimation is obtained by merging the

results of all filters according to the distribution probability P(µ) over the set of

motion models. Also, the probability the object changes of displacement model

is encoded in a transition probability matrix(TPM) which gives the distribution

P( µt | µt−1), i.e the transition between models which is assumed Markovian.
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Fig. 12. Principle of IMM

One cycle of an IMM is composed of tree steps (Fig. 12): A step in which filter

execution is done and P(µt) is updated, a fusion step allowing to compute estimate

fusion and a reinitialization step.

An unique filter give us the distribution at time t over object state xt knowing the

current detected object zt and previous estimation P(xt |zt). Also, P(µt) is updated

according to P(µt |µt−1) corresponding to the TPM, it gives the transition probabil-

ity between modes and so is defined as a matrix, P(µt−1) is the previous distribution

over models and the likelihood of the current detected object with each filter.

Thus as we use a bank of filters and we want to obtain an estimate fusion P(Xt),
according to all filters outputs. The estimate fusion is obtained by:

P(Xt) =
M

∑
m=1

P( [µt = m]) Pm(xt |zt) (10)

Also during the computation process, the new distribution probability over models
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P(µt) is computed and store for each hypothesis.

To obtain new predictions, filters are reinitialized according filters outputs and in

each filter the corresponding dynamic model is applied. By this way, we obtain M

predictions per leaf which will be use in the gating stage.

Definition of our IMM:
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Fig. 13. The sixteen chosen motion models in the vehicle’s frame

Nevertheless, to apply IMM on real applications a number of critical parameters

have to be defined, for instance the set of motion models and the transition proba-

bility matrix(TPM). To cope with this design step which cannot match the reality,

we propose an efficient method in which the TPM is adapted online.

The first step to apply our method is to define an appropriate IMM and, in particular,

models which compose it. In specific applications, different objects such as cars

or motorcycles can move in any directions and can often change theirs motions.

Thus in our aim we choose various IMM’s models to cover the set of possible

directions and velocities. In previous work for one pedestrian tracking we focused

only on directions but here we focus on a range of velocities while keeping a set

of directions to cope with directions’ transition in vehicles’ behavior. As each filter

corresponds to a specific motion model, we have to define each motion model.

So, assuming we have different possible velocities defined according to the vehicle

velocity and eight directions in the set of possible directions an object can follow,

we obtain sixteen motion models (Fig. 13).

Hence, according to the definition of these sixteen motion models, our IMM is

composed of sixteen filters. Kalman filters are chosen for implementation as they

allow fast computation.

We must usually also define the TPM. As we develop a method which computes

the TPM online, we do not need specific informations concerning the TPM and no

modeling are needed. So the TPM is initially chosen to be uniform. As eight modes

are defined, the TPM is an uniform square 16× 16 matrix. In the next part of the

text, we will see how the TPM is on-line adapted.
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5.4.1 Computation of the most probable trajectories

Once estimates are performed in all track trees leafs, the most probable trajectory

is computed for each track. Basically, it consists in taking the branch having the

maximum probability (computed during filtering) to obtain one unique hypothesis

for one given track tree. This step permits to give users more readability on what

is happening during tracking process and also permits us to adapt on-line the IMM

parameter according to these trajectories.

5.4.2 Adaptation of the IMM

To adapt the TPM in our specific situation i.e tracking detected objects, most prob-

able trajectories are considered. Taking as input the set of trajectories computed

during filtering process, we will adapt one-line the TPM of the IMM filter in order

to obtain a better transition between motion models close to the real behavior of

tracked objects.

The principle is the following. For a given number N of trajectories we build se-

quences of associated models probabilities.And then, using this models probabili-

ties, the TPM is adapted and reused in the IMM filters for the next estimations.In

more details, algorithm 1, given in pseudo-code, is the algorithm defined to com-

pute one adaptation of the TPM.

An adaptation of the TPM is done after a given number N of trajectories obtained

from tracks, to update TPM using a window on trajectories (cf. loop line 3-19 of

algorithm 1). Moreover trajectories are processed one by one in three steps:

1- Models’ probabilities are collected by travel through the computed most proba-

ble sequence

2- Most probable models’ sequence is computed

3- Most probable models’ transitions are quantified

Collection of models’ probabilities: For each part of a given most probable tra-

jectory computed in last stages of the filtering process, we collect the distribution

over models(lines 7). Thus a model probabilities’ sequence Sn obtained in such a

way and is stored to be processed (line 8).

Computation of the most probable model sequence: In a next step, the most

probable models’ sequence of Sn is computed (line 11). More precisely, considering

the actual TPM and a set Sn = µ0...µK of model probabilities through time 0 to

K, we aim to obtain the most probable models’ sequence knowing the estimates

computed by the IMM:

Max P(µ0 µ1...µk | x0 x1... xK) (11)
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Algorithm 1 Adaptive IMM Algorithm

1: Adaptation of TPM(T0, ...,TN)

2: n← 0

3: repeat

4: Sn← [ ]
5: /* Store µk,...µk′ from Tn the most probable nth trajectory */

6: for all Ob ject pose xk in Tn do

7: {µk}← Tn(k)
8: Sn← Sn∪ [µk]
9: end for

10: /* Compute the most probable model sequence MPS */

11: MPS←Viterby(Sn)
12: /* Quantification of model transitions */

13: for all Couple ( MPSk, MPSk+1) in MPS do

14: i←MPSk

15: j←MPSk+1

16: Fi j = Fi j + 1

17: end for

18: n← n+1

19: until n = N

20: /* Update of TPM in IMM */

21: T PM← Normalization(F)
22: Return TPM in IMM

We just need to obtain the maximum of the distribution P(µ1 µ2...µK | x0 x1... xK),
thus the inference is made using the Viterbi Data Algorithm [29]. As complexity

of this algorithm is in O(KM2), we efficiently obtain the most probable models’

sequence.

Quantification of most probable model transitions: Using this most probable

models’ sequence, the number of transitions from one model to an other is quan-

tified (lines 13 to 17). To do so a frequencies matrix is considered. This matrix

models the number of transitions which have occurred from one model to an other.

We note F this matrix and so Fi j gives the number of transitions which has occurred

from model i to j. Using the most probable models’ sequence corresponding to a

specific trajectory and computed by the Viterbi algorithm, the update of F is di-

rectly obtained by counting transitions in this sequence. Furthermore, F is kept in

memory to be used in next adaptation and before the first update all its elements

are set to 1.

Finally, when N trajectories have been treated, the new TPM is obtained by nor-

malization of the frequencies matrix F . Thus the TPM is re-estimated using all

model sequences S1...SN and is reused in the IMM for next executions (lines 21

and 22). In practice, before the first run, the TPM is chosen uniform (according to

F initialization) as we do not want to introduce a priori data.

21



By this way an on-line adaptation of the TPM is obtained. Thus, the effectiveness

of filtering part of our MHT is improved since the prediction quality is enhanced

by our method. And so, the quality of the whole MHT is improved.

Example of adaptation result:

Fig. 14. Frequencies matrix obtained after five trajectories

Fig. 15. Frequencies matrix obtained after twenty five trajectories

Fig. 16. Frequencies matrix obtained after fifty trajectories

Following the numeration of the different motion models defined in Fig. 13, the

16× 16 frequencies matrix are shown on Fig. 14, Fig. 15 and Fig. 16 at three dif-

ferent steps of the execution process. We can see that after five trajectories some

transitions appear to be more frequent than other (Fig. 14). Also, after twenty five

trajectories (Fig. 15) the continuous adaptation makes appear clearly different be-

haviors, especially transitions between models oriented to the front and the back of

the vehicle (models number from two to eight and from nine to fifteen) 3 . After a

3 According to nonholonomic constraints we cannot obtain direct transitions from the front

model to the back model for instance but as shown in the results transitions between adja-

cent models occur
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number of trajectories, an efficient model of the real objects’ behaviors is obtained.

Without our automatic and one-line adaptation it would be difficult to model such

behaviors a priori and impossible to continuously model the real behavior of ob-

jects during one or several processes. Furthermore, obtain a TPM which model the

real objects’ motion improve the quality of the IMM filtering and thus the quality

of the whole filtering process.

6 EXPERIMENTAL RESULTS

Our proposed algorithms for objects detection and tracking is tested on datasets col-

lected with the DaimlerChrysler demonstrator car. The vehicle was driven through

different kinds of scenarios such as city streets, country roads and highways with a

maximum speed of 120 kph. In our implementation, the width and height of local

grid map are set to 160 m and 200 m respectively, and the grid resolution is set to

20 cm. Every time the vehicle arrives at 40 m from the grid border, a new grid map

is created. The object detection is run for every new laser scan and the tracking

process is updated according to the detection results.

Fig. 17 shows some snapshots of the moving object detection and tracking process

in action. The images in the first row represent online maps and objects moving

in the vicinity of the vehicle are detected and tracked. The current vehicle location

is represented by blue box along with its purple trajectories after corrected from

the odometry. The red points are current laser measurements that are identified as

belonging to dynamic objects. Green boxes indicate detected and tracked moving

objects with corresponding tracks displayed in different colors. Information on es-

timated velocities is displayed next to detected objects. The second row are images

for visual references to corresponding situations.

In the figure, the leftmost column depicts a scenario where the demonstrator car

is moving at a very high speed of about 100 kph while a car moving in the same

direction in front of it is detected and tracked. On the rightmost is a situation where

the demonstrator car is moving at 50 kph on a country road. A car moving ahead

and two other cars in the opposite direction are all recognized. Note that the two

cars on the left lane are only observed during a very short period of time but both

are detected and tracked successfully. The third situation in the middle, the demon-

strator is moving quite slowly at about 20 kph in a crowded city street. Our system

is able to detect and track both the other vehicles and the motorbike surrounding. In

all three cases, precise trajectories of the demonstrator are achieved and local maps

around the vehicle are constructed consistently. In our implementation, the compu-

tational time required to perform both SLAM and DATMO for each scan is about

20−30 ms on a 1.86GHz, 1Gb RAM laptop running Linux. This confirms that our

algorithm is absolutely able to run synchronously with data cycle in real time. More
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Fig. 17. Experimental results show that our algorithm can successfully perform both SLAM

and DATMO in real time for different environments

results and videos can be found at http://emotion.inrialpes.fr/ tdvu/videos/.

Quantitative results

Data Type Real Objects Non-detections False Alarms Total Tracks

City 57 7% 3% 88

Road 74 11% 3% 109

Highway 5 7% 1.5% 47

The table above shows quantitative results obtained using our method on three se-

quences of different types of environments. The first column are different types of

scenario. The second column shows the numbers of real objects which entered the

vehicle’s sensors range which is manually counted. The third number corresponds

to the numbers of steps in our algorithm in which one object is not detected but

always tracked (non-detection cases). The fourth column are the numbers of false

alarms i.e when our detector (in some cases because of vehicle sensors noise) de-

tected moving objects but our tracker recognized these detection. In the last column

are the total numbers of tracks computed during the given sequence.

The results show that during three sequences, most part of object appearances are

tracked. We can note that the number of tracks remains more important than the

number of real objects. It is due to objects which moves across or close to the sen-

sors’ range boundary. Indeed, close to the sensors’ range boundary, laser sensor
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loose precision and so the detection stage become less efficient. Then if an ob-

ject reappears in the sensor range it is so considered as a new one by our tracker.

Also, even if an important number of non-detections and false alarms appears, the

tracking part permits to cope with such problems especially since the quality of

prediction step is greatly improved by our adaptive IMM. Our two stage approach

permits to cope with sensors noise where an efficient detection is reinforced by a

robust tracking of objects.

7 CONCLUSIONS AND FUTURE WORKS

We have presented an approach to accomplish local mapping with detection and

tracking moving objects. Experimental results have shown that our system can suc-

cessfully perform a real time mapping and moving object tracking from a vehicle

at high speeds in different dynamic outdoor scenarios. This is done based on a

fast scan matching algorithm that allows estimating precise vehicle locations and

building a consistent map surrounding of the vehicle. After a consistent local ve-

hicle map is build, moving objects are detected and are tracked reliably using an

adaptive Interacting Multiple Models filter coupled with an Multiple Hypothesis

tracker.

Future works include incorporating object models of several predefined classes

with specific shapes and sizes that give a more meaningful representation of de-

tected objects instead of only sets of contour points as in our current work. In

addition, algorithms of road detection and road type classification based on con-

structed grid map are being considered. The motivation is that road detection can

help object detection step to filtering out noisy and irrelevant data off-the-road and

focus more on road-likely regions. In all, the fusion of a vehicle map, road de-

tection, moving object classification and tracking modules certainly will enable a

better interpretation of driving situations.
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