N
N

N

HAL

open science

Constrained Clustering using SAT

Jean-Philippe Metivier, Patrice Boizumault, Bruno Crémilleux, Medhi Khiari,

Samir Loudni

» To cite this version:

Jean-Philippe Metivier, Patrice Boizumault, Bruno Crémilleux, Medhi Khiari, Samir Loudni. Con-
strained Clustering using SAT. 11th Int. Symposium on Intelligent Data Analysis (IDA 2012), Oct

2012, Helsinki, Finland. pp.207-218. hal-01023070

HAL Id: hal-01023070
https://hal.science/hal-01023070
Submitted on 15 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01023070
https://hal.archives-ouvertes.fr

Constrained Clustering Using SAT

Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux,
Mehdi Khiari, and Samir Loudni

University of Caen Basse-Normandie - GREYC (CNRS UMR 6072)
Campus II, Cote de Nacre, 14000 Caen - France
{firstname.lastname}Qunicaen.fr

Abstract. Constrained clustering - finding clusters that satisfy user-
specified constraints - aims at providing more relevant clusters by adding
constraints enforcing required properties. Leveraging the recent progress
in declarative and constraint-based pattern mining, we propose an ef-
fective constraint-clustering approach handling a large set of constraints
which are described by a generic constraint-based language. Starting
from an initial solution, queries can easily be refined in order to focus on
more interesting clustering solutions. We show how each constraint (and
query) is encoded in SAT and solved by taking benefit from several fea-
tures of SAT solvers. Experiments performed using MiniSat on several
datasets from the UCI repository show the feasibility and the advantages
of our approach.

1 Introduction

Clustering is one of the core problems in data mining. Clustering aims at par-
titioning data into groups (clusters) so that transactions occurring in the same
cluster are similar but different from those appearing in other clusters [12]|. The
usual clustering problem is designed to find clusterings satisfying a nearest rep-
resentative property while constrained clustering [3[19] aims at obtaining more
relevant clusters by adding constraints enforcing several properties expressing
background information on the problem at hand. Constraints deal with various
types: (1) data objects’ relationships (e.g., a set of objects must be (or not) in a
same cluster [20]), (2) the description of the clusters (e.g., a cluster must have
a minimal or a maximal size [2]), (3) both objects and clusters (e.g., a given
object must be in a given cluster), (4) the characteristics of the clustering (e.g.,
the number of clusters),. .. Traditional clustering algorithms do not provide ef-
fective mechanisms to make use of this information. The goal of this paper is to
propose a generic approach to fill this gap.

Recently, several works have investigated relationships between data mining
and constraint programming (CP) to revisit data mining tasks in a declarative
and generic way [6]14]15]. The user models a problem and expresses his queries
by specifying what constraints need to be satisfied. The process greatly facili-
tates the search of knowledge and models such as clustering. The approach is
enforced by the use of a constraint-based language [17]: it is sufficient to change

the specification in term of constraints to address different pattern mining prob-
lems. In the spirit of this promising avenue, we propose an effective constrained
clustering approach handling a large set of constraints.

The paper brings the following contributions. First, we use the declarative
modeling principle of CP to define a constrained clustering approach taking into
account a large set of constraints on objects, a description of the clusters and
the clustering process itself. By nature, clustering proceeds by iteratively refin-
ing queries until a satisfactory solution is found. Our method integrates in a
natural way this stepwise refinement process based on the queries in order to
focus on more interesting clustering solutions. Contrary to very numerous clus-
tering methods that use heuristics or greedy algorithms, our method is complete.
Second, we define an efficient SAT encoding which integrates features of SAT
solvers (e.g., binary clauses, unit propagation, sorting networks) to solve the
queries. Finally, an experimental study using MiniSat shows the feasibility and
the effectiveness of our method on several datasets from the UCI repository.

Section[2]provides the background on the constraint-based language. Section[3]
describes our method on constrained clustering with examples of constraints
coming from the background information of the problem at hand. Section [4]
addresses the point of how queries and constraints of the language are encoded
and solved with SAT. Section [5]shows the effectiveness of our approach through
several experiments. Section [6] presents related work.

2 Background: Constraint-Based Language

The constraint programming methodology is by nature declarative. It explains
why studying relationships between CP and data mining has received a con-
siderable attention to go towards generic and declarative data mining meth-
ods [6]14]15]. This section sketches our constraint-based language that enables
us to specify in term of constraints different pattern mining problems [17]. This
language forms the first step of our constrained clustering method proposed in
Section [3] In the remainder of this section, we only focus on primitives of the
language that will be used in this paper.

Let Z be a set of n distinct literals called items, an itemset (or pattern) is
a non-null subset of Z. The language of itemsets corresponds to £z = 27\(0. A
transactional dataset T is a multi-set of m itemsets of L. Each itemset, usually
called a transaction or object, is a database entry. For instance, Table[T] gives a
transactional dataset 7 with m=11 transactions t,...,t11 described by n=10
items. This toy dataset is inspired by the Zoo dataset from the UCI repository.

Terms are built from constants, variables, operators, and function symbols.
Constants are either numerical values, or patterns, or transactions. Variables,
noted X, for 1 < j <k, represent the unknown patterns (or clusters). Operators
can be set ones (as N,U,\) or numerical ones (as +, —, X, /). Built-in function
symbols involve one or several terms:

— cover(X;)={t |t e T,X; Ct} set of transactions covered by Xj.
— freq(X;) =|{t|t € T,X; Ct}|is the frequency of pattern X;.

size(X;) =|{i|i€Z,i € X;} | is the size of pattern X;.
overlapItems(X;, X;) =| X; N X; | is the number of items shared by both
Xl' and Xj.

overlapTransactions(X;, X;) =] cover(X;) N cover(X;) | is the number
of transactions covered by both X; and Xj;.

Constraints are relations over terms that can be satisfied or not. There are three
kinds of built-in constraints: numerical constraints (like <, <, =, #£, >, >), set
constraints (like =, #, €, ¢, C, €), and dedicated constraints like:

isNotEmpty(X;) is satisfied iff X; # ()

coverTransactions([X7,..., Xx]) is satisfied iff each transaction is covered
by at least one pattern (|J; <, cover(X;)=T)
noOverlapTransactions([Xy, ..., X]) is satisfied iff all 4, s.t. 1<i<j<k,
cover(X;) Ncover(X;) =10

coverItems([X7y, ..., Xj]) is satisfied iff each item belongs to at least one
pattern (UlgigkXi = I)

noOverlapItems([Xy, ..., X}]) is satisfied iff V 4, j s.t. 1<i<j<k, X;NX,; =0
canonical([X7, ..., Xi]) is satisfied iff for all ¢ s.t. 1<i<k, pattern X is less
than pattern X;;; with respect to the lexicographic order.

Finally, a query is a conjunction of constraints as illustrated in the next section.

3

Table 1. Animal dataset

Species trans|Fur Feather Scale Milk Egg Beak Bone Meat Grass Fish
Cat ti |1 0 0 1 0 O 1 1 0 1
Cow ta |1 0 0 1 0 O 1 0 1 0
Crow ts | 0 1 0 0 1 1 1 1 1 1
Daulphin t4 | 0 0 0 1 0 0 1 0 0 1
Dog ts | 1 0 0 1 0 O 1 1 0 0
Goose te 0 1 0 0 1 1 1 0 1 0
Platypus t7 | 1 0 0 1 1 1 1 1 0 0
Salmon ts 0 0 1 0 1 0 0 0 1 1
Shark to | O 0 0 0o 0 O 0 1 0 1
Trout tio | O 0 1 0 1 0 0 0 1 0
Vulture t11 | O 1 0 0 1 1 1 1 0 1

Constrained Clustering: Modeling

3.1 Introduction: Modeling a Clustering Query

A clustering problem can be thought of as a scenario in which a user wishes to
obtain a partition 7p=(X7, ..., X)) of a dataset T, containing m objects, into k
(non-empty) clusters. A clustering problem intrinsically owns a lot of symmetri-
cal solutions: any permutation of 7y is a solution. The canonical([X7, ..., Xi])
constraint is used to avoid symmetrical solutions.

So, we can define the isClustering([X1, ..., Xx]) constraint:
N1<i<k iSNOtEmpty(Xi) AN
coverTransactions([X1,..., Xx]) A

noOverlapTransactions([X1,..., Xz]) A
canonical ([X1, ..., Xk])

isClustering([X1,..., Xk]) =

3.2 Integrating Background Information in the Clustering Process

In many application domains, background information on the domain and/or
dataset is often available and the data analyst would like to integrate it in
the process to improve the clustering results. Such a knowledge is usually ex-
pressed as transaction-level constraints (like the mustLink and cannotLink con-
straints [20], and as cluster-level constraints (like Mazimum Diameter and Min-
imum Separation contraints [7]8]).

We start by describing how these information can be modeled thanks to the
constraint-based language (see Section[2). Then, we show how our method allow
to combine them to achieve more relevant queries. Let 7 be a dataset of m
transactions. Let d(t1,t2) be a distance over transactions.

Transaction-Level Constraints consist in mustLink and cannotLink con-
straints [20]:

— mustLink(¢1, t2) ensures that transactions ¢; and t2 belong to the same cluster.
— cannotLink(t,ts) ensures that transactions ¢; and to do not belong to the
same cluster.

Cluster-Level Constraints. The diameter of a cluster X; is the maximum
distance between a pair of transactions in X; [7]8]. The cluster-level constraint
mazimum diameter requires that the diameter of any cluster be at most a given
value . To achieve this, we must ensure that any pair of transactions (;,¢;)
with d(¢;,t;) > o« are in different clusters. So, for 1<i<j<m, if d(t;, t;) > a then
the constraint cannotLink(t;,t;) must be added.

The separation between two clusters X; and X is the minimum distance be-
tween a pair of transactions, one from X; and the other from X;. The cluster-
level constraint Minimum Separation requires that the separation between two
clusters be at least a given value . To achieve this, we must ensure that any
pair of transactions (t;,t;) with d(¢;,t;) < B are in the same cluster. So, for
1 <i<j<m,ifd(t;,t;) < § then the constraint mustLink(¢;,¢;) must be
added. Cluster-level constraints can be combined together (query ¢i).

isClustering([Xi,..., X&]) A
@ ([X1,..., Xk]) = N<i<i<m,d(t;t;)<B mustLink(t;,t;) A
/\lgi<j§m4,d(ti4,tj)>a CaIlIlOt]'_.ink(ifi7 t]‘)

The method can be performed with any distance between transactions. For in-
stance, when transactions are described with numerical values, a numerical dis-
tance such as the euclidian distance can be used.

Seeding. Background information both on transactions and clusters is easily
modeled in the same way. Let ¢;, and t;, be two transactions and Xj, a cluster.
t;, and t;, must be (resp. must not be) in a same cluster is modeled by adding
the constraint mustLink(t;,, t;,) (resp. cannotLink(¢;,, tj,)). ti, must be (resp.
must not be) in the cluster X, is modeled by adding the constraint ¢;, € Xj,

(resp. tio ¢ le).

3.3 Stepwise Refinements for Clustering

A major strength of our approach is to provide a simple and efficient way to
declare and refine queries, that is usually the process conducted by a data analyst
when he performs clustering tasks. Starting from an initial query (like ¢;), the
data analyst can express that he prefers solutions with a minimal size of the
clusters, in which the sizes of clusters do not differ too much from each other, etc.
In practice, the data analyst successively refines the query (deriving ¢;11 from
¢;) until he considers that relevant information has been extracted. This stepwise
refinement process is easily handled by our constrained clustering approach as
illustrated below.

Removing Clusterings with Small Size Patterns. A clustering including
at least one cluster X; of small size is not considered as useful because X; does
not ensure enough similarity between transactions associated to X;. Adding a
minimal size threshold solves this drawback (query g¢2).

isClustering([Xi,..., Xk]) A

_) M<icj<modge; t)<p mustLink (¢, €5) A
¢2([X1, .., Xi]) = /\I;i<;;m¢diti¢t;;>i cannotLink(t;,t;) A
Ni<i<k size(X;) >4

Balanced Clustering. Clustering solutions in which the sizes of clusters do not
differ too much from each other are generally preferred. For any pair of clusters
(Xi,X;), their difference of sizes must be lower than a threshold Axm where A
is a percentage (query gs).

isClustering([X1, ..., X&]) A

o /\1<i<j<m4,d(tu,t N<p l'LlustLink(ifi7 t]‘) AN
X X = - - L) .
%‘([150 k]) AI<i<j<m,d(t; t) > o cannotLink(¢;,¢;) A
/\lgi<j§k | size(Xi) — size(Xj) |§ Axm

3.4 An Example of Stepwise Refinements

Let k=3 and d(t1,t2) be the Hamming distance between transaction t; and
transaction t5. Using the dataset 7 described in Table[I] query ¢; provides 966
solutions for «=9 and S=1. By refining these thresholds (decreasing the maximal
diameter to =8 and enlarging the minimal separation to §=2), there remain
four solutions (see Table [2)).

isClustering([Xi, X2, X3]) A
q1([X1, Xa, X3]) = ¢ Ai<i<j<md(t; t;)<p mustLink(t;, t;) A
/\lgi<j§m4,d(ti4,tj)>a CaIlIlOt]'_.ink(ifi7 t]‘)

Table 2. Set of clusterings for ¢; (=8 and 3=2)

SO]. X1 Xz X3

st |{t1,t2,tasts,t7) [{ts,te,ts,tio,t11 }|{to}

s2 [{t1ta,taststr} |{ts.te,t11} {ts;to,t10}
ss |{t1,ta,ta,ts,tr) [{ta.te,to,tin} |{ts,ti0}
sa |{t1,t2,ta,ts,t7,to | {ts,te,t11} {ts,t10}

Clusters with a small size (e.g., {t9} in solution s;) are considered irrelevant.
By adding =2 as a minimal cluster size threshold, we get query ¢4 and there
remains three solutions (sz, s3, and sy, see Table[2)).

q1 ([X1, X2, X5]) A

q2([X1, X2, X3]) = {/\1§i§3 size(X;) > ¢

The user may want to indicate that the shark (t9) must be in the same cluster
as the salmon (tg). This is done with a mustlink constraint. The solution so
is then the unique solution for the query ¢4 where the k=3 clusters respectively
denote mammals, birds and fish.

!
, _ [(X1, Xo, X3]) A
¢5([X1, Xo, X3]) = {mustlink(ts,tg)

3.5 Other Clustering Problems

In the same way, it is easy to express other clustering problems [5] such as
soft clustering and co-clustering, the latter being well-used in bioinformatics
for exploring gene expression data. Soft clustering is a relaxed version of the
clustering where small overlaps on transactions (less than a threshold dr) are
allowed.
N1<i<k iSNOtEmpty(Xi) N
coverTransactions([X1, ..., Xi]) A
0a([X1, -, Xi]) = N<i<j<k overlapTr(Lnsactior]i]s)(Xi,Xj) <ér A
canonical ([X1, ..., Xi])
Co-clustering consists in finding £ clusters covering both the set of transactions
and the set of items, without any overlap on transactions or on items.
isClustering([X1, ..., Xx]) A
g5 ([X1, ..., X]) = { coverItems([X1,..., Xz]) A
noOverlapItems ([X, ..., Xi])

Soft co-clustering is a relaxed version of the co-clustering, allowing small over-
laps on transactions (less than d7) and on items (less than dy).

N1<i<k iSNOtEmpty(Xi) N

coverTransactions([X1,..., Xx]) A

_) Mi<i<j<k overlapTransactions(X;, X;) < dr A
g6([X1, .., X]) = coverItems([X1, ..., Xx]) A
Mi<icj<k overlapItems(X;, X;) < dr A
canonical ([X1, ..., Xi])

4 Constrained Clustering: SAT Encoding

4.1 A Short Overview of SAT Solvers

Satisfiability (SAT) is the problem of determining if the variables of a given
boolean formula can be assigned in such a way as to make the formula be evalu-
ated to True. A formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses, where a clause is a disjunction of literals.

SAT solvers perform filtering using unit propagation. If a CNF F contains
a unit clause (composed of a single literal), then F is satisfied, if and only
if, I is assigned to True. So every clause containing [can be removed and -l
can be deleted in every clause it occurs. Binary clauses are well suited for unit
propagation. If one of its two literals is assigned, a binary clause is either removed
or becomes unitary giving raise to another filtering step (by unit propagation).

Efficient and scalable algorithms for SAT, that were developed over the last
decade, have contributed to dramatic advances in the ability to automatically
solve problem instances involving tens of thousands of variables and millions of
constraints. That is why, we have chosen to encode a query as a CNF and then
use a SAT solver to answer it.

4.2 Variables and Encoding of Partitioning Constraints

The data analyst formulates his queries by using the constraint-based language
introduced above. Let 7 be the dataset to be proceeded. The CNF encoding a
query g; is the conjunction of the CNF's of the constraints involved in g;.

Each unknown cluster is modeled using m boolean variables T; ; such that
(T:,; = True) iff transaction ¢ belongs to cluster j. A cluster is referenced by its
index between 1 and k.

— coverTransactions([Xy, ..., Xj]) ensures that each transaction t€7 belongs
to at least one cluster. So, for each t, there exists at least one cluster

Xj s.t. ter.
ACV Ty
teT je[l..k]

— noOverlapTransactions([Xy, ..., Xj]) ensures that each transaction t € T
belongs to at most one cluster. So, a transaction ¢ belongs to (at least) two
clusters iff there exist X; and X s.t. (t € Xi)A(t € Xj), ie. iy jep (ThiA
Ti ;). So, the negation must hold for each transaction ¢.

ANC N (ST v -=T,)
teT 1<i<j<k
— isNotEmpty(X;) ensures that there exists at least one transaction t € T
that belongs to cluster X; and is modeled by the clause: V7T ;
— canonical([Xy,..., X)) ensures that, for all ¢ s.t. 1<i<k, cluster X; is less
than cluster X;;1. This constraint is encoded using a binary comparator.

A constraint coverItems([Xy, ..., X;]) (resp. noOverlapItems([Xy, ..., X}])) is
encoded in the same way as a constraint coverTransactions([X7, ..., Xi]) (resp.
noOverlapTransactions([Xy, ..., Xk])).

4.3 Encoding mustLink and cannotLink Constraints

mustLink(¢1,t2) ensures that the transactions ¢; and ¢o belong to the same
cluster. So, for each j € [1..k], T3, ; © T, ;.
/\ (ﬁTtlyj v thyj) A (Ttlyj v ﬁthyj)
1<j<k
In the same way, cannotLink(t1,t2) is encoded as:
/\ (ﬁTtlyj v ﬁthyj) A (Ttlyj v thyj)
1<j<k

So each transaction level constraint is encoded using (2 x k) binary clauses.

4.4 Encoding Threshold Constraints Using Sorting Networks

Threshold constraints are directly modeled using cardinality constraints. So,
size(X;)>0; is modeled as #(T1 j,T5 5, ..., Tm,;)>061. This cardinality constraint
states that at least 6; variables T} ; must be assigned to True. Other threshold
constraints involving function symbols are encoded in the same way.

Several efficient CNF encodings of cardinality constraints have been pro-
posed [1]18]. Cardinality constraints are encoded thanks to unary adders in order
to perform filtering by unit propagation. But, such encodings require a quadratic
number of clauses [1] or they depend on the value of the threshold [18]. More-
over, for clustering, or other data mining tasks, thresholds can have rather large
values, so the size of such encodings can quickly become prohibitive.

We used sorting networks to encode threshold constraints because the size
of the resulting encoding does not depend on the value of the threshold. More-
over, using sorting networks to implement cardinality constraints preserves arc-
consistency [11]. The odd-even Batcher sort [4] proved to be very efficient com-
pared to other encodings of cardinality constraints [11].

4.5 Transitive Inference of mustLink and cannotLink Constraints

Let G=(V, E) be the mustLink graph where V=T. There is an edge between ¢;
and ¢; iff there exists a constraint mustLink(t;,¢;) [3120]. Let CC; and CC; be
two connected components of G. (i) If there exists a constraint mustLink(ty,tz)
with t1 € CCy and to € CCy, then we can infer the constraints mustLink(x,y)
for all x € CCy and y € CCy. Contrary to mustLink, cannotLink is not an
equivalence relation, but (i) If there exists a constraint cannotLink(t1,ts) with
t;1 € CCy and to € CCy, then we can infer the constraints cannotLink(x,y) for
all x € CCY and y € CCs.

Such entailments are usually performed by adding all the inferred mustLink
and cannotLink constraints [3]20]. But, using our SAT encoding (see Section[4.3),
there is no need to perform those addings: all inferred constraints are implicitly
stated and will be taken into account by the SAT solver. In fact, mustLink and
cannotLink constraints are encoded using equivalence between boolean variables
(see Section[4.3).

Table 3. Dataset’s characteristics

dataset |Australian Mushroom P.-Tumor Soybean Zoo
m 653 8124 336 630 101
n 125 119 36 50 36
density 0.40 0.19 0.48 0.32 0.44

4.6 Ensuring Completeness

Given a CNF, SAT solvers either find one instantiation (and only one) for the vari-
ables evaluating the formula to True, or prove there is no such an instantiation. In
order to ensure the completeness of our approach, restarts are performed. Let F be
the CNF modeling a query ¢q. Resolution begins with F. Then, after having obtained
the i-th solution s;, its negation —s; is added to the (current) CNF and resolution
is restarted in order to look for another solution. The process ends when a failure
occurs, i.e. when all solutions have been found. Using restarts may seem too naive,
but in practice is efficient enough. As CNF's contain much binary clauses, filtering
by unit propagation is very effective (see experiments performed in Section[5).

5 Experiments

The goal of the experiments is to provide better insights on our constrained
clustering method according to several constraints and datasets. We used the
MiniSat!| solver [10] to implement our method. We performed experiments on
several datasets from the UCI repositor (see Table[3). Experiments were con-
ducted on a Core2Duo E8400 (2.83GHz) with 4GB of RAM. For each experiment
we report the CPU-times needed to compute the first and the first ten solution
according to the required number of clusters k.

We used the Hamming distanc between transactions. The maximum di-
ameter « has been set to n/2 (if two transactions differ more than 50%, they
cannot belong to the same cluster) and the minimum separation 8 to n/20 (if
two transactions differ less than 5%, they must belong to the same cluster).

Fig. [[lreports CPU-times needed to compute the first and the first ten solu-
tions for query ¢1 (see Section[3.2). For each dataset, the first ten solutions (if
there exist) are obtained very quickly, even for the dataset Mushroom which is
the largest one.

Fig. [2l reports CPU-times needed to compute the first solution for balanced
clustering (query g3, Section [3:2]). The balancing ratio A has been set to 10%
(Fig.[2lleft) and to 20% (Fig.2lright). Even with additional threshold constraints,
our approach is still efficient. Note that with such restrictive thresholds, few
queries have a solution.

! http://minisat.se/

2 http://www.ics.uci.edu/ mlearn/MLRepository.html

3 Symbol ’-’ denotes the absence of solution for a query.

4 Any distance can be used since distance is only used to state mustLink and
cannotLink constraints.

dataset k=4 k=8 k=12 k=16 k=20 k=4 k=8 k=12 k=16 k=20
Australian| - 0.02 0.25 0.89 1.59 - 0.05 031 096 1.70
Mushroom |0.96 1.38 3.94 6.64 - 1.28 1.53 5.38 8.24 -
P.-Tumor - 0.03 0.08 0.12 0.13 - 0.03 0.11 0.15 0.17
Soybean 0.01 0.03 0.12 0.16 - 0.02 0.05 0.14 0.18 -
Zoo 0.01 0.01 0.02 0.03 0.03 0.01 0.01 0.03 0.04 0.04

Fig. 1. (¢1) Time in s. to obtain the 1°% sol. (left) and the first ten sol. (right)

dataset k=4 k=8 k=12 k=16 k=20 k=4 k=8 k=12 k=16 k=20
Australian| - 19.7 27.46 45.23 180.5 - 7.20 13.10 46.15 69.76
Mushroom 16.9 - - - - 19.6 - - - -
P.-Tumor - 1.06 222 6.16 6.05 - 091 330 3.88 6.08
Soybean - - - - - - - - - -
Zoo 0.01 0.09 - - - 0.03 0.10 - - -

Fig. 2. (¢3) Time in s. for the 1% sol. with A=10% (left) and with A=20% (right)

0 20 40 60 80 100 0 20 40 60 80 100
Number of solutions Number of solutions

Fig. 3. Time for Zoo (k=6) Fig. 4. Time for Australian (k=6)
Australian|(k = 2) (k = 6) (k = 10) Mushroon |(k = 2) (k = 6) (k = 10)
¢ Hliteral | 2.6 104 182 ¢ Hliteral| 324 1299 2274

##clause 29.8 107.8 196.3 f#clause| 1141 3651 6291

% 86.9 81.2 8393 % 95.7 93.1 92.9

g2 F#literal 98.8 299.2 499.5 g2 Fliteral| 1343 4062 6781
#clause | 318.7 974.5 1640 #clause| 5075 15452 25960

% 68.6 68.3 68.5 % 73.2 729 73.1

g3 #literal 98.8 299.2 499.5 g3 #literal| 1343 4062 6781
#clause | 318.7 974.5 1640 #clause| 5075 15452 25960
% 68.6 68.3 68.5 % 73.2 729 73.1

Fig. 5. Number of literals and clauses for the three queries (in thousands)

Fig.[3ldepicts the CPU-times according to the number of solutions for dataset
Zoo with k=6. A curve is associated to each of the three queries ¢; (red), g2 with
d=m/10 (blue) and g3 with A=20% (black). These curves seem to be quasi-linear.
All the three queries mainly involve mustLink and cannotLink constraints which
are encoded using binary clauses. As soon as a transaction is assigned to a cluster,

a lot of deductions are performed using unit propagation and transitive inferences
(see Section[4.5)). Nevertheless, further investigations are required to confirm this
result. Fig.[4]provides similar results for dataset Australian with k=6.

Fig. Bl reports the size of the encodings of queries g1, g2, and g3 for datasets
Australian and Mushroom, as well as the ratio (r) of binary clauses constituting
the CNF. The encoding of a query could be large (several millions of clauses),
but the ratio r always remains very high. The size of g2 is similar as the size of g3
since only the bounds of the cardinality constraints are changed (see Section[4.4).
To sum up, these experiments show that SAT solvers allow to solve efficiently
this clustering task. They can find the first solutions (or prove there is none)
in affordable times, even for medium scale size datasets as Mushroom. However,
most of the clustering queries need threshold constraints which require more
computational efforts.

6 Related Work

SAT for Clustering. Constraints on clusters (e.g., Mazimum Diameter and
Minimum Separation) into the k-means clustering algorithm [16] have been in-
troduced by [7]. A formal complexity analysis of constraints on transactions and
clusters is performed in [8]. Davidson and al. have proposed the first approach
using SAT for clustering [9], but it deals only with a strong limited setting (k=2).
The authors show how constraints both on transaction and cluster levels can be
modeled and solved as instances of the 2-SAT problem. Gilpin and Davidson
consider hierarchical constrained clustering and describe how dendograms can
be modeled and solved as instances of the Horn-SAT problem [13]. We have also
used SAT to implement primitives of our constraint-based language [17].

SAT for Mining Patterns. a SAT approach for enumerating all frequent
patterns with wildcards in a given sequence has been proposed in [6].

7 Conclusion and Future Work

We have proposed a constrained clustering approach handling a large set of
constraints. Solving is performed thanks to a SAT encoding for clustering and
we have described how queries can be solved by taking benefit from features
of SAT solvers. Experiments performed using MiniSat show the feasibility and
the effectiveness of our approach. An insight of our work is that when a certain
clustering task is modeled, many variants of that task can be modeled as well,
changing or adding a few constraints is sufficient to allow this to happen.

As future work, we want to enrich our constraint-based language with fur-
ther primitives to determine and/or constrain the cluster center locations. We
also want to improve the current encoding (e.g., defining labeling orderings, ex-
ploiting backdoors, nogoods. ..). Another challenge is to propose an alternative
encoding consuming less space and yet having relevant properties for an efficient
solving. We want to conduct an in-depth study of the scalability of the approach
to larger values of k and larger datasets. Finally, another promising direction is
to integrate optimization criteria in our framework.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Con-
straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108-122. Springer,
Heidelberg (2003)

Banerjee, A., Ghosh, J.: Scalable clustering algorithms with balancing constraints.
Data Min. Knowl. Discov. 13(3), 365-395 (2006)

Basu, S., Davidson, 1., Wagstaff, K.L.: Constrained Clustering: Advances in Algo-
rithms, Theory, and Applications. Chapman & Hall (2008)

Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint
Computing Conference. AFIPS Conference Proceedings, vol. 32, pp. 307-314.
Thomson Book Company, Washington, D.C (1968)

Berkhin, P.: Survey of clustering data mining techniques. Technical report, Accrue
Software, San Jose, CA, USA (2002)

Coquery, E., Jabbour, S., Sais, L.: A constraint programming approach for enumer-
ating motifs in a sequence. In: Workshop on Declarative Pattern Mining, ICDM
2011, Vancouver, Canada, pp. 1091-1097 (December 2011)

Davidson, 1., Ravi, S.: Clustering with constraints: Feasibility issues and the k-
means algorithm. In: SDM (2005)

Davidson, I., Ravi, S.: Using instance-level constraints in agglomerative hierarchi-
cal clustering: theoretical and empirical results. Data Min. Knowl. Discov. 18(2),
257-282 (2009)

Davidson, I., Ravi, S., Shamis, L.: A SAT-based framework for efficient constrained
clustering. In: SDM, pp. 94-105. SIAM (2010)

Fén, N., Sorensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004)
FEén, N., Sorensson, N.: Translating pseudo-boolean constraints into SAT.
JSAT 2(1-4), 1-26 (2006)

Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning 2(2), 139-172 (1987)

Gilpin, S., Davidson, I.: Incorporating SAT solvers into hierarchical clustering al-
gorithms: an efficient and flexible approach. In: KDD 2011, pp. 1136-1144 (2011)
Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: A constraint programming
perspective. Artif. Intell. 175(12-13), 1951-1983 (2011)

Khiari, M., Boizumault, P., Crémilleux, B.: Constraint Programming for Mining n-
ary Patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552-567. Springer,
Heidelberg (2010)

MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281-297. University of California Press (1967)
Métivier, J.-P., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: A
constraint-based language for declarative pattern discovery. In: 27th Annual ACM
Symposium on Applied Computing (SAC 2012), March 2012, pp. 438-444 (2012)
Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827-831. Springer, Heidelberg
(2005)

Tung, A.K.H., Han, J., Lakshmanan, 1..V.S., Ng, R.T.: Constraint-Based Cluster-
ing in Large Databases. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001.
LNCS, vol. 1973, pp. 405-419. Springer, Heidelberg (2000)

Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: ICML 2000,
pp. 1103-1110. M. Kaufmann (2000)

	ACTI-METIVIER-2012-2-p1
	ACTI-METIVIER-2012-2-p2
	ACTI-METIVIER-2012-2-p3
	ACTI-METIVIER-2012-2-p4
	ACTI-METIVIER-2012-2-p5
	ACTI-METIVIER-2012-2-p6
	ACTI-METIVIER-2012-2-p7
	ACTI-METIVIER-2012-2-p8
	ACTI-METIVIER-2012-2-p9
	ACTI-METIVIER-2012-2-p10
	ACTI-METIVIER-2012-2-p11
	ACTI-METIVIER-2012-2-p12

