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TRANSPORT PROOFS OF WEIGHTED POINCARÉ INEQUALITIES

FOR LOG-CONCAVE DISTRIBUTIONS

DARIO CORDERO-ERAUSQUIN AND NATHAEL GOZLAN

Abstract. We prove, using optimal transport tools, weighted Poincaré inequalities for
log-concave random vectors satisfying some centering conditions. We recover by this
way similar results by Klartag and Barthe-Cordero-Erausquin for log-concave random
vectors with symmetries. In addition, we prove that the variance conjecture is true for
increments of log-concave martingales.

1. Introduction

In all the paper, if X = (X1, . . . , Xn) is a random vector defined on some probability
space (Ω, A,P) with values in R

n and h : Rn → R is an Borel (bounded or nonnegative)
function, we use the following notation for the conditional expectations:

Ei[h(X)] := E[h(X)|X1, . . . , Xi−1],

with the convention that E0[h(X)] = E[h(X)]. To any random vector X, we associate the
random vector X defined as follows:

Xi = Xi − Ei−1[Xi], ∀i ∈ {1, . . . , n}.

This recentering procedure will play an important role in all the paper (see also [9] for
another application). We aim at proving Poincaré and transport inequalities for X , when
X is log-concave.

Recall that a random vector X with values in R
n is log-concave if for all non-empty

compact sets A, B ⊂ R
n, it holds

P(X ∈ (1 − t)A + tB) ≥ P(X ∈ A)1−t
P(X ∈ B)t, ∀t ∈ [0, 1].

According to a celebrated result of Borell [11, 12], a random vector X is log-concave if and
only if there is an affine map ℓ : Rk → R

n, k ≤ n and a random vector Y taking values in
R

k such that X = ℓ(Y ) and Y has a density of the form e−V with respect to the Lebesgue
measure on R

k, where V : Rk → R ∪ {+∞} is a convex function. In what follows, by an
“n-dimensional log-concave random vector”, we will understand a vector X satisfying the
conditions above with k = n (and ℓ = Id).

The main result of this note is that the class of all random vectors X with X n-
dimensional and log-concave satisfies a general weighted Poincaré inequality.

Theorem 1.1. There exists a numerical constant a > 0 such that for any n-dimensional
log-concave random vector X, it holds

(1.2) Var(f(X)) ≤ a
n
∑

i=1

E

[

E[X
2
i |X1, . . . , X i−1]∂if(X)2

]
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for all locally-Lipschitz f : Rn → R belonging to L2(X), where Var(Y ) := E[Y 2] − E[Y ]2

denotes the variance of a real valued random variable Y. In particular, if X is such that
Ei−1[Xi] = 0 for all i ∈ {1, . . . , n}, then X = X and it holds

(1.3) Var(f(X)) ≤ a
n
∑

i=1

E

[

Ei−1[X2
i ]∂if(X)2

]

Remark 1.4. If the operation X 7→ X was preserving log-concavity then, of course, (1.2)
would follow from (1.3) applied to X. It is not difficult to find examples of log-concave
random vectors X such that X is not log-concave anymore. A random vector X such that
X = X can be interpreted as a sequence of martingale increments (see Section 3 for more
details).

Theorem 1.1 is reminiscent of recent results of Klartag [25] and of Barthe and Cordero-
Erausquin [4] which were based on L2 methods. The objective of this note is to give
alternative proofs of variants of some of the results from [25, 4] using mass transport
arguments.

Recall that a random vector X is unconditional when X = (X1, . . . , Xn) has the same
law as (ε1X1, . . . , εnXn) for any choice of εi = ±1. Since unconditional random vectors
satisfy Ei−1[Xi] = 0 for all 1 ≤ i ≤ n, Theorem 1.1 can be seen as an extension of the
following result by Klartag [25]: for any log-concave and unconditional random vector X,
it holds

(1.5) Var(f(X)) ≤ c
n
∑

i=1

E

[

(X2
i + E[X2

i ])∂if(X)2
]

,

for all f : Rn → R smooth enough, where c > 0 is some absolute constant. Moreover, when
f is itself unconditional (i.e f(ε1x1, . . . , εnxn) = f(x1, . . . , xn) for all εi = ±1), then the
terms E[X2

i ] can be removed from the right hand side of (1.5). Note that in [25], Klartag
also obtains weighted Poincaré inequalities for a larger class of unconditional distributions
with a density of the form e−φ with φ : Rn → R whose restriction to R

n
+ is p convex (i.e

x 7→ φ(x
1/p
1 , . . . , x

1/p
n ) is convex). Inequalities of the form (1.5) were also investigated in

details in the recent paper [4]. There, the authors establish general weighted Poincaré
inequalities for classes of probability measures invariant by a subgroup of isometries, not
only the coordinate reflections.

Note that (1.3) applies to random vectors having less symmetries than unconditional
random vectors. For instance, if the Xi are independent mean zero and variance one
log-concave random variables then Ei−1[Xi] = 0 for all i, whereas X does not have any
particular symmetry. In this case, the conclusion (1.3) of Theorem 1.1 is consistent with
the Poincaré inequality obtained using the (elementary) tensorisation property of the
Poincaré inequality.

Theorem 1.1 also easily implies some variance estimates for log-concave random vectors.

Corollary 1.6. There exists a universal constant b > 0 such that if X is an n-dimensional
log-concave random vector, then, denoting by | · | the standard Euclidean norm on R

n, it
holds

(1.7) Var
(

|X|2
)

≤ b
n
∑

i=1

E[X
4
i ] ≤ 16b

n
∑

i=1

E[X4
i ].

In particular, when E[X2
i ] = 1 for all i ∈ {1, . . . , n}, we have

(1.8) Var
(

|X |2
)

≤ cn

and if in addition X satisfies Ei−1 [Xi] = 0 for all i, then

(1.9) Var
(

|X|2
)

≤ cn,
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for some other universal constant c.

The inequality (1.9) on the variance immediately yields to the following concentration
in a thin shell estimate

P
(∣

∣|X| −
√

n
∣

∣ ≥ t
√

n
)

≤ b e−c n1/4
√

t, ∀t > 0.

This type of concentration inequalities plays a central role in the proof of the central limit
theorem for log-concave random vectors [2, 21, 23, 7].

Corollary 1.6 is also motivated by the so called variance conjecture. Recall that a random
vector X is said isotropic if E[X] = 0 and E[XiXj ] = δi,j for all i, j ∈ {1, . . . , n}. The
variance conjecture asserts that any log-concave and isotropic random vector X satisfies
(1.9) for some universal positive constant b. This conjecture was shown to be true in
restriction to the class of unconditional log-concave random vectors by Klartag [22, 25]. We
refer to [4] and [1] for other subclasses of log-concave distributions satisfying the variance
conjecture. The best (dimensional) estimate in date is due to Guédon and Milman [18]

who proved that Var(|X|) ≤ bn2/3 for any isotropic log-concave random vector X. The
variance conjecture is a weak form of a celebrated conjecture by Kannan, Lovasz and
Simonovits [20] stating that any log-concave and isotropic random vector X satisfies a
Poincaré inequality

Var(f(X)) ≤ aE
[

|∇f |2(X)
]

, ∀f smooth enough,

for some universal constant a > 0. According to a remarkable recent result of Eldan [14],
the variance conjecture implies the KLS conjecture up to some log(n) factor.

Corollary 1.6 thus shows that the variance conjecture is satisfied on the class of isotropic
log-concave random vectors such that X = X (see also [4, Theorem 4] and Remark 6.1
below for a related result). It is not difficult to see that this class is strictly larger than
the class of unconditional isotropic and log-concave random vectors (some informations on
log-concave random vectors such that X = X can be found in Proposition 2.3 and Remark
2.4 below). For general log-concave random vectors X, let us mention that it is always
at least possible to bound Var(|X|2) in terms of Var(|X |2) and of Var(|X ′|2), where the
“reduced” random vector X ′ is defined by

X ′
i = Ei−1[Xi], ∀i ∈ {1, . . . , n}.

The basic observation behind the following elementary result is that X = X + X ′ is an
orthogonal decomposition of X in the space H := L2(Ω, A,P;Rn) of square integrable n-
dimensional random vectors. More precisely, for any X ∈ H, the vector X is the orthogonal
projection of X onto the linear subspace H0(X) = {Y ∈ H;E[Yi|X1, . . . , Xi−1] = 0, ∀i ∈
{1, . . . , n}} (the space of random sequences that are matingale increments with respect to
the filtration σ(X1, . . . , Xi), 0 ≤ i ≤ n − 1.) We will prove the following useful identity

(1.10) Var(|X|2) = Var(|X |2) + Var(|X ′|2) + 2Cov(|X |2, |X ′|2)

+ 4E[(X · X ′)2] + 4E[|X |2X · X ′] + 4E[|X ′|2X · X ′],

from which one deduces the following result:

Corollary 1.11. If X is an isotropic and log-concave random vector in R
n, and X ′ is

defined as above, then

Var
(

|X|2
)

≤ a
(

n + Var
(

|X ′|2
))

and Var
(

|X ′|2
)

≤ a
(

n + Var
(

|X|2
))

,

for some universal constant a.
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It follows that the variance conjecture is (technically) equivalent to the existence of a
universal constant b > 0 such that for any isotropic log-concave random vector X,

Var
(

|X ′|2
)

≤ bn.

It would be of some interest to see if for some specific classes of vectors X, the variance
term Var(|X ′|2) can be estimated by some power of n.

The proof of Theorem 1.1 is based on mass transport. More precisely, we will establish
a transport-entropy inequality (Theorem 4.6) which is of independent interest, of the form

Tµ(µ, ν) ≤ D(ν ‖ µ), ∀ν,

where µ and ν are the laws of random vectors X and Y , with X, Y distributed according
to µ and ν. The optimal transport cost Tµ will be of the form

Tµ(ν0, ν1) = inf
π∈C(ν0,ν1)

∫∫

cµ(x, y) π(dxdy),

for a particular cost function cµ (precise definitions will be given later). Then, Theo-
rem 1.1 will follow from this transport-entropy inequality by a standard linearization pro-
cedure. The argument towards our transport inequality will use an above tangent lemma
introduced by Cordero-Erausquin [13] which is a handy tool to prove classical functional
inequalities (Log-Sobolev, Talagrand) for uniformly log-concave random vectors and to
recover the celebrated HWI inequality of Otto and Villani [30].

Let us mention here a byproduct of this approach in terms of transport inequalities
involving the classical W2 distance (definitions are recalled below).

Theorem 1.12. There exists a universal constant c such that for any n dimensional
log-concave random vector X taking values in the hypercube [−R, R]n, R > 0, it holds

W 2
2 (µ, ν) ≤ cR2D(ν ‖ µ),

for all probability measures ν on R
n, where µ and ν denote respectively the laws of X and

Y , Y being distributed according to ν.

Theorem 1.12 can be considered as a variant of results by Eldan and Klartag [15,
Theorem 6.1] and by Klartag [24, Theorem 4.2]. Let us mention that the present paper
uses techniques of proof very similar to those involved in [15, 24]. To be more precise,
Theorem 6.1 of [15] gives a similar inequality when µ and ν are both unconditional and
log-concave. In their statement, the relative entropy is replaced by

∫

[−R,R]n H(f, g) − 1,

where H(f, g) = supx∈Rn

√

f(x + y)g(x − y), denoting by f, g the densities of µ and ν
with respect to Lebesgue. This quantity is relevant in their study of the stability of the
Brunn-Minkowski inequality. In Theorem 4.2 of [24], Klartag obtains the inequality

W 2
2 (µ, ν) ≤ cL2D(ν ‖ µ), ∀ν

for all log-concave probability measures µ supported on the hypercube Q = [−1, 1]n and
such that in addition the density f of µ with respect to Lebesgue satisfies for some L ≥ 1

f((1 − t)x + ty) ≤ L[(1 − t)f(x) + tf(y)], ∀t ∈ [0, 1],

for all x, y ∈ Q with x − y proportional to one of the standard basis vectors ei. This
condition is for instance realized with L = eM/8 if f = e−V for some smooth convex
function V : Q → R such that supi≤n supx∈Q ∂2

i V (x) ≤ M for some M ≥ 0.

The paper is organized as follows. In Section 2, we gather various observations on
the relations between X and X for log-concave random vectors. In Section 3, we give
some background on the mass transportation tools that are used to establish our general
transport-inequality, which is stated and proved in Section 4, together with Theorem 1.12.
Then, in Section 5 we linearize this transport-entropy inequality and establish Theorem
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1.1. In the final Section 6, we explain how to derive the Corollaries 1.6 and 1.11 on the
variance.

2. Some observations about log-concave random vectors such that X = X

First, we begin with a straightforward proposition identifying the class of random vec-
tors such that X = X as increments of martingales.

Proposition 2.1. A random vector X = (X1, . . . , Xn) is such that X = X if and only if

M = (M0, M1, . . . , Mn), with M0 = 0 and Mk =
∑k

i=1 Xi is a martingale with respect to
the increasing sequence of sub-sigma fields Fk = σ(M0, . . . , Mk), k ∈ {0, . . . , n}.

The proof if left to the reader.

If M := (M0, M1, . . . , Mn) is a martingale, we denote by ∆i = Mi −Mi−1, i ∈ {1, . . . , n}
the increments of M . The quadratic variation process of M is then defined by [M ]k =
∑k

i=0 ∆2
i , for all k ∈ {0, 1, . . . , n}. With these definitions, Corollary 1.7 can be restated as

follows.

Proposition 2.2. There exists a universal constant c > 0 such that for all martingale
M = (M0, M1, . . . , Mn) such that M0 = 0 and (M1, . . . , Mn) has a log-concave density, it
holds

Var([M ]k) ≤ c
k
∑

i=1

E[∆4
i ], ∀k ≤ n.

Proof. Since the class of log-concave random vectors is stable under affine transformations,
it follows that (M1, . . . , Mn) has a log-concave density if and only if (X1, . . . , Xn) with
Xi = ∆i has a log-concave density. The result then follows immediately from Corollary
1.7. �

We now collect in the following proposition some elementary informations on log-concave
random vectors X such that X = X.

Proposition 2.3.

(1) If X, Y are two independent log-concave random vectors (defined on the same prob-
ability space) such that X = X and Y = Y , then X + Y = X + Y.

(2) If X is a log-concave random vector with values in R
n then X = X if and only if

E[X] = 0 and for all k ∈ {1, . . . , n − 1}, E[X|X1, . . . , Xk] = (X1, . . . , Xk, 0, . . . , 0).
In particular, if C ⊂ R

n is a bounded convex body and X is uniformly distributed
over C, then X = X if and only if the barycenter of C is at 0 and for all x =
(x1, . . . , xn) ∈ R

n

Bar(C ∩ {(x1, . . . , xk)} × R
n−i) = (x1, . . . , xk, 0 . . . , 0), ∀k ∈ {1, . . . , n − 1},

(whenever this section is not empty). In particular, C is symmetric with respect
to the hyperplane {xn = 0}.

(3) If C ⊂ R
2 is a bounded convex body with barycenter at 0 and X is uniformly

distributed over C, then X is uniformly distributed over the convex body C obtained
from C by applying Steiner symmetrization with respect to the axis D = R × {0}.
In particular X = X if and only if C is symmetric with respect to D.

Proof. (1) It is well known that X+Y is still log-concave. Let us show that X + Y = X+Y .
Let i ∈ {2, . . . , n} and take f : Ri−1 → R a bounded measurable test function, then it
holds

E [Xif(X1 + Y1, . . . , Xi−1 + Yi−1)] = EX [XiEY [f(X1 + Y1, . . . , Xi−1 + Yi−1)]] = 0.

Similarly, E [Yif(X1 + Y1, . . . , Xi−1 + Yi−1)] = 0. Therefore, E [(Xi + Yi)f(X1 + Y1, . . . , Xi−1 + Yi−1)] =
0, and since this holds for all test function f , one concludes that Ei−1[(X + Y )i] = 0 for
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all i and so X + Y = X + Y .
(2) The second point follows easily from the fact that for k ≤ i − 1,

E[Xi|X1, . . . , Xk] = E [E[Xi|X1, . . . , Xi−1]|X1, . . . , Xk] .

(3) Observe that C can be written as C = {(x1, x2) ∈ R
2; x1 ∈ [α, β], a(x1) ≤ x2 ≤ b(x1)},

for some α < β, and where a : [α, β] → R is a concave function and b : [α, β] → R is a
convex function. Recall that the Steiner symmetrization of C with respect to D is the set
C defined by

C =

{

(x1, x2) ∈ R
2; x1 ∈ [α, β],

1

2
(a(x1) − b(x1)) ≤ x2 ≤ 1

2
(b(x1) − a(x1))

}

.

Since the function a−b is convex, the set C is convex. Moreover X =
(

X1, X2 − 1
2(a(X1) + b(X1))

)

and so for all bounded measurable test function f : R2 → R

E

[

f(X)
]

=
1

Vol(C)

∫ β

α

∫ b(x1)

a(x1)
f(x1, x2 − 1

2
(a(x1) + b(x1))) dx2dx1

=
1

Vol(C)

∫ β

α

∫ 1

2
(b(x1)−a(x1))

1

2
(a(x1)−b(x1))

f(x1, y2) dy2dx1

=
1

Vol(C)

∫

C
f(y1, y2) dy1dy2.

This shows that X is uniformly distributed on C. �

Remark 2.4. As we already mentioned, the class of log-concave random vectors such that
X = X already contains unconditional log-concave random vectors and log-concave random
vectors with centered independent components. Using the properties above, it is possible
to give other examples of log-concave random vectors such that X = X in arbitrary large
dimension. Namely, observe that if X is a log-concave random vector taking values in R

k

and such that X = X, then it is easy to check that for all i ∈ {1, . . . , k + 1}, the random
vector Xi defined by

Xi = (X1, . . . , Xi−1, 0, Xi, . . . , Xk) ∈ R
k+1

is still log-concave and verifies Xi = Xi. Thanks to point (1) of Proposition 2.3, one thus
sees that if X1, . . . , Xk+1 are independent log-concave random vectors with values in R

k

and such that Xi = Xi, then the random vector Y = X1
1 + X2

2 + · · · + Xk+1
k+1 is still log-

concave and satisfies Y = Y. Initializing this construction with k = 2 with the help of point
(3) of Proposition 2.3 and iterating the process gives rise to a large class of non-trivial
examples of log-concave random vectors such that X = X.

3. Some background on mass transport

The key lemma used in [13] is the so called above tangent lemma recalled below. In what
follows, the relative entropy (also called the Kullbak-Leibler distance) of ν with respect
to µ is defined by

(3.1) D(ν ‖ µ) =

∫

log
dν

dµ
dν,

if ν is absolutely continuous with respect to µ (otherwise, we set D(ν ‖ µ) = ∞).

Lemma 3.2 ([13]). If µ is a probability measure on R
n absolutely continuous with respect

to the Lebesgue measure with a density of the form µ(dx) = e−V (x) dx where V : Rn → R
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is a function of class C2 such that Hess V ≥ ρ, ρ ∈ R, then for all compactly supported
probability measures ν0, ν1 absolutely continuous with respect to µ, it holds

(3.3) D(ν1 ‖ µ) ≥ D(ν0 ‖ µ) +

∫ 〈

∇dν0

dµ
(x), T x − x

〉

µ(dx) +
ρ

2

∫

|T x − x|2 ν0(dx)

+

∫

(

Tr (DTx − In) − log |DTx|
)

ν0(dx),

where T : Rn → R
n pushes forward ν0 onto ν1 and defines a ”suitable” change of variables.

First let us recall the classical applications of (3.3). In [13], the inequality (3.3) was
applied with the Brenier map T (see [33]), that is to say the ν0 almost surely unique map
T achieving the infimum in the definition of the square Kantorovich distance W2:

∫

|T x − x|2 ν0(dx) = inf
π∈C(ν0,ν1)

∫∫

|y − x|2 π(dxdy) := W 2
2 (ν0, ν1),

where C(ν0, ν1) denotes the set of all couplings of ν0, ν1, (i.e probability measures π on
R

n × R
n having ν0 and ν1 as marginals). A fundamental property of the Brenier map

T is that it is the gradient of a convex function: there exists φ : Rn → R convex such
that T (x) = ∇φ(x) for ν0 almost every x ∈ R

n. As a consequence of the inequality
log(λ) ≤ λ − 1, λ > 0 and of the fact that DTx = Hessx φ has a non-negative spectrum,
the last term in (3.3) is always non-negative (assuming for simplicity that T is smooth).
So (3.3) becomes

(3.4) D(ν1 ‖ µ) ≥ D(ν0 ‖ µ) +

∫ 〈

∇dν0

dµ
(x), T x − x

〉

µ(dx) +
ρ

2
W 2

2 (ν0, ν1).

Inequality (3.4), which expresses in some sense that the graph of the map D( · ‖ µ) lies
above its tangent, is also related to the notion of displacement-convexity of the relative
entropy along W2 geodesics (see [29, 33]). When ρ > 0, interesting consequences can be
drawn from the inequality above. For instance, choosing ν0 = µ yields to the following
transport-entropy inequality

W 2
2 (ν1, µ) ≤ 2

ρ
D(ν1 ‖ µ), ∀ν1.

This type of inequalities goes back to the works by Marton [28] and Talagrand [32] (see
[27, 33, 16] for an introduction to the subject). On the other hand, choosing ν1 = µ it
is not difficult to derive from (3.4) the logarithmic-Soblev inequality (see [13, 3, 16] for
details)

D(ν0 || µ) ≤ 2

ρ

∫ |∇h0|2
h0

dµ, ∀ν0 = h0 µ.

We refer to [5, 9] for other applications and variants of (3.3) and (3.4).

In this paper, we will use (3.3) with ρ = 0 and ν0 = µ:

D(ν1 ‖ µ) ≥
∫

(

Tr (DTx − In) − log |DTx|
)

µ(dx).

But as a main difference, we will rather use as T the Knothe map [26] between µ and ν1.
Let us recall the definition of the Knothe transport between two probability measures.

If µ, ν are two Borel probability on R and µ has no atom, then there exists a unique non-
decreasing and left continuous map T : R → [−∞, ∞] transporting µ on ν in the sense
that

∫

f(T ) dµ =
∫

f dν for all say bounded continuous function f . This map T is given
by

T (x) = F −1
ν ◦ Fµ(x), ∀x ∈ R.

where, for x ∈ R and t ∈ [0, 1],

Fµ(x) = µ(−∞, x] and F −1
µ (t) = inf{x ∈ R; Fµ(x) ≥ t} ∈ [−∞, ∞].
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The map T takes finite values µ almost surely. Let us mention that the map T achieves
the minimum value in a large class of optimal transportation problems (see for instance
[31]). This fact will not be explicitly used in the sequel.

The Knothe transport map is a multidimensional extension of this one dimensional
transport. To define it properly, we need to introduce the following notation. If µ is a
probability measure on R

n and X = (X1, . . . , Xn) is a random vector of law µ, we will
denote by µi the law of (X1, . . . , Xi). For i ≥ 2 and x1, . . . , xi−1 ∈ R, we denote by
µi( · |x1, . . . , xi−1) the conditional law of Xi knowing X1 = x1, X2 = x2, . . . , Xi−1 = xi−1.
The conditional probability measure µi( · |x1, . . . , xi−1) is well defined for µi−1 almost all
(x1, . . . , xi−1) ∈ R

i−1. When µ has a positive density h with respect to the Lebesgue
measure on R

n, the conditional probability measures µi( · |x1, . . . , xi−1) have an explicit
density with respect to Lebesgue measure on R it holds

∫

f(ui) µi(dui|x1, . . . , xi−1) =

∫

f(ui)h(x1, . . . , xi−1, ui, ui+1, . . . , un) dui · · · dun
∫

h(x1, . . . , xi−1, ui, ui+1, . . . , un) dui · · · dun

,

for all bounded continuous f : R → R.

The Knothe map T = (T1, . . . , Tn) transporting a probability measure µ on R
n with a

positive density on another probability ν, is defined recursively as follows :

- T1 is the optimal transport map sending µ1 on ν1;
- for a given x ∈ R

n, Ti(x1, x2, . . . , xi−1, · ) is the one dimensional monotone map
sending µi( · |x1, . . . , xi−1) on νi( · |T1(x), . . . , Ti−1(x)).

Note that in particular, T is triangular in the sense that Ti(x) depends only on x1, . . . , xi.
The following lemma is a formally contained in Lemma 3.2; for completeness, we recall

its short proof below.

Lemma 3.5. Let µ be probability measure on R
n with µ(dx) = e−V (x) dx with V : Rn → R

a convex function of class C1; for all probability measure ν on R
n compactly supported with

a smooth density, it holds

D(ν ‖ µ) ≥
∫

[

Tr(DT (x) − I) − log(|DT (x)|)
]

µ(dx)

=

∫ n
∑

i=1

[

∂iTi(x) − 1 − log ∂iTi(x)
]

µ(dx)

where T is the Knothe map transporting µ on ν.

Proof. Write g = dν
dx and h = dν

dµ . First assume that T is C1; according to the change of

variable formula, it holds

e−V (x) = h(T x)e−V (T x)|DT (x)|,
so taking the log and integrating with respect to µ, we obtain

−
∫

V (x) µ(dx) =

∫

log(h(T x)) µ(dx) −
∫

V (T x) µ(dx) +

∫

log(|DT (x)|) µ(dx).

So

D(ν ‖ µ) =

∫

V (T x) − V (x) µ(dx) −
∫

log |DT (x)| µ(dx).

By assumption,

V (y) ≥ V (x) + ∇V (x) · (y − x), ∀x, y ∈ R
n.

So,

D(ν ‖ µ) ≥
∫

∇V (x) · (T x − x) µ(dx) −
∫

log |DT (x)| µ(dx).
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Note that, integrating by parts (and using that ν is compactly supported),

∫

∇V (x) · (T x − x) µ(dx) =

∫ n
∑

i=1

(∂iT (x) − 1)e−V (x) dx =

∫

Tr(DT (x) − I) µ(dx)

Thus,

(3.6) D(ν ‖ µ) ≥
∫

[

Tr(DT (x) − I) − log |DT (x)|
]

µ(dx).

Actually the map T is not necessarily of class C1 so the change of variable formula above
needs to be justified. One can consult Section 3 of [8] and invoke for instance [8, Lemma
3.1]. �

4. A general transport inequality for log-concave probability measures

Before introducing our transport cost, we need to briefly discuss on the Cheeger constant
(or equivalently, the Poincaré constant) of one-dimensional log-concave densities, a case
where optimal bounds are known. If γ is a log-concave probability measure on R, denote
by λγ its Cheeger’s constant, namely the largest constant for which

(4.1) λγ

∫

|f − m(f)| dγ ≤
∫

|f ′| dγ

holds for all f : R → R locally-Lipschitz, where m(f) denotes a median of f . It was proven
by Bobkov [6] that when γ is log-concave probability measure on R, one has

(4.2)
1

3Var(X)
≤ λ2

γ ≤ 2

Var(X)
,

with X ∼ γ. Note that if X is a constant random variable, Var(X) = 0 and λ = ∞.

In what follows, µ is a log-concave probability measure on R
n with full support and

X = (X1, . . . , Xn) a random vector distributed according to µ.

According to Bobkov’s estimate (4.2), for all x ∈ R
n, the one dimensional (log-concave)

probability µi( · |x1, . . . , xi−1) verifies Cheeger’s inequality (4.1) with a constant (optimal
up to universal factor)

(4.3) λ2
i (x) = λ2

i (x1, . . . , xi−1) :=
1

3Var(Xi|X1 = x1, . . . , Xi−1 = xi−1)
∈ (0, +∞]

where

Var(Xi|X1 = x1, . . . , Xi−1 = xi−1)

=

∫

u2µi(du|x1, . . . , xi−1) −
(∫

u µi(du|x1, . . . , xi−1)

)2

∈ [0, +∞).

In Theorem 4.6 below, we prove that any log-concave probability measure on R
n verifies

some transport-entropy inequality with a cost function cµ determined by the functions
λi introduced above. In order to state the result, we need to introduce some additional
notation. Recall that if Z is a random vector, we denote by Z the random vector defined
by

Zi = Zi − E[Zi|Z1, . . . , Zi−1].

Note in particular that X = R(X), where the recentering map R : Rn → R
n is defined by

R(x) = (R1(x), . . . , Rn(x)), where
(4.4)

Ri(x) = xi − mi(x), with mi(x) = mi(x1, x2, . . . , xi−1) =

∫

u µi(du|x1, . . . , xi−1)
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It is not difficult to check that the map R is invertible. We will denote by S = R−1 its
inverse. The cost function cµ : Rn × R

n → [0, ∞] is defined as follows,

cµ(x, y) =
1

16

n
∑

i=1

N
(

λi(S(x))(xi − yi)
)

, ∀x, y ∈ R
n,

where N(t) = |t|− log(1+ |t|) (with the conventions 0×∞ = 0 and a×∞ = sign of a ×∞
for a 6= 0). The associated optimal transport cost denoted by Tµ is defined by

Tµ(ν1, ν2) = inf
π∈C(ν1,ν2)

∫∫

cµ(x1, x2) π(dx1dx2),

where C(ν1, ν2) is the set of all probability measures π on R
n × R

n such that

π(dx1 × R
n) = ν1(dx1) and π(Rn × dx2) = ν2(dx2)

Let us mention that the transport inequality below also holds with the cost function
c̃µ : Rn × R

n → [0, ∞] defined as follows

(4.5) c̃µ(x, y) =
1

16
N





√

√

√

√

n
∑

i=1

λi(S(x))2(xi − yi)2



 , ∀x, y ∈ R
n.

Indeed the function x 7→ N(
√

x) is subadditive, since it is concave on R
+ and vanishes at

0, so we have for all x, y ∈ R
n, cµ(x, y) ≥ c̃µ(x, y).

Theorem 4.6. Let X be an n-dimensional log-concave random vector and let µ be its law;
for all probability measure ν on R

n with finite first moment, it holds

(4.7) Tµ(µ̄, ν̄) ≤ D(ν ‖ µ),

where µ̄ is the law of X and ν̄ is the law of Y with Y distributed according to ν.

Note that the transport cost depends on µ, and not µ. Indeed, it is given by the values
of λi, which depend on X ∼ µ through formula (4.3).

Proof. According to a result by Bobkov and Houdré [10], if γ is probability measure on
R verifying Cheeger’s inequality (4.1) with constant λ, then for all convex even function

L : R → R
+ such that L(0) = 0, L(x) > 0 for all x > 0 and pL := sup xL′(x)

L(x) < +∞, it

holds
∫

L(f − m(f)) dγ ≤
∫

L(pLf ′/λ) dγ,

where m(f) denotes the median of f. It will be convenient to replace the median of f by
its mean denoted by γ(f). First observe that Jensen inequality yields L(γ(f) − m(f)) ≤
∫

L(pLf ′/λ) dγ. On the other hand, the convexity of L implies that
∫

L(f − γ(f)) dγ ≤ 1

2

∫

L(2(f − m(f))) dγ +
1

2
L(2(m(f) − γ(f))).

Finally, it is not difficult to check that the function L1/pL is subbadditive (see for instance
[17, Lemma 4.7]). It follows that L(2a) ≤ 2pLL(a), a ≥ 0. Therefore,

∫

L(f − γ(f)) dγ ≤ 2pL

∫

L(pLf ′/λ) dγ.

As it is easy to see, for the function N , it holds pN ≤ 2. So we have the inequality

(4.8)
1

16

∫

N (λ(f − γ(f))) dγ ≤
∫

L(f ′) dγ.

First let us assume that µ(dx) = e−V (x) dx where V : Rn → R is a convex function of class
C1 and ν is compactly supported with a smooth density. If X is a random vector of law
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µ, then using Lemma 3.5, the inequality t − log(1 + t) ≥ N(t), t > −1 and the inequality
(4.8), it holds

D(ν ‖ µ) ≥
n
∑

i=1

E [N(∂iTi(X) − 1)]

=
n
∑

i=1

E [ E [N(∂iTi(X) − 1) | X1, . . . , Xi−1] ]

=
n
∑

i=1

E [ E [N(∂i(Ti − xi)(X)) | X1, . . . , Xi−1] ]

≥ 1

16

n
∑

i=1

E

{

E
[

N (λi(X) (Ti(X) − E[Ti(X)|X1, . . . , Xi−1] − Xi + E[Xi|X1, . . . , Xi−1]))

∣

∣X1, . . . , Xi−1
]

}

=
1

16

n
∑

i=1

E
[

N (λi(X) (Ti(X) − E[Ti(X)|X1, . . . , Xi−1] − Xi + E[Xi|X1, . . . , Xi−1]))
]

.

Note that, since T1(X), . . . , Ti−1(X) are functions of X1, . . . , Xi−1, it holds

E[Ti(X)|X1, . . . , Xi−1] = E[Ti(X)|T1(X), . . . , Ti−1(X)]

almost surely. It follows, that the vector Y defined by Y i = Ti(X)−E[Ti(X)|X1, . . . , Xi−1]
has law ν̄. Using the definition of our cost, we see that

D(ν ‖ µ) ≥ 1

16
E

[

n
∑

i=1

N
(

λi(S(X))
(

Y i − Xi

))

]

= E

[

cµ(X, Y )
]

.

Therefore, by definition of Tµ, we have

D(ν ‖ µ) ≥ Tµ(µ̄, ν̄).

Using classical approximation arguments, one extends the inequality above to all proba-
bility measures ν with finite finite first moment.

This completes the proof of Theorem 4.6 in the case where µ(dx) = e−V (x) dx with
a convex function V of class C1 on R

n. The conclusion is then extended, using classical
approximation arguments, to any µ(dx) = e−V (x) dx where V : Rn → R∪ {+∞} is a lower
semi-continuous convex function whose domain has a non empty interior. A way to do it
is to consider the family of convex functions Vs, s > 0 defined by

Vs(x) = inf
y∈Rn

{

V (y) +
1

s
|x − y|2

}

, x ∈ R
n, s > 0.

It is well known that for all s > 0, Vs : Rn → R is a C1 smooth convex function on R
n

converging monotonically to V as s → 0 (see for instance [19, Theorem 4.1.4]). Details
are left to the reader. �

Proof of Theorem 1.12. Assume that µ is the law of an n-dimensional log-concave random
vector X taking values in the hypercube Q = [−R, R]n. This assumption on the support
of µ has for consequence that for all x ∈ Q,

Var(Xi|X1 = x1, . . . , Xi−1 = xi) ≤ 2R2.

Therefore, λi(x) ≥ 1/(
√

6R) for all i ∈ {1, . . . , n} and x ∈ Q. It is not difficult to check
that there is an absolute constant c > 0 such that N(u) ≥ cu2 for all |u| ≤ 2/

√
6. So, if ν

is a given probability measure on Q, then by Theorem 4.6 it holds

D(ν ‖ µ) ≥ c

R2
E

[

|X − Y |2
]

,

which completes the proof. �
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5. Weighted Poincaré inequalities for log-concave probability measures

In this last section, we use a classical linearization technique to prove that the transport
cost inequality obtained in Theorem 4.6 implies the weighted Poincaré inequality of Theo-
rem 1.1. Such linearization depends only on the behavior of the cost for small distances. It
will be more convenient, notationnaly speaking, but equivalent, to use the cost c̃µ defined
by (4.5) in the definition of Tµ and in Theorem 4.6, rather than cµ.

Let us introduce the following supremum convolution operator

Ptf(x) = sup
y∈Rn

{

f(y) − 1

t
c̃µ(x, y)

}

, ∀x ∈ R
n, ∀t > 0,

which is well defined for instance for bounded continuous function f on R
n. It can be shown

that he function u(t, x) = Ptf(x) satisfies in some weak sense the following Hamilton-
Jacobi equation

∂tu(t, x) = 8
n
∑

i=1

1

λ2
i (S(x))

(∂xiu)2 (t, x).

Actually, in what follows, we will only need the following elementary inequality:

Lemma 5.1. For all differentiable bounded Lipschitz function f : Rn → R,

lim sup
t→0

1

t

∫

Ptf − f dν ≤ 8

∫ n
∑

i=1

1

λ2
i (S(x))

(∂xif)2 (x) ν(dx),

for all probability measure ν on R
n such that

∫

λ−2
i (S) dν is finite for every i ∈ {1, . . . , n}.

Let us admit the lemma for a moment and prove Theorem 1.1.

Proof of Theorem 1.1. Let g : Rn → R be a bounded function such that
∫

g dµ = 0 and
define for all t ≥ 0 the measure ν t(dx) = (1 + tg) µ(dx). If t is small enough, then ν t is a

probability measure. Let π be a coupling of µ̄ and ν t, and a > 0 be a parameter whose
value will be fixed later on ; for all bounded differentiable Lipschitz function f : Rn → R,
it holds

1

t

(∫

fdν t −
∫

f dµ

)

=
1

t

∫

f(y) − f(x) π(dxdy)

=
1

t

∫

f(y) − Patf(x) π(dxdy) +
1

t

∫

Patf(x) − f(x) µ(dx)

≤ 1

at2

∫

c̃µ(x, y) π(dxdy) +
1

t

∫

Patf(x) − f(x) µ(dx),

where the last line comes from the inequality f(y) − Psf(x) ≤ 1
s c̃µ(x, y) for all s > 0. So

optimizing over π ∈ C(µ̄, ν t), we get, for all t small enough,

1

t

(
∫

fdν t −
∫

f dµ

)

≤ 1

at2
Tµ(µ̄, ν t) +

1

t

∫

Patf(x) − f(x) µ(dx)

≤ 1

at2
D(ν t ‖ µ) +

1

t

∫

Patf(x) − f(x) µ(dx),

where the last inequality comes from Theorem 4.6. A straightforward calculation shows
that t−2D(ν t ‖ µ) → 1

2

∫

g2 dµ when t goes to 0. Therefore, using Lemma 5.1, we get

lim sup
t→0

1

t

(∫

fdν t −
∫

f dµ

)

≤ 1

2a

∫

g2 dµ + 8a

∫ n
∑

i=1

1

λ2
i (S(x))

(∂xif)2 (x) µ̄(dx)

and optimizing over a > 0

lim sup
t→0

1

t

(∫

fdν t −
∫

f dµ

)

≤ 4

(∫

g2 dµ

)1/2
(

∫ n
∑

i=1

1

λ2
i (S(x))

(∂xif)2 (x) µ̄(dx)

)1/2
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Now let us evaluate the left hand side. Consider the map Rt defined by

Rt(x) =

[

x1 −
∫

u1 ν t
1 (du), x2 −

∫

u2 ν t
2 (du2|x1), . . . , xn −

∫

un ν t
n(dun|x1, . . . , xn−1)

]

.

For t = 0, R0 = R is the map introduced in (4.4). Then ν t is the image of ν t by the map
Rt and µ̄ the image of µ by the map R. Therefore,

1

t

(∫

fdν t −
∫

f dµ

)

=
1

t

(∫

f(Rt)(1 + tg) dµ −
∫

f(R) dµ

)

→ −
∫

∇f(R) · U dµ +

∫

f(R)g dµ,(5.2)

when t goes to 0, where U := limt→0
1
t (Rt −R). Let us calculate U . Writing the definition,

it is not difficult to see that,
∫

ui ν t
i (dui|x1, . . . , xi−1) =

ai + tbi

ci + tdi
,

with

ai =

∫

uie
−V (x1,...,xi−1,ui,...,un) dui · · · dun,

bi =

∫

uig(x1, . . . , xi−1, ui, . . . , un)e−V (x1,...,xi−1,ui,...,un) dui · · · dun,

ci =

∫

e−V (x1,...,xi−1,ui,...,un) dui · · · dun,

di =

∫

g(x1, . . . , xi−1, ui, . . . , un)e−V (x1,...,xi−1,ui,...,un) dui · · · dun.

Therefore,

Ui(x) = lim
t→0

1

t

(∫

ui dν t
i (dui|x1, . . . , xi−1) −

∫

ui dµi(dui|x1, . . . , xi−1)

)

= lim
t→0

1

t

(

ai + tbi

ci + tdi
− ai

ci

)

=
bi

ci
− ai

ci

di

ci

= E[Xig(X)|X1 = x1, . . . , Xi−1 = xi−1]

− E[Xi|X1 = x1, . . . , Xi−1 = xi−1] · E[g(X)|X1 = x1, . . . , Xi−1 = xi−1].

It is easy to check that 1
t

∣

∣

∣

ai+tbi
ci+tdi

− ai
ci

∣

∣

∣ ≤ 2M
1−tM

|ai|
ci

for t sufficiently small, where M = sup |g|.
This can be used to justify the limit in (5.2). Details are left to the reader.

According to what precedes,

U(X) = Ei−1[Xig(X)] − Ei−1[Xi]Ei−1[g(X)] = Ei−1[X ig(X)].

So putting everything together, we get

E[f(X)g(X)] ≤ 4E[g2(X)]1/2
E

[

n
∑

i=1

1

λ2
i (S(X))

(

∂if(X)
)2
]1/2

+
n
∑

i=1

E

[

Ei−1[X ig(X)]∂if(X)
]

= 4
√

3E[g2(X)]1/2
E

[

n
∑

i=1

E

[

X
2
i |X1, . . . , X i−1

] (

∂if(X)
)2
]1/2

+
n
∑

i=1

E

[

Ei−1

[

Xig(X)
]

∂if(X)
]

,

where the second line comes from the definition of the λi’s and the identity

Var(Xi|X1 = S1(x̄), . . . , Xi−1 = Si−1(x̄)) = E[X
2
i |X1 = S1(x̄), . . . , Xi−1 = Si−1(x̄)]

= E

[

X
2
i |X1 = x̄1, . . . , X i−1 = xi−1

]

,
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for all x̄ = (x̄1, . . . , xn) ∈ R
n. Finally let us bound the last term. Using Cauchy-Schwarz,

it holds
n
∑

i=1

E

[

Ei−1[X ig(X)]∂if(X)
]

=
n
∑

i=1

E

[

Xig(X)Ei−1[∂if(X)]
]

≤ E[g2(X)]1/2
E





(

n
∑

i=1

X iEi−1[∂if(X)]

)2




1/2

.

Now observe that if i ≤ j − 1, then, since XiEi−1[∂if(X)]Ej−1[∂if(X)] is a function of
X1, . . . , Xj−1, it holds

E

[

XiEi−1[∂if(X)] · XjEj−1[∂if(X)
]

= E

[

X iEi−1[∂if(X)]Ej−1[∂if(X)] · Ej−1[Xj]
]

= 0,

since Ej−1[Xj] = 0. Therefore,

n
∑

i=1

E

[

Ei−1[X ig(X)]∂if(X)
]

≤ E[g2(X)]1/2
E

[

n
∑

i=1

X
2
iEi−1[∂if(X)]2

]1/2

≤ E[g2(X)]1/2
E

[

n
∑

i=1

X
2
iEi−1[∂if(X)2]

]1/2

= E[g2(X)]1/2
E

[

n
∑

i=1

Ei−1

[

X
2
i

]

∂if(X)2

]1/2

.

Using again that Ei−1

[

X
2
i

]

= E

[

X
2
i |X1, . . . , X i−1

]

, we get

E[f(X)g(X)] ≤
(

4
√

3 + 1
)

E[g2(X)]1/2
E

[

n
∑

i=1

E

[

X
2
i |X1, . . . , X i−1

] (

∂if(X)
)2
]1/2

.

Taking g = f ◦ R with f such that
∫

f dµ̄ = 0, we obtain

E[f(X)2] ≤
(

4
√

3 + 1
)2

E

[

n
∑

i=1

E

[

X
2
i |X1, . . . , Xi−1

] (

∂if(X)
)2
]

.

The inequality is then extended by density to all locally Lipschitz functions f : Rn → R

such that
∫

f2 dµ < ∞. �

It remains to prove Lemma 5.1.

Proof of Lemma 5.1. Let f : Rn → R be a differentiable bounded Lipschitz function and
denote by M = 1 + sup |f |. For all x ∈ R

n, we denote by ‖ · ‖x the quantity defined by

‖u‖x =

√

√

√

√

n
∑

i=1

λ2
i (S(x))u2

i , ∀u ∈ R
n.

When x is such that λi(x) < ∞ for all i, then ‖ · ‖x is a norm on R
n. With this notation

c̃µ(x, y) = 1
16N(‖x − y‖x). and

Ptf(x) = sup
y∈Rn

{

f(y) − 1

16t
N (‖y − x‖x)

}

.

First, note that, for all x ∈ R
n, the supremum in the definition of Ptf(x) is attained on

the ball {y ∈ R
n; ‖y − x‖x ≤ N−1(48Mt)}. Namely, if y is outside the ball, it holds

f(y) − f(x) − 1

16t
N (‖y − x‖x) ≤ −M < 0.

Since Ptf(x) ≥ f(x), we conclude that the supremum is reached inside the ball.
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Now let us bound from above the derivative of Ptf with resp ect to the t variable. Let
x ∈ R

n be such that λi(x) < ∞ for all i. Using the preceding remark and the inequality

uv ≤ u2

2 + v2

2 , we see that

1

t
(Ptf(x) − f(x)) = sup

‖y−x‖x≤N−1(48Mt)

{

f(y) − f(x)

t
− 1

16t2
N(‖y − x‖x)

}

≤ 4 sup
‖y−x‖x≤N−1(48Mt)

{

(f(y) − f(x))2

N(‖y − x‖x)

}

(5.3)

= 4 sup
‖u‖x≤N−1(48Mt)







(∇f(x) · u)2 + o(‖u‖2
x)

‖u‖2
x

2 + o(‖u‖2
x)







≤ 8 sup
‖u‖x≤N−1(48Mt)







∑n
i=1

1
λ2

i (S(x))
(∂if)(x)2 + o(1)

1 + o(1)







→ 8
n
∑

i=1

1

λ2
i (S(x))

(∂if)(x)2,

when t goes to 0, where the last inequality follows from Cauchy-Schwarz. So we conclude
that if x is such that λi(x) < ∞ for all i, then

lim sup
t→0

1

t
(Ptf(x) − f(x)) ≤ 8

n
∑

i=1

1

λ2
i (S(x))

(∂if)(x)2.

If x is such that λi(x) = 0 for some x, then Ptf(x) = f(x) and so the inequality above is
still true.

Moreover, denoting by λ∗(x) = min{λi(S(x))} > 0, it follows from (5.3) and from the
inequality ‖u‖x ≥ λ∗(x)|u|, u ∈ R

n, that for all t ≤ 1/(48M)

(5.4)
1

t
(Ptf(x) − f(x)) ≤ 4 sup

λ∗(x)|y−x|≤N−1(1)

{

(f(y) − f(x))2

N(λ∗(x)|y − x|)

}

≤ a
L2

λ∗(x)2
,

where L the Lipschitz constant of f and a = 4 sup0<v≤N−1(1)
v2

N(v) is some universal con-

stant.
Now, let ν be a probability measure on R

n such that
∫ 1

λ2

i (S(x))
ν(dx) < +∞ for all i.

Then 1/λ∗ is also square integrable with respect to ν. Therefore, thanks to (5.4), one can
apply Fatou’s lemma in its lim sup form:

lim sup
t→0

∫

1

t
(Ptf − f) dν ≤

∫

lim sup
t→0

1

t
(Ptf − f) dν ≤ 8

∫ n
∑

i=1

1

λ2
i (S(x))

(∂if)(x)2 dν.

�

6. Variance estimates

Here we prove Corollary 1.6, identity (1.10) and Corollary 1.11.

Proof of Corollary 1.6. According to Theorem 1.1 and standard properties of conditional
expectations, it holds

Var(|X |2) ≤ 4a
n
∑

i=1

E

[

E[X
2
i |X1, . . . , X i−1]X

2
i

]

= 4a
n
∑

i=1

E

[

E[X
2
i |X1, . . . , X i−1]2

]

≤ 4a
n
∑

i=1

E

[

E[X
4
i |X1, . . . , X i−1]

]

= 4a
n
∑

i=1

E

[

Xi
4
]

.

Observe that E[X
4
i ] ≤ 8E[X4

i ] + 8E
[

Ei−1[Xi]
4
]

≤ 16E[X4
i ]. We conclude using Borell’s

reverse Hölder inequality [11]: there exists some universal constant a′ such that for any
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log-concave random variable Y , it holds E[Y 4] ≤ a′
E[Y 2]2. So,

Var(|X |2) ≤ 64aa′n.

�

Remark 6.1. Our main result Theorem 1.1 is closely related to a result by Barthe and
Cordero-Erausquin [4]. Namely, it follows from [4, Theorem 4] that if X is a random

vector following a law µ(dx) = e−V (x) dx on R
n with Hess V ≥ ρId for some ρ ≥ 0, then

for all smooth function f : Rn → R such that

(6.2) E[∂if(X)|X1 . . . , Xi−1, Xi+1, . . . , Xn] = 0, ∀i ∈ {1, . . . , n}
it holds

Varµ(f(X)) ≤
n
∑

i=1

E

[

1

ρ + 1/Ci(X)
∂if

2(X)

]

,

where, for all x = (x1, . . . , xn) ∈ R
n, Ci(x) denotes the Poincaré constant of the condi-

tional distribution of Xi knowing X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn.
Note that the conclusion of [4, Theorem 4] is more general than what we state above. In the
general formulation, to any decomposition of the identity Id =

∑m
i=1 ciPEi where ci > 0

and PEi is the orthogonal projection on a subspace Ei corresponds a weighted Poincaré
inequality involving the Poincaré constants of the conditional distributions of X knowing
PFi(X), with Fi = E⊥

i .

It is well known (see for instance Theorem 4.2 below) that Poincaré constants of one di-
mensional log-concave probability measures can be estimated by the variance. In particular,
it holds

Ci(x) ≤ 3Var(Xi|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn), ∀i ∈ {1, . . . , n}.

Therefore, taking ρ = 0, it holds

(6.3) Varµ(f(X)) ≤ 3
n
∑

i=1

E

[

Var(Xi|X1 . . . , Xi−1, Xi+1, . . . , Xn]∂if
2(X)

]

,

for all smooth f enjoying 6.2. The difference between this result and Theorem 1.1 (besides
the fact that we condition only with respect to the first variables) is that our result is true
for all f but for X instead of X.

Let us see how to recover the conclusion of Corollary 1.6 from (6.3). Let us assume that
X is such that

E[Xi|X1 . . . , Xi−1, Xi+1, . . . , Xn] = 0, ∀i ∈ {1, . . . , n}.

This condition (which is actually a bit stronger than the condition X = X) exactly amounts
to require that the function f(x) = |x|2 satisfies (6.2). So applying (6.3) to this function
and reasoning as in the proof of Corollary 1.6 we thus get from (6.3) that Var(|X|2) ≤ an
for some universal constant a.

Proof of Corollary 1.11. Let us start with identity (1.10). For all i ∈ {1, . . . , n}, it holds

E

[

Xi Ei−1[Xi]
]

= E

[

(Xi − Ei−1[Xi])Ei−1[Xi]
]

= E

[

Ei−1[Xi − Ei−1[Xi]] Ei−1[Xi]
]

= 0.

As a result X and X ′ are orthogonal in L2(Ω, A,P;Rn). Therefore, it holds

E[|X|2] = E[|X |2] + E[|X ′|2] and E[|X|2]2 = E[|X |2]2 + 2E[|X |2]E[|X ′|2] + E[|X ′|2]2.

Since

E[|X|4] = E[|X |4] + 2E[|X |2]E[|X ′|2] + E[|X ′|4] + 4E[(X · X ′)2] + 4E[|X |2X · X ′] + 4E[|X ′|2X · X ′],

we get that

Var(|X|2) = Var(|X |2)+Var(|X ′|2)+2Cov(|X |2, |X ′|2)+4E[(X ·X ′)2]+4E[|X |2X·X ′]+4E[|X ′|2X·X ′]
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Using Cauchy-Schwarz, and the orthogonality of X and X ′ we get
∣

∣

∣Cov
(

|X |2, |X ′|2
)∣

∣

∣ ≤
√

Var
(

|X |2
)
√

Var (|X ′|2)

∣

∣

∣E

[

|X |2 X · X ′
]∣

∣

∣ =
∣

∣

∣E

[(

|X |2 − E[|X |2
)

X · X ′
]∣

∣

∣ ≤
√

Var(|X |2)
√

E[(X · X ′)2]
∣

∣

∣E

[

|X ′|2 X · X ′
]∣

∣

∣ =
∣

∣

∣E

[(

|X ′|2 − E[|X ′|2
)

X · X ′
]∣

∣

∣ ≤
√

Var(|X ′|2)
√

E[(X · X ′)2].

Moreover, note that if i < j the random variable XiEi−1[Xi]Ej−1[Xj ] is measurable with
respect to the σ field generated by X1, . . . , Xj−1. Therefore

E

[

XiEi−1[Xi]XjEj−1[Xj ]
]

= E

[

X iEi−1[Xi]Ej−1[Xj]Ej−1[Xj ]
]

= 0

So, it holds

E[(X · X ′)2] =
n
∑

i=1

E

[

X
2
iEi−1[Xi]

2
]

+ 2
∑

i<j

E

[

XiEi−1[Xi]XjEj−1[Xj ]
]

=
n
∑

i=1

E

[

X
2
iEi−1[Xi]

2
]

=
n
∑

i=1

E

[

Ei−1[X2
i ]Ei−1[Xi]

2 − Ei−1[Xi]
4
]

≤
n
∑

i=1

E[X4
i ] ≤ a′n,

where a′ is some universal constant such that E[Y 4] ≤ a′
E[Y 2]2 for all log-concave random

variable Y. We conclude from the inequalities above that

Var(|X|2) ≤
(

√

Var(|X |2) +
√

Var(|X ′|2)

)2

+ 4a′n + 4
√

a′n
(

√

Var(|X |2) +
√

Var(|X ′|2)

)

=

(

√

Var(|X |2) +
√

Var(|X ′|2) + 2
√

a′n
)2

≤
(

√

Var(|X ′|2) + (2
√

a′ + b)
√

n

)2

≤ 2Var(|X ′|2) + 2(2
√

a′ + b)2n

where in the last inequalities b is the universal constant given by Corollary 1.6.
Similarly,

Var(|X|2) ≥
(

√

Var(|X ′|2) −
√

Var(|X |2)

)2

− 4
√

a′n
(

√

Var(|X ′|2) +
√

Var(|X |2)

)

.

Therefore, expanding the square, we see that the number
√

V ′ :=
√

Var(|X ′|2) is less than
or equal the positive root of the equation

x2 − 2x
(√

V̄ + 2
√

a′n
)

+ V̄ − 4
√

a′n
√

V̄ − V = 0,

with V = Var(|X|2) and V̄ = Var(|X |2). An easy calculation thus gives
√

V ′ ≤
√

V̄ + 2
√

a′n +
√

4a′n + V ,

which together with Corollary 1.6 easily gives the desired inequality. �
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