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Results of a Precrash Application based on

Laser Scanner and Short Range Radars
Sylvia Pietzsch, Trung Dung Vu, Julien Burlet, Olivier Aycard, Thomas Hackbarth, Nils Appenrodt,

Jürgen Dickmann, and Bernd Radig

Abstract—In this paper, we present a vehicle safety application
based on data gathered by a laser scanner and two short range
radars that recognizes unavoidable collisions with stationary
objects before they take place in order to trigger restraint
systems. Two different software modules are compared that
perform the processing of raw data and deliver a description
of the vehicle’s environment. A comprehensive experimental
evaluation based on relevant crash and non-crash scenarios is
presented.

Index Terms—Road vehicles, sensor fusion, perception system,
collision mitigation.

I. INTRODUCTION

IN recent years, a lot of research has been done to develop

safety applications which help to prevent accidents or

mitigate their consequences [1]. The automatic recognition of

imminent collisions plays an important role in making traffic

safer [2] [3]. The earlier a potential collision is detected, the

more possibilities are available to protect car passengers and

other road users. In this document, we describe a system

to detect frontal collisions. In case a crash is predicted to

happen within the next 200 milliseconds, the system triggers

reversible belt pretensioners which bring the passenger into an

upright position that is safer during the crash and removes the

belt slack in advance. An experimental vehicle was equipped

with sensors and processing hardware to demonstrate the

operational capability of the safety function in real time.

The perception of the environment in front of the vehicle

is based on data from a laser scanner and two short range

radars. The advantages of the laser scanner are its large

field of view and its high angular and range resolution and

accuracy. Labayrade et al. [3], for example, fuse objects from

a laser scanner with objects from a stereovision system for

emergency braking. Other approaches for collision detection

rely on a combination of stereovision and radar, e.g. [4]. Radar
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sensors are in common use for driver assistant systems in

cars and complement our system due to immediate velocity

measurements and the use of a complementary emission type.

The methods and software modules presented in this paper

were developed within the Integrated Project PReVENT, a

European research activity to contribute to road safety by

developing preventive safety applications and technologies, co-

funded by the European Commission. The presented work

comprises two different software modules for sensor data

processing that were developed independently by the Daimler

AG (Module 1) and LIG & INRIA Rhônes Alpes (Module

2). The perception module 1 and the precrash application are

part of the research done within APALACI (Advanced Pre-

crash And LongitudinAl Collision mitigation), a subproject of

PReVENT with the objective of protecting vehicle occupants.

Perception module 2 was developed within the framework of

PROFUSION2, a subproject that aims at developing concepts

and methods for different sensor data fusion approaches as an

enabler for advanced vehicle safety and assistance functions.

Module 1 utilizes grid-based segmentation of the laser

scanner data and Kalman filter techniques to track objects.

Module 2 is based on simultaneous localization and mapping

techniques (SLAM) together with the detection and tracking

of moving objects. The environment is modeled using an

Occupancy Grid. Detected moving objects are tracked by a

Multiple Hypothesis Tracker (MHT) coupled with an adaptive

Interacting Multiple Models filter (IMM). Our evaluation

compares the performance of both modules on the basis of

the output of a shared precrash decision module by means of

missed and false alarm rates in complex crash and non-crash

maneuvers with stationary objects, respectively.

The remainder of this paper is organized as follows: In

Section II the experimental vehicle together with the sensors

are described. Section III and Section IV deal with the

technical and scientific background of sensor data processing.

They give an overview over the methods that are used within

each of the modules for environmental perception. Section V

explains subsequent processing steps that perform situation

analysis and the decision for or against a collision. Test

results in various driving scenarios are presented in Section VI.

Finally, Section VII summarizes the presented content and

gives suggestions for further work.

II. EXPERIMENTAL VEHICLE AND SENSORS

The experimental vehicle, a Mercedes-Benz E-Class, is

equipped with an Ibeo ”ALASCA” laser scanner mounted
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TABLE I
TECHNICAL DATA OF THE SENSORS

Property Laser scanner Short range radar

Angle 160◦ 80◦

Angle accuracy +/-0.5◦ +/-5..10◦

Range 0.3-80 m 0.2-30 m

Range accuracy +/-5 cm +/-7.5 cm

Scan frequency 25 Hz 25 Hz

below the number plate and two M/A-COM ”SRS100” 24 GHz

short range radar prototypes mounted in the front bumper

besides the number plate. The laser scanner is hermetically

covered by a box having a black plastic faceplate which is

transparent for the emission wavelength while the radars are

mounted behind the standard plastic bumper. The technical

specifications of the sensors are listed in Table I.

The radar sensors and the laser scanner controller are

connected to a controller unit in the trunk by private CAN

and Ethernet, respectively. This real time unit hosts a 366 MHz

Motorola Power-PC processor which runs the software for sen-

sor data processing, segmentation, object generation, tracking,

sensor data fusion and activation decision.

In case of unavoidable collisions the reversible seatbelt

pretensioners of the front seats are deployed via a private

CAN. An additional PC in the trunk acts as a display server

connected to a monitor in front of the passenger seat to visu-

alize the environment perception and the activation decision.

The architecture of the vehicle is shown in Fig. 1.

Fig. 1. Hardware architecture of the experimental vehicle showing sensors,
actuators, computers and interconnects.

Fig. 2 shows a cutout of the screen exactly at the moment

of deployment when the car approaches a foam cube with a

constant speed of 50 km/h. On the screen, the targets seen by

the laser scanner and the radars are shown as small dots and

circles, respectively. The colors symbolize the mounting side

of the radars and accordingly the four vertical beam layers of

the laser scanner. Object segments, generated from the scanner

targets, are depicted as rectangles. The actual TTC (time to

collision) of 174 ms corresponds to a distance of 2.4 m.

The inset of the figure shows the appropriate picture captured

by the in-vehicle camera which is used for documentation

purposes only.

III. PERCEPTION MODULE 1: POLAR GRID-BASED

SEGMENTATION AND MID-LEVEL FUSION

This section and Section IV describe the mode of opera-

tion of the two different modules which perform the signal

Fig. 2. Visualization of the environment perception on the in-vehicle screen.
The inset shows the scene recorded by the camera behind the windshield.

processing of the individual sensors and their fusion. The

result from either module is a description of the subject

vehicle’s surrounding environment with static and moving

objects contained in it. Based on the state (position, velocity,

direction, dimension and orientation) that the module estimates

for each object relative to the subject vehicle, the application

decides, whether an inevitable collision will take place within

the next 200 ms. Furthermore, the precrash application is

dealing with suppression of ghost targets and a plausibility

check to ensure a robust system behavior.

Grid-based methods have proven to be efficient to process

raw data provided by a laser scanner. In this module, developed

at the Daimler AG, a grid approach is used for segmentation

of laser scan points [5]. The segmentation grid is designed

according to the scanner’s measuring method. Scan points are

processed in polar coordinates. Therefore, a radial grid is used

whose dimensions denote angle and distance. The cell size

increases with the distance from the scanner and the absolute

value of the angle, thus enabling a good segmentation even in

cases when some target points are lost near the border of the

field of view due to low reflected intensity. Fig. 3 depicts a

schematic representation of the segmentation grid. In the very

near field, the parameterization of the grid can differ from the

remaining grid area in order not to split objects in consequence

of very narrow cells. Note that cell sizes as well as near and

far field borders are not to scale. Cell sizes are widened due

to better visibility.

The grid design influences the segmentation quality. Ideally,

a segment should not contain more than one real object and an

object should not split up into several segments. Therefore, the

dimensions of the grid cells have to be chosen carefully. If the

grid cells are too large, neighboring objects tend to be merged

to one segment. Otherwise, if the grid cells are too small, a

compact object splits into many small segments. Knowledge

on the properties of expected traffic participants helps to find a

suitable grid design. Inspecting a target vehicle driving parallel

to the subject vehicle at a certain lateral distance the distance

between measurement points from subsequent laser rays can

be calculated given the scanner’s angular resolution. These

distances build the basis for longitudinal grid cell dimensions.
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Fig. 3. Schematic grid design (not to scale) and segmentation procedure.
Top: Projection of all scan points onto the grid. Bottom: Marking of grid cells
with no. of points ≥ threshold, connecting of adjacent grid cells and labeling.

Laterally, the cell dimension is set to the physical scanner

resolution at the center of field of view and increases towards

the borders.

In scan segmentation algorithms, there is always a tradeoff

between splitting objects that are located close together and

merging objects that are split into different point clouds due

to missing scan points [6]. Processing single frames without

previous knowledge cannot resolve this ambiguity. Neverthe-

less, the presented method performs moderately well for the

desired application, even with different sized targets.

All scan points of all four vertical layers of the laser scanner

are projected onto the grid. If the number of measurements

within a grid cell exceeds a given threshold the cell is marked

as occupied. Neighboring occupied cells are connected to

form one segment, afterwards. The procedure is illustrated

in Fig. 3. Projecting all scan points onto a one-layered grid

no matter which scan layer they originate from makes the

process efficient in terms of computing time without too

much information loss. Processing each layer separately is also

possible, but in this case, complex logic is needed to combine

the segmentation results from the different layers.

From the obtained segments, features that describe the

properties of an object like dimension or orientation angle

can be extracted. For feature extraction, the minimum angle

point, the point with the shortest distance to the scanner and

the maximum angle point are used to calculate a rectangular

bounding box. The orientation angle denotes the angle between

the longer of the two sides of a segment and the x-axis of the

car coordinate system. As reference point the center of gravity

of all points belonging to one segment is chosen.

The measurements of the laser scanner and the short range

radars are combined using a midlevel fusion approach which

is illustrated in the structure within the large frame in Fig. 4.

Laser scanner data is processed in the way described above.

The radar sensors deliver filtered and pretracked targets. The

sensor interface allows for a back calculation to untracked

targets which is done within the radar preprocessing step.

Coordinate transformation into car coordinate system is per-

formed in this processing stage for each sensor, respectively.

Fig. 4. System architecture. Sensor processing, fusion and tracking are
realized by each module independently. The structure inside the large frame
depicts the perception module 1. Situation analysis and the decision step are
the same for both system approaches.

For object tracking, a standard linear Kalman filter is

used [7]. The state vector of an object consists of the x- and

y-position, the x- and y-component of the velocity and the

orientation angle ϕ. Of course, the orientation angle can only

be updated by laser measurements as the radar sensors deliver

point targets only. Beside the estimated state, the dimension

of an object and the information about which sensor has

contributed measurements in the actual time cycle is stored

for each object. Within the Kalman filter a linear kinematic

model is used. Acceleration effects are modeled by adapting

the process noise covariance. The association of measurements

with tracked objects bases on a statistical distance measure.

Association conflicts are resolved using the Global Nearest

Neighbor (GNN) method [8] with a priority scheme based

on object states. The track management distinguishes between

five states of an object (in ascending order of priority): dead,

initiated, tentative, missed and confirmed. There are two kinds

of ambiguity that can occur when associating segments with

objects: an object has more than one segment as candidate for

update and a segment is a candidate for more than one object.

The first ambiguity is resolved by using the GNN method. If

the reference point of a segment lies within the gate of several

objects, the object with higher priority gets the measurement

for update. If states are equal, the dimensions of segment and

objects are compared, and the segment is associated with the

most similar object.

Already tracked objects, that are not confirmed in the

actual time cycle are kept and will only be deleted if no

corresponding object can be assigned during some cycles in

succession. If on the other hand an object can not be associated

with any existing track, a new one is created.

The combination of radar and laser measurements is done

by a measurement vector fusion. Each component c of the

combined measurement vector z = (xz, yz, ϕz)
T is calculated

with involvement of the respective variance σ according to (1),

where s is the sensor index and S the maximum number of
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sensors. The fused vector serves as input to the tracking filter.

zc =

∑S

s=0

zc,s

σc,s∑S

s=0

1

σc,s

(1)

The variance of the combined measurements results in

1

σc

=
∑S

s=0

1

σc,s

(2)

Attention has to be paid when combining measurements of

different sensors, as reflections can originate from different

parts of an object. For the radar sensors it is unknown, where

the exact reflection center is located on the object. Building

an exact model of the reflectivity is difficult due to immense

variations in object classes and their possible behavior. Similar

to [4], we assume the reflection center to be the object’s nearest

point to the sensor. Before performing the fusion, the position

delivered by radar(s) is corrected with the distance between

the center of gravity (i.e. the reference point) and the nearest

point to scanner of the corresponding segment.

Another aspect when fusing data from different sensors is

the synchronization between them. In our system both the

laser scanner and the radar sensors work with a frequency

of 25 Hz, thus, deliver data every 40ms. Nevertheless, the

exact measuring time cannot be determined. The resulting

synchronization error has influence on the update step within

the Kalman filter, on the one hand, but affects the association

step, on the other hand. Therefore, it must be taken into

account when calculating whether a measurement lies within

the (statistical) gate D of a predicted object.

D2 =
(xpred − xmeas)

2

σ2
x

+
(ypred − ymeas)

2

σ2
y

(3)

In (3), xpred and ypred denote the predicted object position

and xmeas, ymeas denote the position of the measurement,

respectively. The total variance does not only include the

process noise and measurement noise, but also a component

representing the synchronization noise:

σ2

x = σ2

x,pred + σ2

x,meas + σ2

x,sync

σ2

y = σ2

y,pred + σ2

y,meas + σ2

y,sync (4)

where σ2
sync depends on the cycle time T and on object’s

velocities v (applying 3σ-method):

σ2

x,sync = (1/3 vx · T )
2

σ2

y,sync = (1/3 vy · T )
2

(5)

In practice, the radar sensors sometimes deliver targets

located outside the gate of an object but inside the object box.

In this case, the information about the object being seen by

this sensor is kept, but the measurement does not contribute

to the fusion.

As with laser segments, ambiguities can occur in associating

radar targets with existing objects. In this case, radar targets

are preferably associated with objects that have laser segments

already associated. If this method fails, the priority scheme as

described for laser segments is applied.

IV. PERCEPTION MODULE 2: CARTESIAN GRID-BASED

MAPPING WITH MOVING OBJECT DETECTION AND

TRACKING USING MHT-IMM

This perception module was developed by the e-Motion

research group of LIG laboratory and INRIA Rhône-Alpes.

Different from the polar grid used in Module 1, we employ the

Cartesian occupancy grid framework introduced by Elfes [9]

to represent the map of subject vehicle environment. This

is a stochastic spatial representation of the environment that

maintains probabilistic estimates of the state of each cell

occupied by an obstacle. The advantage of this approach is

the ability to integrate several sensors in the same framework,

taking the inherent uncertainty of each sensor reading into

account.

Fig. 5. The architecture of perception module 2. This replaces the large
frame in Fig. 4 when running the second application variant.

Fig. 5 gives an overview of our approach which is comprised

of two main parts: a) Mapping with object detection and b)

Object tracking. In the first step, the occupancy grid map is

constructed from sensor data sources. To correct odometry

errors, we introduce a fast implementation of incremental scan

matching method. After a good subject vehicle location is

estimated, the grid is updated incrementally using laser mea-

surements and moving objects are distinguished from static

objects without prior knowledge of the targets. Moving objects

detected by laser are then confirmed by radar measurements.

Finally, we use a Multiple Hypotheses Tracker (MHT) [10]

coupled with an adaptive Interacting Multiple Models (IMM)

filter [11] to track detected objects and estimate their dynamic

states. Final results are used as inputs for situation analysis.

In the following, we will describe in detail each step in the

perception process.

A. Mapping and Object Detection

1) Mapping of the environment: In the occupancy grid

framework, subject vehicle environment is divided into a two-

dimensional lattice M of rectangular cells and each cell is

associated with a measure taking a real value in between 0

and 1, indicating the probability that the cell is occupied by an

obstacle. A high value of an occupancy grid indicates the cell

is occupied and a low value means the cell is free. Assuming

that occupancy states of individual grid cells are independent,

the objective of a mapping algorithm is to estimate the

posterior probability of occupancy P (m|x1:t, z1:t) for each

cell m of grid M , given observations z1:t = {z1, . . . , zt} at

corresponding known poses x1:t = {x1, . . . , xt}.
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Here we apply the Bayesian update scheme similar to that

proposed in [12] which provides an elegant recursive formula

to update the posterior under log-odds form:

log O(m |x1:t, z1:t) = log O(m |x1:t−1, z1:t−1) +

+ log O(m | zt, xt) − log O(m) (6)

where O(a) = odds(a) = P (a) / (1 − P (a))

In (6), P (m) is the prior occupancy probability of the map

which is initially set to 0.5 representing an unknown state, this

makes this component disappeared. The remaining probability

P (m|xt, zt) is called the inverse sensor model. It specifies the

probability that a grid cell m is occupied based on a single

sensor measurement zt at location xt. In our implementation,

it is decided by the measurement of the nearest beam to

the center mass of the cell. Note that the desired probability

of occupancy P (m|x1:t, z1:t) can be easily recovered from

the log odds representation. Moreover, since the updating

algorithm is recursive, it allows for incremental map updating

when new sensor data arrives. Fig. 6 shows examples of an

occupancy grid map where the gray color level of grid cells

indicates the probability of the corresponding space being

occupied: gray=unknown, white=free, black=occupied.

2) Vehicle Localization: In order to build a consistent map

of the environment, a good subject vehicle localization is

required. Because of the inherent error, using only odometry

often results in an unsatisfying map. When features can not

be defined and extracted, direct scan matching techniques

like ICP and its variants [13] are popular ways to correct

vehicle location. The most evident flaw of these ICP-style

scan matching methods is that the measurement uncertainty

is not taken into account. Especially, sparse data and dynamic

entities in outdoor environment cause problems of correspon-

dence finding in ICP-style methods which affect the accuracy

of matching results.

An alternative approach that can overcome these limitations

consists of setting up the matching problem as a maximum

likelihood problem. In this approach, given an underlying

vehicle dynamics constraint, the current scan’s position is

corrected by comparing with the local grid map constructed

from all observations in the past instead of only with one

previous scan. In this way we can reduce the ambiguity and

weak constraint especially in outdoor environment and when

the subject vehicle moves at high speeds.

Mathematically, we calculate a sequence of poses x̂1, x̂2, . . .
and sequentially updated maps M1, M2, . . . by maximizing the

marginal likelihood of the t-th pose and map relative to the

(t − 1)-th pose and map:

x̂t = argmaxxt
{P (zt|xt, Mt−1).P (xt|x̂t−1, ut)} (7)

In (7), the term P (zt|xt, Mt−1) is the measurement model

which is the probability of the most recent measurement zt

given the pose xt and the map Mt−1 constructed so far from

observations z1:t−1 at corresponding poses x̂1:t−1 that were

already estimated in the past.

The term P (xt|x̂t−1, ut) represents the motion model which

is the probability that the subject vehicle is at location xt given

that the subject vehicle was previously at position x̂t−1 and

executed an action ut. The resulting pose x̂t is then used to

generate a new map Mt according to (8):

Mt = Mt−1 ∪ {x̂t, zt} (8)

For the motion model, we adopt the probabilistic velocity

motion model similar to that of [12]. The vehicle motion

ut is comprised of two components, the translational velocity

vt and the yaw rate ωt. The distribution is obtained from

the kinematic equations and modeling noise of rotational

and translational components. For the measurement model

P (zt|xt, Mt−1), to avoid ray casting, we propose a method

that only considers end-points of the beams. Because it is

likely that a beam hits an obstacle at its end-point, we only

focus on occupied cells in the grid map. For those cells, a sum

proportional to the occupancy value will be voted. The final

voted score represents the probability of a scan measurement

zt given the vehicle pose xt and the map Mt−1 constructed

so far (Fig. 6). Readers could refer to [14] for more details.

Fig. 6. The subject vehicle location is obtained by trading off the consistency
of laser measurement with the grid map and the vehicle ego motion.

3) Local Mapping: Because we do not need to build a

global map nor deal with loop closing problem, only one

online map is maintained at each point in time representing

the local environment surrounding the subject vehicle. The size

of the local map is chosen so that it should not contain loops

and the resolution is maintained at a reasonable level. Every

time the subject vehicle arrives near the map boundary, a new

grid map is initialized. The pose of the new map is computed

according to the subject vehicle’s global pose and cells inside

the intersection area are copied from the old map.

4) Moving Object Detection: After obtaining a good lo-

calization of the subject vehicle, a consistent local map is

constructed. From the constructed grid, moving objects can

be detected when new measurements arrive. The principal

idea is based on the inconsistencies between observed free

space and occupied space in the local grid map. If an object

is detected in a location previously seen as free space, then

it is a moving object. If an object is observed on a location

previously occupied then it probably is static.

Another important clue which can help to decide whether

an object is dynamic or not is the evidence about moving

objects detected in the past. For example, if there are many

moving objects passing through an area then any object that

appears in that area should be recognized as a potential moving

object. For this reason, apart from the local static map M as

constructed in the previous section, a local dynamic grid map

D is created to store information about previously detected
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moving objects. The size and resolution of the dynamic map

are the same as those of the static map. Each dynamic grid

cell stores a value indicating the number of observations that

a moving object has been observed at that cell.

From these remarks, our moving object detection process is

carried out in two steps as follows. The first step is to detect

measurements that might belong to dynamic objects. Here for

simplicity, we will temporarily omit the time index. Given a

new laser scan z, the corrected subject vehicle location and

the local static map M and the dynamic map D containing

information about previously detected moving objects, state of

a single measurement zk is classified into one of three types

following: static if Mhit is occupied, dynamic if Mhit is free or

Dhit > α, undecided otherwise; where Mhit and Dhit are the

corresponding cells of the static and dynamic map respectively

at the end-point of the beam zk, α is a pre-defined threshold.

The second step is performed after measurements belonging

to dynamic objects are determined. Moving objects are iden-

tified by clustering end-points of these beams into separate

groups, each group represents a single object. Two points are

considered as belonging to the same object if the distance

between them is less than 0.2 m.

Fig. 7 illustrates the moving object detection process. The

leftmost image depicts the situation where the subject vehicle

is moving along a street seeing a car moving ahead and a

motorbike moving in the opposite direction. The middle image

shows the local static map and the subject vehicle location and

the current laser scan is displayed in black (resp. red) color.

Measurements which fall into free region in the static map

are detected as dynamic and are displayed in the rightmost

image. After the clustering step, two moving objects (in boxes)

are identified and correctly correspond to the car and the

motorbike.

Fig. 7. Example for moving object detection. The big rectangle represents
the subject vehicle.

5) Fusion with radar: After moving objects are identified

from laser data, we confirm the detection results by fusing

with radar data. Since data returned from radar sensors are

pre-filtered as lists of potential targets, each target in the lists is

provided with information about the location and the estimated

Doppler velocity, the data fusion is performed at object-level.

For each object detected by laser as described in the

previous section, a rectangular bounding box is calculated and

the radar measurements which lie within the box region are

then assigned to the corresponding object. The velocity of the

detected moving object is estimated as the average of these

corresponding radar measurements.

Fig. 8 shows an example of how the fusion process takes

place. Moving objects detected by laser data are displayed as

dots within bounding boxes. The targets detected by two radar

sensors are represented as circles along with corresponding

velocities. We can see in the radar field of view, two objects

detected by laser data are also seen by two radars so that they

are confirmed. Radar measurements that do not correspond to

any dynamic object or fall into other region of the grid are

not considered.

Fig. 8. Moving objects detected from laser data are confirmed by radar data.

B. Object Tracking

In the second level, moving objects detected in the vehicle

environment are tracked. Since some objects may be occluded

or some are false alarms or not detected, object tracking helps

to identify occluded objects, recognize false alarms and reduce

misdetections.

In general, the multiple object tracking problem is complex:

it includes the definition of filtering methods, association

methods and maintenance of the list of objects currently

present in the environment. Regarding filtering techniques,

Kalman filters [7] or particle filters [15] are generally used.

These filters require the definition of a specific dynamic model

of tracked objects. However, defining a suitable motion model

is a real difficulty. To deal with this problem, Interacting

Multiple Models [16] have been successfully applied in several

applications. The IMM approach overcomes the difficulty

due to motion uncertainty by using more than one motion

model. The principle is to assume a set of models as possible

candidates for the true displacement model of the object at

one time. To do so, a bank of elemental filters is run at each

time, each corresponding to a specific motion model, and the

final state estimation is obtained by merging the results of all

elemental filters according to the distribution probability over

the set of motion models.

In the previous work [11], we have developed a fast method

to adapt on-line IMM according to trajectories of detected

objects and so we obtain a suitable and robust tracker. To deal

with the data association and track maintenance problem, we

extend our approach to multiple object tracking using Multiple

Hypotheses Tracker [10]. The basic principle of MHT is to

generate and update a set of association hypotheses during

processing. A hypothesis corresponds to a specific probable

assignment of observations with tracks. By maintaining and

updating several hypotheses, association decisions are made

and ambiguous cases are solved in further steps.

As shown in Fig. 5, our multiple object tracking method

is composed of four different steps. In the first step (gat-

ing), based on predictions from previous computed tracks,

we compute the set of new detected objects which can be
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Fig. 9. Results obtained using the perception module 2 in real-life traffic
with two different scenarios: on highway (at night) and on urban street.

associated with each track. In the second step, using the result

of the gating, we perform object to track association and

generate association hypotheses, each track corresponding to

a previously known moving object. The output is composed of

the computed set of association hypotheses. In the third step

(track management) tracks are confirmed, deleted or created

according to the association results which yield final track

trees as output. With filtering in the last step, estimates are

computed for ”surviving” tracks and predictions are performed

to be used for further process.

C. Results from perception module 2 on real-life traffic data

Fig. 9 illustrates results of the perception module 2 in two

different scenarios. The upper images represent online maps

and tracked moving objects in the vicinity of the subject

vehicle. The current subject vehicle location is represented by

a large box along with its estimated trajectories. Dots within

the boxes are current laser measurements that are identified as

belonging to dynamic objects. The boxes indicate detected and

tracked moving objects with corresponding tracks displayed in

different colors. Information on velocities is displayed next to

detected objects if available. The lower images are for visual

reference to corresponding situations.

On the left is a scenario where the subject vehicle is moving

at a very high speed of about 100 km/h on a highway while

a car moving in the same direction in front of it is detected

and tracked. On the right, the subject vehicle is moving quite

slowly at about 20 km/h on a crowded city street. A car moving

ahead, two other cars and a motorbike moving in the opposite

direction are all tracked successfully. More results and videos

can be found at: http://emotion.inrialpes.fr/˜tdvu/videos/.

V. SITUATION ANALYSIS AND DECISION

Algorithms for situation analysis and decision were devel-

oped in the framework of the APALACI project with the

objective of recognizing unavoidable crash situations. They

are independent from the methods and algorithms used in the

perception modules.

The perception modules deliver a description of the car’s

environment by means of a list of objects with information

about their position, movement and from which sensor(s) they

originated. Subsequent steps calculate for all objects in the

environment in front of the subject vehicle, whether they

would potentially hit the subject vehicle according to the

prediction of their movement, and the TTC, if applicable. The

decision for or against an imminent collision is supported by

considering statistical data about the object.

Beside the prediction of the object’s velocity, the situation

analysis stage is based on a data history collected for each

object during its life time. In this step, a preselection is made

between objects, that will potentially hit the subject vehicle

and those that are most likely not hazardous or exceedingly

unconfident. Only potentially dangerous objects are considered

in the decision step. The most important criterion is the TTC.

Objects that reach the decision step have a calculated TTC

within the time frame of 200 ms which is relevant for the

application. For a robust system behavior, further attributes of

an object are inspected to ensure their reliability. Objects with

following attributes are rejected:

• calculated point of impact is located outside the front end

of the subject vehicle

• object’s state is not ”confirmed”

• velocity (relative to subject vehicle) too small

• object is near the border of the field of view

• too high variation of velocity and/or acceleration over

time

Nevertheless, uncertainties remain due to noise in measur-

ing and preprocessing and simplifying model assumptions.

Another aspect is that any kind of sensor may deliver so-

called ghost targets that do not correspond to any real-existing

object. Therefore, in the decision step we have to deal with

two questions:

• Will we really collide with the object?

• Does the object really exist?

For answering the first question, a Bayesian classifier is

applied. Let K be the event ”object collides” with the probabil-

ities P (K)+P (¬K) = 1. Then, the probability of a collision

given a certain measurement z is

P (K|z) =
P (K, z)

P (z)
(9)

Applying Bayes rule, this is the same as

P (K|z) =
P (z|K)P (K)

P (z)

=
P (z|K)P (K)

P (z|K)P (K) + P (z|¬K)P (¬K)

(10)

where z is composed of different attributes zi: the variance

of the x-component of the velocity, the lifetime of the object

and the number of cycles the object was categorized as critical.

To judge the criticality of an object, it is inspected within a
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determined time period that is longer than the TTC. Assum-

ing independent attributes zi and, furthermore, K and ¬K
equiprobable, the probability of a collision can be calculated

using (11).

P (K|z) =

∏
P (zj |K)∏

P (zj |K) +
∏

P (zj |¬K)
(11)

The conditional probabilities P (zj |K) and P (zj |¬K) are

determined beforehand in an offline procedure by inspecting

numerous examples with different situations. Finally, an object

is considered as crashing object if P (K|z) exceeds a prede-

fined threshold.

Beside the probability of a collision, the probability of

existence has to be considered in order to prevent false alerts

that may arise from ghost targets delivered by the sensors or

failures in associating measurements with objects. We use a

method based on evidence theory introduced by Dempster and

Shafer [17] [18].

For a classification of existing and non-existing objects we

define the hypothesis space as Θ = {E,¬E} where E stands

for ”object exists” and ¬E stands for ”object does not exist”.

In evidence theory the power set 2Θ = {∅, E,¬E,E∪¬E} is

considered. Sensor-specific mass functions assign probability

masses to the elements in the power set. For the laser scanner,

the mass functions are implemented as:

ml(E ∪ ¬E) = cl

ml(E) =

∑N

i=0
2N−i · hl[i]∑N

i=0
2N−i

· (1 − ml(E ∪ ¬E))

ml(¬E) = 1 − (ml(E) + ml(E ∪ ¬E))

(12)

By definition, ml(∅) = 0. The constant term cl denotes

a mass probability for uncertainty. The mass function for

the hypothesis ”object exists” considers the weighted ratio of

the number of detections to the lifetime of an object within

a given time frame N . In this connection, hl[i] contains

the information about the object being detected by the laser

scanner at time i. Younger data is exponential higher weighted

than older data. The remaining mass for the hypothesis ”object

does not exist” is derived from the condition
∑

X⊆Θ
m(X) = 1 (13)

Mass functions for radar sensors are implemented in an

analogous way. The fusion of masses from the different

sensors is performed in two steps. First, the masses from the

two radar sensors are combined. Second, the resulting radar

masses are combined with the masses calculated for the laser

scanner. For fusion, Dempster’s combination rule is used [18].

The final step of the decision module combines the prob-

ability of collision that is provided by the Bayes classifier

with the probability of existence. For the Bayes classifier we

define the hypothesis space Θ = {C,¬C} with the hypothesis

C for a colliding object and ¬C for a non-colliding object.

The probability masses mb(C) and mb(¬C) are directly taken

from the conditional probabilities for K (see (11)).

mb(C) = P (K|z)

mb(¬C) = P (¬K|z) = 1 − mb(C)

mb(C ∪ ¬C) = 0

(14)

In this case, the uncertainty C ∪ ¬C is equal to zero,

because Bayesian probabilities do not provide a measure

for uncertainty. For the interesting case ”object exists and

collides” the combined probability mass results in

mf (E ∩ C) = mb(C) · (mc(E) + mc(E ∪ ¬E)) (15)

If mf exceeds a predefined threshold, actuators are trig-

gered.

In general, laser measurements are able to describe the

position and shape of real existing objects very accurately.

Radar sensors help to suppress ghost targets or targets based

on objects that are irrelevant for precrash applications like

plants or steam coming out of street drains. All in all, the

presented precrash system based on a laser scanner fused with

short range radars reliably detects different kinds of collisions

with stationary objects in front of the car, as our evaluation in

Section VI shows.

VI. EXPERIMENTAL RESULTS

The application has been validated in complex crash and

non-crash scenarios. To conduct the experiments, we built up

a comprehensive database that consists of short sequences of

measurements recorded during predefined driving maneuvers.

These maneuvers comprise factual and near missed collisions

with stationary objects at different velocities, in curves, with

deceleration, sudden lane changes and lane changes of a

leading target vehicle obstructing the sight to the obstacle.

In the maneuvers, foam cubes and cylinders served as crash

objects. To measure the quality, we counted the false alarms

that occurred in non-crash scenarios and the missed alarms in

case a collision was not detected by the application. Table II

compares the results for the non-crash scenarios for the two

different modules and Table III lists the results for the crash

scenarios.

As a general result it can be stated that a reliable collision

detection is achieved with both perception modules. Whereas

Module 1 enables a lower false alarm rate, the crash detection

rate of Module 2 is very high (98.1%). The three false alarms

in the scenario where we pass the cylinder in a curve occurred

in cases of getting extremely close to the obstacle. In contrast,

no false alarms occurred at all when the subject vehicle

suddenly changes the lane to avoid a collision with an obstacle

standing on the road. Emergency brake maneuvers challenge

the tracking system because of the divergent motion scheme.

In our evaluation, only 1 out of 19 test drives resulted in a

false alarm for each module.

In motion estimation, there is always a tradeoff between

stabilization of the current state and the adaptation to dynamic

situations. It becomes apparent when looking at the scenarios

where the system fails. In case of cornering, for example,

the direction of the obstacle’s relative movement continuously

changes. From the results in curve scenarios, it can be seen,

that the two modules handle such situation in a different

way. Module 2 produces more false alarms, whereas Module

1 risks more missed alarms. Looking at Table III, missed

alarms provoked by Module 1 are overrepresented in high

speed scenarios. An object with a high relative velocity is
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TABLE II
RESULTS FOR COMPLEX NON-CRASH SCENARIOS

Scenario Ego velocity [km/h] Number of tests False alarms/False alarm rate

Module 1 Module 2

Near-missed passing of cylinder 40, 60 9 0 / 0% 0 / 0%

Near-missed passing of cube 40, 60 6 0 / 0% 0 / 0%

Near-missed passing of cylinder after curve (45◦) 40, 60 29 0 / 0% 3 / 10.3%

Emergency brake, distance to cylinder after brake not greater than 1.5 m 40, 60 (at start) 19 1 / 5.3% 1 / 5.3 %

Lane change maneuver to avoid a collision with a cube 30, 40, 50, 60, 70 22 0 / 0% 0 / 0%

Gate passing 30, 50 6 0 / 0% 0 / 0%

Gate passing after curve (45◦) 30, 50 4 0 / 0% 0 / 0%

Total 95 1 / 1.1% 4 / 4.2%

TABLE III
RESULTS FOR COMPLEX CRASH SCENARIOS

Scenario Ego velocity [km/h] Number of tests Missed alarms/Missed alarm rate

Module 1 Module 2

Collision with cylinder, varying points of impact 20, 40 24 0 / 0% 0 / 0%

Collision with (paper) cylinder at high speed, varying points of impact 60, 120 8 2 / 25.0% 0 / 0%

Collision with cube, point of impact has high offset 40 7 0 / 0% 1 / 14.3%

Collision with cylinder after curve (30◦, 45◦) 30, 40, 60 20 2 / 10.0% 0 / 0%

Collision with cylinder or cube after emergency brake 20, 40 (at crash time) 7 0 / 0% 0 / 0%

Collision with (paper) cylinder after emergency brake at high speed 60, 80 (at crash time) 9 2 / 22.2% 0 / 0%

Collision with cylinder after lane change maneuver 40, 50 23 1 / 4.3% 1 / 4.3%

Collision with cylinder after leading car lane change 40, 50 4 0 / 0% 0 / 0%

Total 102 7 / 6.9% 2 / 1.9%

registered infrequently during the time period available for

creating a data history for this object as described in Section V.

In this case, the decision is supported by less data. Depending

on the influence of new measurements on the current state,

the grid map approach may be advantageous over a single

frame processing realized in Module 1, in this special case.

In general, it should be highlighted that a lot of the test

maneuvers have been performed at the vehicle dynamics limit.

In a third experiment we tested the application in normal

traffic on highways, rural roads and in urban areas. To achieve

representative results we performed the test drives during day

time to cover different traffic situations like rush hour, traffic

jam and stop-and-go. Furthermore, the test drives were partly

conducted under adverse weather conditions like rain, fog,

wet roads and traffic spray. All in all, we covered a distance

of 1600 km, running the application in real time. This test

was performed within the framework of the APALACI project

using the perception module 1 only. There were no wrongly

detected collisions in any of these environments.

VII. CONCLUSION AND OUTLOOK

In this paper we compared two approaches that perform

the data processing and object generation fusing laser scanner

and short range radar sensors. The obtained description of the

vehicle’s environment in terms of static and moving objects

serves as a basis for safety systems that trigger restraint

systems in case an unavoidable collision will take place.

Comprehensive tests show, that a good detection perfor-

mance for frontal collisions is achieved with both approaches.

Comparing the results of both approaches, the sums of false

and missed alarms balance each other. The application was

running stably in a hard real-time environment and has been

extensively tested in real traffic scenarios and with artificial

crash and near crash maneuvers carried out on test tracks. The

function has been successfully demonstrated in a public event

during the 2007 PReVENT IP Exhibition in Versailles and at

the IEEE Intelligent Vehicles Symposium, 2008, in Eindhoven.

Future works will extend the perception modules in order

to improve the detection of collisions with moving objects

and with the major goal to shift the activation decision to

a time earlier than 200ms. This includes the refinement of

motion models and object models to give a more meaningful

representation of detected objects with specific shapes and

behavior.
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