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Global weak solutions to magnetic fluid flows with
nonlinear Maxwell-Cattaneo heat transfer law

F. Aggoune∗, K. Hamdache† and D. Hamroun‡

Abstract

We discuss the equations describing the dynamic of the heat transfer in a magnetic fluid
flow under the action of an applied magnetic field. Instead of the usual heat transfer
equation we use a generalization given by the Maxwell-Cattaneo law which is a system
satisfied by the temperature and the heat flux. We prove a global existence of weak
solutions to the system having a finite energy.

Keywords : Navier-Stokes equations, Bloch-Torrey equation, magnetostatic equation,
Maxwell-Cattaneo law, heat transfer, magnetic field, magnetization
AMS subject classifications: 76N10, 35Q35.

1 Introduction

1.1 Statement of the model
In this work, we study the heat transfer in a magnetic incompressible fluid flow under
the action of an applied magnetic field. The temperature θ of the fluid is usually
described by the linear heat transfer equation

∂tθ + U · ∇θ = −divQ (1)

related to the linear Fourier law
Q = −κ∇θ (2)

Q being the heat flux and U the fluid velocity. To ovoid the paradox of the instantaneous
heat propagation inherent to the parabolic type equation, another model was offered in
the pioneering work of Vernotte [23] and Cattaneo [6]. In this model, the Fourier law
(2) is replaced by the heat-flux equation

τ∂tQ+Q = −κ∇θ (3)
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where τ > 0 is the time relaxation parameter. For τ = 0, we recover equation (2).
Combining the temperature equation and the heat-flux equation we see that θ satisfies
an hyperbolic type equation. System (1)-(3) was generalized by Guyer and Krumhansl
see [13] for example, by introducing a diffusion process in (3) so that the heat-flux
equation becomes

τ(∂tQ− γ∆Q) = −Q− κ∇θ (4)

where γ > 0 is a diffusion coefficient. When the heat conductivity is enhanced by
radiation effects see [12, 10, 11], the linear Fourier law is replaced by a nonlinear one
which writes aqs

Q = −∇K(θ). (5)

In [11], the model of heat transfer by the nonlinear Fourier law in an incompressible
fluid flow has been discussed.

In this work we are dealing with the nonlinear Maxwell-Cattaneo law for heat trans-
fer which is a generalization of the nonlinear Fourier law, more precisely we consider
that the dynamic of the couple (θ,Q) is governed by the system

∂tθ + U · ∇θ = −divQ

τ(∂tQ− γ∆Q) = −τ
2
curlU ×Q−Q−∇K(θ).

(6)

The monotone function K(θ) discussed in this work is given by

K(θ) = κ θ + α θ3 (7)

where κ > 0 and α > 0 are the heat conductivity coefficients and we refer the reader to
[19, 20] for the introduction of the rotation term 1

2curlU ×Q. Notice that the power 3
used in the definition of the function K is less than the values indicated in [12].

The Maxwell-Cattaneo system (6) is coupled to the incompressible Navier-Stokes
equations satisfied by the fluid velocity U and the pressure p as well as to the Bloch-
Torrey equation satisfied by the magnetization field M and the magnetostatic equation
for the magnetic field H. Namely, we have

divU = 0

∂tU + (U.∇)U − η∆U +∇p = −ρ(θ)g + µ0(M.∇)H + µ0

2 curl (M ×H)

∂tM + (U.∇)M − σ∆M +
1
δ
(M − χ0H) =

1
2
curlU ×H − β0M × (M ×H)

div (H +M) = F, curlH = 0

(8)

where the density ρ(θ) is given by the state of law

ρ(θ) = ρ0(1− β(θ − θ0)) (9)

where ρ0 is the fluid density at the the temperature θ0 and β is a physical coefficient.
The function g represents the force of gravity, F is a function linked to the applied
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magnetic field and η, µ0, σ, δ, χ0, β0 > 0 are physical parameters.

When the magnetization M is assumed to be in equilibrium state meaning it is
parallel to the magnetic field H, the model in consideration is quite different from the
one studied in this work. The magnetization law writes in general as

M = χ(θ, |H|)H (10)

In that case, the Maxwell-Cattaneo system becomes

∂tθ + U · ∇θ + µ0θ
∂M

∂θ
· (U · ∇)H = −divQ+ ηΦ(U)

τ
(
∂tQ−∆Q+ 1

2curlU ×Q
)

= −Q−∇K(θ)
(11)

where µ0 θ
∂M

∂θ
·(U ·∇)H is the thermal power and Φ(U) is the energy dissipation. The

heat transfer problem in an incompressible fluid flow under the above Maxwell-Cattaneo
law in a magnetic fluid is an open problem.

LetD ⊂ R3 be an open, bounded, regular and simply connected domain, with boundary
Γ. For T > 0 fixed, we set DT = (0, T ) ×D and ΓT = (0, T ) × Γ. The equations (6)
and (8) are set on DT with the following initial and boundary conditions

U(0) = U0, divU0 = 0, M(0) = M0, in D

U = 0, M · n = 0, curlM × n = 0, H · n = 0, on ΓT
(12)

θ(0) = θ0, Q(0) = Q0 in D

Q× n = 0, τγdivQ−K(θ) = 0 on ΓT

(13)

where n represents the unit outward normal to the boundary Γ. Problem (6)-(8)-(12)-
(13) will be labeled problem (P).

System (8) with the temperature equation (1) has been discussed in [1, 2]. The linear
Maxwell-Cattaneo system (1)-(3) has been studied in [14, 15] in the case where the
velocity U is fixed.

1.2 Notations and spaces
For 1 ≤ q ≤ ∞ and s ∈ R, let Lq(D) and W s,q(D) be the usual Lebesgue and Sobolev
spaces of scalar functions. If q = 2, W s,2(D) is denoted by Hs(D) and ‖ · ‖ and (·; ·)
denote the norm and the scalar product of the Hilbert space L2(D). For vector valued
functions we use the notations Lq(D), Ws,q(D), Hs(D) and the notations of norm and
the scalar product of L2(D) are unchanged. If V is a Banach space we denote by
〈·; ·〉V ′×V (or simply 〈·; ·〉 if no confusion arises) the duality product where V ′ is the dual
space of V. If V is an Hilbert space with scalar product (·; ·), we set

C([0, T ];V weak) = {u : [0, T ] → V ; (u(·), v) ∈ C([0, T ]), ∀v ∈ V }.
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Let D(D,R3) the set of functions f : D → R3 which are infinitely differentiable with
compact support in D and H1

0(D) its closure in H1(D). Now, we introduce the func-
tional spaces used in the theory of Navier-Stokes equations, see [22, 7] for example

Ds(D) = {v ∈ D(D,R3); div v = 0 in D}

U = closure of Ds(D) in H1(D), U0 = closure of Ds(D) in L2(D).

Then it is well known that

U = {v ∈ H1
0(D); div v = 0 in D}

U0 = {v ∈ L2(D); div v = 0 in D, v · n = 0 on Γ}
(14)

and identifying U0 with its dual, we get as usual the inclusions U ⊂ U0 ⊂ U ′.
For the Bloch-Torrey equation satisfied by M and the heat-flux equation satisfied by
Q we introduce the Hilbert spaces

H1
t (D) = {M ∈ H1(D); M · n = 0 on Γ}

H1
n(D) = {Q ∈ H1(D); Q× n = 0 on Γ}

equipped with the norm of H1(D). Then (see [7] for example) there exists C > 0 such
that for all V in either H1

t (D) or H1
n(D) the following estimate holds

‖∇V ‖ ≤ C(‖V ‖2 + ‖curlV ‖2 + ‖div V ‖2)1/2 (15)

hence the norm of H1(D) is equivalent to the norm (‖V ‖2 + ‖curlV ‖2 + ‖div V ‖2)1/2

on the spaces H1
t (D) and H1

n(D). We recall the relation −∆ = curl 2 − ∇div so that
for regular vector fields Ψ and Φ the following Green formula holds

−
∫

D
∆Ψ · Φ dx =

∫
D

curlΨ · curl Φ dx+
∫

D
div Ψdiv Φ dx

+
∫

Γ
curlΨ · (Φ× n) dΓ−

∫
Γ

div Ψ(Φ · n) dΓ.

To deal with the magnetostatic equation, we set

L2
] = {ψ ∈ L2(D);

∫
D
ψ(x) dx = 0} and H1

] = H1(D) ∩ L2
] .

The Hilbert space H1
] is equipped with the norm ‖∇ψ‖ which is equivalent to the usual

norm of H1(D) thanks to Poincaré-Wirtinger inequality : there exists C > 0 such that
for all ψ ∈ H1

] we have
‖ψ‖ ≤ C‖∇ψ‖. (16)

To end these notations, we point out that throughout this paper, C > 0 indicates
a generic constant depending only on some bounds of the physical data, which takes
different values in different occurrences. The dependency of the constants C > 0 with
respect to a parameter m is written as Cm.

Now, let us focus our attention on the magnetostatic equation to give some useful
continuity results on the solution
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1.3 The magnetostatic equation
Let M ∈ L2(D) and F ∈ L2

] , we consider the following problem

Find ϕ ∈ H1
] ; ∀ψ ∈ H1

] ,

∫
D

(∇ϕ+M) · ∇ψ dx = −
∫

D
Fψ dx. (17)

This problem admits a unique solution ϕ in H1
] and we have∫

D
∇ϕ.M dx = −‖∇ϕ‖2 −

∫
D
Fϕ dx. (18)

then
‖∇ϕ‖ ≤ (‖M‖+ C‖F‖). (19)

In particular the application
H : (M,F ) 7→ ϕ (20)

is continuous from L2(D) × L2
] to H1

] . Furthermore testing equation (17) with ψ −∫
D
ψ dx, ψ ∈ H1(D), we see that

∫
D

(∇ϕ+M) · ∇ψ dx = −
∫

D
Fψ dx, ∀ψ ∈ H1(D) (21)

and H = ∇ϕ solves the problem div (H +M) = F, curlH = 0 in D

(H +M) · n = 0 on Γ.

Moreover using classical regularity results for elliptic problems, we conclude that if
F ∈ L2

] and M ∈ H1
t (D), then ϕ ∈ H2(D) ∩H1

] and we have

‖ϕ‖H2(D) ≤ C(‖divM‖+ ‖F‖). (22)

Therefore H = ∇ϕ ∈ H1
t (D) and we have

‖H‖H1(D) ≤ C(‖divM‖+ ‖F‖). (23)

We can see that H is also continuous from L2(DT ) × L2(0, T ;L2
] ) to L2(0, T ;H1

] ) and
from H1(0, T ; L2(D)) × H1(0, T ;L2

] ) to H1(0, T ;H1
] ). Moreover for F ∈ H1(0, T ;L2

] )
and M ∈ H1(0, T ; L2(D)), we have∫

D
(∇(∂tϕ) + ∂tM) · ∇ψ dx = −

∫
D
∂tFψ dx,∀ψ ∈ H1(D), t ∈ (0, T ). (24)

2 Main results
Before stating our main result, let us give the formal energy estimates for problem (P).
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2.1 Energy estimates
Let (U,M,H, θ,Q) be a regular solution to system (P). We proceed as in [1, 2] to
obtain, for θ fixed, the energy estimate satisfied by (U,M,H). For t ∈ [0, T ], we set

Ensbt(t) =
1
2
‖U(t)‖2 +

µ0

2
(‖M(t)‖2 + ‖H(t)‖2)

Ensbt,0 =
1
2
‖U0‖2 +

µ0

2
(‖M0‖2 + ‖H0‖2)

(25)

where H0 = ∇ϕ0 and ϕ0 is the unique solution of the following problem (see subsection
1.3)

Find ϕ0 ∈ H1
] such that∫

D
(∇ϕ0 +M0) · ∇ψ dx = −

∫
D
F (0)ψ dx, ∀ψ ∈ H1

] (26)

and

Fnsbt(t) = η‖∇U(t)‖2 + µ0σ(‖curlM(t)‖2 + 2‖divM(t)‖2) +
µ0

δ
‖M(t)‖2+

µ0

δ
(1 + 2χ0)‖H(t)‖2 + β0µ0‖M(t)×H(t)‖2.

(27)

Then we get the energy estimate

Ensbt(t) +
∫ t

0
Fnsbt(s) ds ≤ Ensbt,0 + C

∫ t

0
‖ρ(θ(s))‖2 ds+ C

∫ t

0
‖G(s)‖2 ds (28)

for all t ≥ 0 where
G(t) = ‖F (t)‖2 + ‖∂tF (t)‖2. (29)

Now we consider the Maxwell-Cattaneo system (6) satisfied by (θ,Q) for U fixed. Let
$ the primitive function of K defined by

$(θ) =
κ

2
θ2 +

α

4
θ4. (30)

Multiplying the temperature equation by K(θ) and the heat-flux equation by Q then
integrating by parts and adding both results, we get the energy estimate associated
with the Maxwell-Cattaneo system

Emc(t) +
∫ t

0
Fmc(s) ds ≤ Emc,0 (31)

for all t ≥ 0 with

Emc(t) =
∫

D
$(θ(t)) dx+

τ

2
‖Q(t)‖2, Emc,0 =

∫
D
$(θ0) dx+

τ

2
‖Q0‖2 (32)

Fmc(t) = τγ(‖curlQ(t)‖2 + ‖divQ(t)‖2) + ‖Q(t)‖2. (33)

The total energy E and the total dissipation energy F of the full problem (P) are
defined by

E(t) = Ensbt(t) + Emc(t), F(t) = Fnsbt(t) + Fmc(t) (34)

and it holds

E(t) +
∫ t

0
F(s) ds ≤ E0 + C

∫ t

0
‖ρ(θ(s))‖2 ds+ C

∫ t

0
G(s) ds. (35)
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2.2 Statement of the result
We will use the following hypotheses

U0 ∈ U0, M0, Q0 ∈ L2(D), divQ0 ∈ L12/11(D), θ0 ∈ L4(D)

g ∈ L∞(DT ), F ∈ H1(0, T ;L2(D)),
∫

D
F (t, x) dx = 0 for all t ∈ [0, T ].

(36)

Let us give now the definition of a global weak solution to problem (P)

Definition 1 We say that (U,M,H, θ,Q) is a global weak solution with finite energy
of problem (P) if the following conditions are fulfilled

U ∈ L∞(0, T ;U0) ∩ L2(0, T ;U)

M ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
t (D))

H ∈ L∞(0, T ; L2(D))∩ L2(0, T ; H1
t (D))

Q ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
n(D))

θ ∈ L∞(0, T ;L4(D))

(37)

and

(i) the linear momentum equation holds weakly in the sense that for all v ∈ U

d

dt

∫
D
U · v dx+

∫
D

(U · ∇)U · v dx+ η

∫
D
∇U · ∇v dx =

−
∫

D
ρ(θ)g · v dx+ µ0

∫
D

(M · ∇)H · v dx+
µ0

2

∫
D
M ×H · curl v dx

U(0) = U0

(38)

(ii) the magnetization equation satisfies for all w ∈ H1
t (D) the weak formulation

d

dt

∫
D
M · w dx+

∫
D

(U · ∇)M · w dx+ σ

∫
D

curlU · curlw dx

+σ
∫

D
divM divw dx+

1
δ

∫
D

(M − χ0H) · w dx =

1
2

∫
D

curlU ×H · w dx− β0

∫
D
M ×H ·M × w dx

M(0) = M0

(39)

(iii) the magnetic field is given by H = ∇ϕ where ϕ ∈ L∞(0, T ;L2
] ) and satisfies for

all ψ ∈ H1
] ∫

D
(∇ϕ(t) +M(t)) · ∇ψ dx = −

∫
D
F (t)ψ dx (40)

(iv) the couple (θ,Q) satisfies the Maxwell-Cattaneo system in the following sense∫
DT

θ(∂ta+ U · ∇a) dxdt =
∫

DT

divQadxdt−
∫

D
θ0 a(0) dx (41)
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for all a ∈ D([0, T [×D) and for all b ∈ H1
n(D) with div b ∈ L4(D)

τ
d

dt

∫
DT

Q · b dx+ τγ

∫
D

(curlQ · curl b+ divQdiv b) dx+∫
D
Q · b dx+

τ

2

∫
D

curlU ×Q · b dx =
∫

D
K(θ) div b dx

Q(0) = Q0.

(42)

Moreover the energy estimates (28) and (31) hold for all t ∈ (0, T ).

Remark 1

1. As usual, we get the pressure p ∈ W−1,∞(0, T ;L2(D)) by using the De Rham
theorem.

2. From the weak formulations, we deduce that (∂tU, ∂tM,∂tQ) ∈ L1(0, T ;U ′ ×
(H1

t (D))′ × (H1
n(D))′) so that (U,M,Q) ∈ C([0, T ];U ′ × (H1

t (D))′ × (H1
n(D))′)

and the corresponding initial conditions are meaningful and moreover U,M,Q ∈
C([0, T ]; L2(D) weak).

3. The theory of transport equation leads to the result θ ∈ C([0, T ]; L4(D) weak) ∩
C([0, T ]; Lp(D)), for all 1 ≤ p < 4 (see [5] for example) which gives a sense to
the initial condition.

Theorem 1 Under hypotheses (36), there exists a global weak solution with finite en-
ergy of problem (P). Moreover θ has the regularity

θ ∈ L36/11(0, T ;L36/7(D)). (43)

Remark 2 One can relax the condition div b ∈ L4(D) on test functions b in (42) to
the condition div b ∈ L12/5(D).

We will prove existence of solutions to problem (P) in several steps, using a regu-
larization method and some compactness results. The paper is organized as follows.
In section 3, we introduce the regularized problem (Pν) obtained by adding an elliptic
term −ν∇ · (|∇θ|2∇θ) in the temperature equation, ν > 0 being a small parameter
together to a regularization of the initial condition θ0. By using the Faedo-Galerkine
method, we obtain a sequence of approximated solutions (Un,Mn,Hn, θn, Qn) which
converge towards (Uν ,Mν ,Hν , θν , Qν) a global weak solution with finite energy of sys-
tem (Pν).
In section 4, we prove Theorem 1. We first introduce an auxiliary problem satisfied by
ζν = τγdivQν −K(θν) and establish a compacity result verified by ζν which allows to
get the limit of the nonlinear term K(θν). Then we get Theorem 1 by passing to the
limit as ν → 0.
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3 The regularized problem (Pν)

Let ν > 0 be a small parameter and (θν
0) such that

(θν
0) ⊂W 1,4(D), θν

0 → θ0 strongly in L4(D). (44)

We define the regularized problem (Pν) as the system (8) − (12) coupled to the regu-
larized Maxwell-Cattaneo system

∂tθ + (U · ∇)θ − ν∇ · (|∇θ|2∇θ) = −divQ in DT

τ(∂tQ− γ∆Q) = −τ
2
curlU ×Q−Q−∇K(θ) in DT

ν|∇θ|2∇θ · n = 0, Q× n = 0, τγdivQ−K(θ) = 0 on ΓT

θ(0) = θν
0 , Q(0) = Q0 in D

(45)

Note that we use the nonlinear elliptic operator −ν∇·(|∇θ|2∇θ) instead of −ν∆θ which
is commonly used to regularize a transport equation, owing to obtain approximate
solutions θν belonging to W 1,4(D) and therefore to L∞(D).
Proceeding as previously the energy associated with (45) takes the form

Emc(t) +
∫ t

0
Fmc(s) ds+ ν

∫ t

0
R(s) ds ≤ Eν

mc,0 (46)

for all t ≥ 0 where

R(t) = κ‖∇θ‖4
L4(D) + 3α

∫
D
θ2|∇θ|4 dx (47)

which is well defined thanks to the Sobolev embedding W 1,4(D) ⊂ C(D) and

Eν
mc,0 =

∫
D

(
κ

2
|θν

0 |2 +
∫

D

α

4
|θν

0 |4) dx+ ‖Q0‖2

It is easy to verify that the energy estimate associated with the problem (Pν) writes as

E(t) +
∫ t

0
F(s) ds+ ν

∫ t

0
R(s) ds ≤ C + C

∫ t

0
‖ρ(θ(s))‖2 ds+ C

∫ t

0
‖G(s)‖2 ds (48)

where C > 0 does not depend on ν. We will prove the following existence result

Theorem 2 Under hypotheses (36), there exists a global weak solution (Uν ,Mν ,Hν , θν , Qν)
of problem (Pν) such that

Uν ∈ L∞(0, T ;U0) ∩ L2(0, T ;U)

Mν , Hν ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
t (D))

Qν ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
n(D))

θν ∈ L∞(0, T ;L4(D)) ∩ L4(0, T ;W 1, 4(D))

(49)

and satisfying the energy estimates (46) and (48) and the problem in the following sense
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(i) Uν(0) = U0 and for all v ∈ U

d

dt

∫
D
Uν · v dx+

∫
D

(Uν · ∇)Uν · v dx+ η

∫
D
∇Uν · ∇v dx =

−
∫

D
ρ(θν)g · v dx+ µ0

∫
D

(Mν · ∇)Hν · v dx+
µ0

2

∫
D
Mν ×Hν · curl v dx

(50)

(ii) Mν(0) = M0 and for all w ∈ H1
t (D)

d

dt

∫
D
Mν · w dx+

∫
D

(Uν · ∇)Mν · w dx+ σ

∫
D

curlMν · curlw dx

+σ
∫

D
divMν divw dx+

1
δ

∫
D

(Mν − χ0Hν) · w dx =

1
2

∫
D

curlUν ×Hν · w dx− β0

∫
D
Mν ×Hν ·Mν × w dx

(51)

(iii) θν(0) = θν
0 and for all a ∈W 1,4(D)

d

dt

∫
D
θνa dx−

∫
D
θνU · ∇a dx+ ν

∫
D
|∇θν |2∇θν · ∇a dx = −

∫
D

divQν a dx

(52)

(iv) Qν(0) = Q0 and for all b ∈ H1
n(D)

τ
d

dt

∫
D
Qν · b dx+ τγ

∫
D

(curlQν · curl b+ divQν div b) dx+

τ

2

∫
D

curlUν ×Qν · b dx = −
∫

D
Qν · b dx+

∫
D
K(θν) div b dx

(53)

with Hν = ∇ϕν where ϕν = H(Mν , F ) is defined in (20).

3.1 Faedo-Galerkine approximation for (Pν)
Let ν > 0 be fixed, consider the weak formulation of problem (Pν) given in Theorem 2.
In order to solve this problem by the Faedo-Galerkine method, we introduce the Hilbert
basis (Vj)j≥1, (Wj)j≥1, (Φj)j≥1 of the spaces U , H1

t (D), H1
n(D) respectively and a basis

(vj)j≥1 of W 1,4(D). For simplicity, we assume these basis to be orthonormal in L2(D).
We seek for approximated solutions of the system (Pν) of the form

Un(t) =
n∑

j=1

αj(t)Vj , Mn(t) =
n∑

j=1

βj(t)Wj ,

θn(t) =
n∑

j=1

aj(t)vj , Qn(t) =
n∑

j=1

bj(t)Φj

(54)

satisfying for all n ∈ N∗ and 1 ≤ j ≤ n

(i)
d

dt

∫
D
Un · Vj dx+

∫
D

(Un · ∇)Un · Vj dx+ η

∫
D
∇Un · ∇Vj dx =

−
∫

D
ρ(θn)g · Vj dx+ µ0

∫
D

(Mn · ∇)Hn · Vj dx+
µ0

2

∫
D
Mn ×Hn · curlVj dx

Un(0) = U0n

(55)
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(ii)
d

dt

∫
D
Mn ·Wj dx+

∫
D

(Un · ∇)Mn ·Wj dx+ σ

∫
D

curlMn · curlWj dx

+σ
∫

D
divMn divWj dx+

1
δ

∫
D

(Mn − χ0Hn) ·Wj dx =

1
2

∫
D

curlUn ×Hn ·Wj dx− β0

∫
D
Mn ×Hn ·Mn ×Wj dx

Mn(0) = M0n

(56)

(iii)
d

dt

∫
D
θnvj dx−

∫
D
θnUn · ∇vj dx+ ν

∫
D
|∇θn|2∇θn · ∇vj dx =

−
∫

D
divQn vj dx

θn(0) = θν
0n

(57)

(iv) τ
d

dt

∫
D
Qn · Φj dx+ τγ

∫
D

(curlQn · curl Φj + divQn div Φj) dx =

−τ
2

∫
D

curlUn ×Qn · Φj dx−
∫

D
Qn · Φj dx+

∫
D
K(θn) div Φj dx

Qn(0) = Q0n

(58)

where
Hn = ∇ϕn, ϕn = H(Mn, F ))

U0n =
n∑

j=1

αj
0nVj , M0n =

n∑
j=1

βj
0nWj ,

θν
0n =

n∑
j=1

aν,j
0n vj , Q0n =

n∑
j=1

bj0nΦj .

We assume that

(U0n,M0n, Q0n) → (U0,M0, Q0) strongly in (L2(D))3

θν
0n → θν

0 strongly in W 1,4(D).
(59)

This problem will be labeled (Pn
ν ).

3.2 Solving the system (Pn
ν )

Let the vector valued functions αn = (α1, · · · , αn), βn = (β1, · · · , βn), an = (a1, · · · , an)
and bn = (b1, · · · , bn), we consider the function

t ∈ [0, T ] → γn(t) = (αn(t), βn(t), an(t), bn(t)) ∈ (Rn)4

then γn satisfies the ordinary differential system

γ′n +Anγn = Zn(t, γn), γn(0) = γ0n (60)

where γ0n = (α0n, β0n, a
ν
0n, b0n) ∈ (Rn)4, An is a n4 × n4 constant matrix involving the

terms
η

∫
D
∇Vi · ∇Vj dx, σ

∫
D

(curlWi · curlWj + divWi divWj) dx

τγ

∫
D

(curl Φi · curl Φj + div Φi div Φj) dx+
∫

D
Φi · Φj dx



12

and the vector field Zn = (Z1
n, Z

2
n, Z

3
n, Z

4
n) ∈ (Rn)4 is defined as follows

Z1
nj(t, γn) = −

∫
D

(Un · ∇)Un · Vj dx−
∫

D
ρ(θn)g · Vj dx

+µ0

∫
D

(Un · ∇)Hn · Vj dx+
µ0

2

∫
D
Mn ×Hn · curlVj dx

Z2
nj(t, γn) = −

∫
D

(Un · ∇)Mn ·Wj dx−
1
δ

∫
D

(Mn − χ0Hn) ·Wj dx

+
1
2

∫
D

curlUn ×Hn ·Wj dx− β0

∫
D
Mn ×Hn ·Mn ×Wj dx

Z3
nj(t, γn) =

∫
D
θnUn · ∇vj dx− ν

∫
D
|∇θn|2∇θn · ∇vi dx−

∫
D

divQn vj dx

Z4
nj(t, γn) = −τ

2

∫
D

curlUn ×Qn · Φj dx+
∫

D
K(θn) div Φj dx

for 1 ≤ j ≤ n.

Notice that Zn has the same regularity in the time variable t as the function F appearing
in the magnetostatic equation and it is continuous and locally lipschitz continuous with
respect to the variable γn. Hence there exists a unique maximal solution γn of (60)
defined on a time interval [0;Tn] satisfying γn ∈ H1(0, Tn; (Rn)4). We shall prove that
Tn = T with the following estimate.
Let (Un,Mn, θn, Qn) be the solution of (Pn

ν ) defined on (0, Tn). We want to verify that

sup
t∈[0;Tn]

(‖Un‖2 + ‖Mn‖2 + ‖θn‖4
L4(D) + ‖Qn‖2)(t) <∞. (61)

We multiply equation (58) by bj and add these equations for 1 ≤ j ≤ n, we obtain

τ

2
d

dt
‖Qn‖2 + τγ(‖curlQn‖2 + ‖divQn‖2) + ‖Qn‖2 =

∫
D
K(θn) divQn dx. (62)

We use the equation (57) that we multiply by Θj(t) =
∫

D
K(θn) · vj dx and add the

equalities for 1 ≤ j ≤ n to obtain

d

dt
(
κ

2
‖θn‖2 +

α

4
‖θn‖4

L4(D)) + ν(κ‖∇θn‖4
L4(D) + 3α

∫
D
θ2
n|∇θn|4 dx) =

−
∫

D
divQnK(θn) dx.

(63)

Adding (62) and (63) lead to

1
2
d

dt
(κ‖θn‖2 +

α

2
‖θn‖4

L4(D) + τ‖Qn‖2) + νκ‖∇θn‖4
L4(D)

+3να‖θn|∇θn|2‖2 + τγ(‖curlQn‖2 + ‖divQn‖2) + ‖Qn‖2 = 0
(64)

Therefore, integrating between 0 and t and using (59), we easily deduce that

(κ‖θn‖2 +
α

2
‖θn‖4

L4(D) + τ‖Qn‖2)(t) + 2ν
∫ t

0
κ‖∇θn‖4

L4(D) ds

+2
∫ t

0
(3να‖θn|∇θn|2‖2 + τγ(‖curlQn‖2 + ‖divQn‖2) + ‖Qn‖2) ds =

κ‖θν
0n‖2 +

α

2
‖θν

0n‖4
L4(D) + τ‖Q0n‖2 ≤ C

(65)
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with C independent of n . Similarly, we obtain from equations (55) and (56)

1
2
d

dt
‖Un‖2 + η‖∇Un‖2 = −

∫
D
ρ(θn)g · Un dx

−µ0

∫
D

(Un · ∇)Mn ·Hn dx+
µ0

2

∫
D

(Mn ×Hn) · curlUn dx

(66)

1
2
d

dt
‖Mn‖2 + σ‖curlMn‖2 + σ‖divMn‖2 +

1
δ
‖Mn‖2 =

+
χ0

δ

∫
D
Hn ·Mn dx+

1
2

∫
D

curlUn ×Hn ·Mn dx

(67)

so (66) and (67) lead to

1
2
d

dt
(‖Un‖2 + µ0‖Mn‖2) + η‖∇Un‖2 + µ0σ(‖curlMn‖2 + ‖divMn‖2) +

µ0

δ
‖Mn‖2

= −
∫

D
ρ(θn)g · Un dx− µ0

∫
D

(Un · ∇)Mn ·Hn dx+
µ0χ0

δ

∫
D
Hn ·Mn dx.

Using equation (24) for unknown ϕn and data Mn, and testing with ψ = ϕn, we get∫
D
Hn · ∂tMn dx = −1

2
d

dt
‖Hn‖2 −

∫
D
∂tFϕn dx.

Now we multiply equation (56) by hj(t) =
∫

D
Hn ·Wj dx and add the equalities for

1 ≤ j ≤ n to obtain∫
D
∂tMn ·Hn dx+

∫
D

(Un · ∇)Mn ·Hn dx+ σ

∫
D

divMn divHn dx

+
1
δ

∫
D

(Mn − χ0Hn) ·Hn dx = −β0‖Mn ×Hn‖2
(68)

so ∫
D

(Un · ∇)Mn ·Hn dx =
1
2
d

dt
‖Hn‖2 +

∫
D
∂tFϕn dx−

1
δ

∫
D
Mn ·Hn dx

−σ
∫

D
divMn (F − divMn) dx+

χ0

δ
‖Hn‖2 − β0‖Mn ×Hn‖2.

(69)

>From (21), we see that∫
D
Hn ·Mn dx = −‖Hn‖2 −

∫
D
Fϕn dx

therefore∫
D

(Un · ∇)Mn ·Hn dx =
1
2
d

dt
‖Hn‖2 +

∫
D

(∂tF +
1
δ
F )ϕn dx+ σ‖divMn‖2

−σ
∫

D
divMn F dx+

1 + χ0

δ
‖Hn‖2 − β0‖Mn ×Hn‖2.

(70)
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so integrating between 0 and t, we get

1
2
(‖Un‖2 + µ0(‖Mn‖2 + ‖Hn‖2)(t) + η

∫ t

0
‖∇Un‖2ds

+
∫ t

0
(µ0σ(‖curlMn‖2 + 2‖divMn‖2) +

µ0

δ
‖Mn‖2)ds

+
∫ t

0

µ0(1 + 2χ0)
δ

‖Hn‖2 ds+ β0µ0

∫ t

0
‖Mn ×Hn‖2 ds =

1
2
(‖U0n‖2 + µ0(‖M0n‖2 + ‖H0n‖2)+∫ t

0

∫
D
ρ(θn)g · Un dxds−

µ0(1 + χ0)
δ

∫ t

0

∫
D
Fϕn dxds

−µ0

∫ t

0

∫
D
∂tFϕn dxds+ µ0σ

∫ t

0

∫
D
FdivMn dxds

(71)

where
H0n = ∇ϕ0n, ϕ0n = H(M0n, F (0)). (72)

Using the inequalities

|
∫ t

0

∫
D
ρ(θn)g · Un dxds| ≤ CT + C

∫ t

0
‖θn‖2 ds+

1
2

∫ t

0
‖Un‖2 ds,

µ0(1 + χ0)
δ

|
∫ t

0

∫
D
Fϕn dxds|+ µ0|

∫ t

0

∫
D
∂tFϕn dxds| ≤

C(‖F‖2
L2(DT ) + ‖∂tF‖2

L2(DT )) +
µ0(1 + 2χ0)

2δ

∫ t

0
‖Hn‖2 ds,

µ0σ|
∫ t

0

∫
D
FdivMn dxds| ≤ C‖F‖2

L2(DT ) + µ0σ

∫ t

0
‖divMn‖2 ds.

We get

1
2
(‖Un‖2 + µ0(‖Mn‖2 + ‖Hn‖2)(t)+∫ t

0
[η‖∇Un‖2 + µ0σ(‖curlMn‖2 + 2‖divMn‖2) +

µ0

δ
‖Mn‖2] ds

+
∫ t

0
[
µ0(1 + 2χ0)

2δ
‖Hn‖2 + β0µ0‖Mn ×Hn‖2] ds ≤

An + CT + C

∫ t

0
‖θn‖2 ds+

1
2

∫ t

0
‖Un‖2 ds

(73)

where
An =

1
2
(‖U0n‖2 + µ0(‖M0n‖2 + ‖H0n‖2) ≤ C
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with C independent of n in view of (59), (72) and (19). Thus thanks to (65) and
Gronwall inequality, we deduce that

‖Un(t)‖2 + ‖Mn(t)‖2 + ‖Hn(t)‖2 ≤ C + exp(Ct) (74)

then
1
2
(‖Un‖2 + µ0(‖Mn‖2 + ‖Hn‖2)(t)+∫ t

0
[η‖∇Un‖2 + µ0σ(‖curlMn‖2 + 2‖divMn‖2) +

µ0

δ
‖Mn‖2] ds

+
∫ t

0
[
µ0(1 + 2χ0)

2δ
‖Hn‖2 + β0µ0‖Mn ×Hn‖2] ds ≤ C + exp(Ct).

(75)

This ends the proof of (61) so we conclude that Tn = T for all n ≥ 1.

3.3 Convergence of the Faedo-Galerkine scheme
Let ν be fixed, the estimates (65) and (75) show that

Lemma 1

• (Un)n is uniformly bounded in L∞(0, T ;U0) ∩ L2(0, T ;U)

• (Mn)n and Hn are uniformly bounded in L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
t (D))

• (Mn ×Hn)n is uniformly bounded in L2(0, T ; L2(D))

• (Qn)n is uniformly bounded in L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
n(D))

• (θn)n is uniformly bounded in L∞(0, T ;L4(D)) ∩ L4(0, T ;W 1,4(D)).

Notice that we get the uniform bound of (Hn)n in L2(0, T ; H1
t (D)) using the bound of

(Mn)n and (23). Hence we get the convergence

Lemma 2 Let ν > 0 be fixed. There exists subsequences still denoted (Un), (Mn),
(Hn), (Qn) and (θn) such that when n→∞

Un ⇀ Uν weakly− ? in L∞(0, T ; L2(D))and weakly in L2(0, T ;U)

Mn ⇀Mν , Hn ⇀ Hν weakly− ? in L∞(0, T ; L2(D)) and weakly in L2(0, T ; H1
t (D))

Qn ⇀ Qν weakly− ? in L∞(0, T ; L2(D)) and weakly in L2(0, T ; H1
n(D))

θn ⇀ θν weakly− ? in L∞(0, T ;L4(D)) and weakly in L4(0, T ;W 1,4(D))

Moreover, we have
|∇θn|2∇θn ⇀ Λν weakly in L

4
3 (DT ). (76)

In order to pass to the limit in the nonlinear terms, we need strong convergence for the
sequences in some spaces. To apply compactness results, we need to estimate the time
derivatives of the solutions.
Let us begin with (∂tθn)n. We multiply equation (57) by a′j(t) and add the resulting
equalities for 1 ≤ j ≤ n to get

‖∂tθn‖2 +
∫

D
∂tθn∇θn · Un dx+

ν

4
d

dt
‖∇θn‖4

L4(D) = −
∫

D
divQn∂tθn (77)
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Since we have |
∫

D
∂tθn∇θn · Un dx| ≤

1
4
‖∂tθn‖2 + ‖∇θn‖2

L4(D)‖Un‖2
L4(D) we obtain

‖∂tθn‖2 +
ν

2
d

dt
‖∇θn‖4

L4(D) ≤ 2‖divQn‖2 + 2‖∇θn‖2
L4(D)‖Un‖2

L4(D) (78)

Therefore, integrating between 0 and t, using (59) and (65), we easily deduce that∫ t

0
‖∂tθn‖2 ds+

ν

2
‖∇θn‖4

L4(D) ≤
ν

2
‖∇θν

0n‖4
L4(D)+

2
∫ T

0
‖divQn‖2 ds+ 2

∫ t

0
‖∇θn‖2

L4(D)‖Un‖2
L4(D) ds

≤ C + 2
∫ t

0
‖∇θn‖2

L4(D)‖Un‖2
L4(D) ds

(79)

with C independent of n.
Setting y(t) = ‖∇θn(t)‖4

L4(D) and F (t) = ‖Un‖2
L4(D) then from (79), y(t) satisfies the

integral inequality

y(t) ≤ Cν + 2Mν

∫ t

0

√
y(s)F (s) ds.

Using the Gronwall-Bellman-Bihari inequality (see [3]) we deduce

y(t) ≤
(√

Cν +Mν

∫ t

0
F (s) ds

)2
.

Hence we get for all t ∈ [0, T ] the estimate

‖∇θn(t)‖2
L4(D) ≤

√
Cν +Mν

∫ t

0
‖Un(s)‖2

L4(D) ds

which leads to∫ T

0
‖∂tθn‖2 ds ≤ C + 2

√
Cν

∫ T

0
‖Un(s)‖2

L4(D) ds+ 2Mν

( ∫ T

0
‖Un(s)‖2

L4(D) ds
)2

(80)

and we conclude that (∂tθn)n is uniformly bounded in L2(DT ) with respect to n.
To estimate ∂tUn, ∂tMn and ∂tQn we need some notations. For a function f defined
on [0, T ] with values in a space V , let f̃ be the function equal to f on [0, T ] and to 0
elsewhere and let f̂ be its Fourier transform defined by

f̂(τ) =
∫

R
exp(−2iπtτ)f̃(t) dt =

∫ T

0
exp(−2iπtτ)f(t) dt, τ ∈ R.

We will prove that for 0 < γ < 1/4,∫
R
|τ |2γ‖Ûn(τ)‖2 dτ ≤ C. (81)

Proceeding as in [22] (see also [16]) and since (Un)n is uniformly bounded in L2(0, T ;U),
it is enough to verify that

|τ | ‖Ûn(τ)‖2 ≤ C‖Ûn(τ)‖U + C‖Ûn(τ)‖, ∀τ ∈ R. (82)
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We write the equation (55) of Un in the form

d

dt

∫
D
Un · Vj dx = 〈Ln, Vj〉, Un(0) = U0n (83)

for all 1 ≤ j ≤ n where the linear form Ln is defined on U by

〈Ln, ϕ〉 =
∫

D
(Un · ∇)Un · ϕdx+ η

∫
D
∇Un · ∇ϕdx+

∫
D
ρ(θn)g · ϕdx

−µ0

∫
D

(Mn · ∇)Hn · ϕdx−
µ0

2

∫
D
Mn ×Hn · curlϕdx

(84)

We have Ln ∈ U ′ p.p. t ∈ (0, T ) and

‖Ln‖U ′ ≤ C(‖Un‖2
H1(D) + ‖Un‖H1(D) + ‖ρ(θn)‖+

‖Mn‖H1(D)‖Hn‖H1(D) + ‖Mn ×Hn‖)

and we conclude thanks to Lemma 1 that (Ln) is uniformly bounded in L1(0, T ;U ′).
Now we rewrite (99) as follows

d

dt

∫
D
Ũn · Vj dx = 〈L̃n, Vj〉+

( ∫
D
U0n · Vj dx

)
δ0 −

( ∫
D
Un(T ) · Vj dx

)
δT (85)

for 1 ≤ j ≤ n where δa denotes the Dirac distribution at a ∈ R. Therefore, we obtain

2iπτ
∫

D
Ûn · Vj dx = 〈L̂n, vj〉+

∫
D
U0n · Vj dx− exp(−2iπTτ)

∫
D
Un(T ) · Vj dx (86)

Next we multiply equality (86) by α̂j(τ) the conjugate of α̂j(τ) and add the equalities
for 1 ≤ j ≤ n to get

2iπτ‖Ûn‖2 = 〈L̂n, Ûn〉+
∫

D
U0n · Ûn dx− exp(−2iπTτ)

∫
D
Un(T ) · Ûn dx (87)

therefore since for all τ ∈ R, we have

‖L̂n(τ)‖U ′ ≤
∫ T

0
‖Ln(t)‖U ′ dt ≤ C

then using Plancherel identity we get (82).
Similar proofs work for ∂tMn and ∂tQn. The above results are summarized in

Lemma 3 There exists Cν > 0 such that for all n∫
R
|τ |2γ(‖Ûn(τ)‖2 + ‖M̂n(τ)‖2 + ‖Q̂n(τ)‖2) dτ ≤ Cν (88)

Moreover we have
‖∂tθn‖L2(DT ) ≤ Cν (89)

Combining the bounds of Lemma 1 and Lemma 3 and applying Lions compactness
lemma for (Un,Mn, Qn) and and Aubin compactness lemma for θn we get the strong
convergence results we get the strong convergence results
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Lemma 4 For ν > 0 fixed, we have

(Un, Mn, Hn, θn, Qn) → (Uν , Mν , Hν , θν , Qν) strongly in (L2(DT ))5 (90)

Moreover we have Hν = H(Mν , F ).

The strong convergence of (Hn)n is a consequence of the continuity of operator H (see
subsection 1.3).

Thanks to Lemma 2 and Lemma 4, we can pass to the limit in problem (Pn
ν ) when

n→∞. We get that (Uν ,Mν ,Hν , θν , Qν) satisfies the equations of system (Pν) except
for the temperature equation satisfied by θν for which we obtain

d

dt

∫
D
θνa dx−

∫
D
θνUν · ∇a dx+ ν

∫
D

Λν · ∇a dx = −
∫

D
divQν a (91)

for all a ∈W 1,4(D) and Λν being defined in (76).

Passing to the limit in the temperature equation. Hereafter, we detail the pro-
cedure of passing to the limit in the equation of θn. First we introduce some notations.
Let W = W 1,4(D) and A the nonlinear operator defined on W by

〈A(ϕ), ψ〉 =
∫

D
|∇ϕ|2∇ϕ · ∇ψ dx, ∀ϕ,ψ ∈W (92)

then A(ϕ) ∈W ′ for all ϕ ∈W and

‖A(ϕ)‖W ′ ≤ ‖∇ϕ‖3
L4(D). (93)

Next we define on L2(D)× L4(D) the bilinear operator B by

〈B(ξ, ϕ), ψ〉 =
∫

D
ϕ ξ · ∇ψ dx, ∀ ξ ∈ L2(D), ϕ ∈ L4(D), ψ ∈W.

It holds that B(ξ, ϕ) ∈W ′ for all (ξ, ϕ) ∈ L2(D)× L4(D) and

‖B(ξ, ϕ)‖W ′ ≤ ‖ϕ‖L4(D)‖ξ‖ (94)

and we have L2(D) ⊂W ′ with

‖f‖W ′ ≤ (mes (D))1/4‖f‖, ∀f ∈ L2(D). (95)

We multiply equation (57) by a function f ∈ C1([0, T ]) such that f(T ) = 0 and
integrate by parts. Then integrating by parts, we get for all 1 ≤ j ≤ n

−
∫

DT

f ′(t)θnvj dxdt− f(0)
∫

D
θν
0nvj dx−

∫
DT

f(t)θnUn · ∇vj dxdt

+ν
∫

DT

f(t)|∇θn|2∇θn · ∇vj dxdt = −
∫

DT

f(t)divQn vj dxdt.
(96)

Therefore letting j ≥ 1 be fixed and n → ∞, using the previous convergence together
with the fact that θν

0n → θν
0 strongly in L2(D), we obtain for all j ≥ 1

−
∫

DT

f ′(t)θνvj dxdt− f(0)
∫

D
θν
0vj dx−

∫
DT

f(t)θνUν · ∇vj dxdt+

ν

∫
DT

f(t)Λν · ∇vj dxdt = −
∫

DT

f(t)divQν vj dxdt
(97)
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Henceforth it holds for all a ∈ W 1,4(D) and f ∈ C1([0, T ]) such that f(T ) = 0 the
following identity

−
∫

DT

f ′(t)θνa dxdt− f(0)
∫

D
θν
0a dx−

∫
DT

f(t)θνUν · ∇a dxdt

+ν
∫

DT

f(t)Λν · ∇a dxdt = −
∫

DT

f(t)divQν a dxdt
(98)

In particular for f ∈ D(]0, T [), we obtain (91) which is satisfied in D′(]0, T [). Thus we
get in D′(D) and p.p. t ∈ (0, T )

∂tθν −B(Uν , θν) + νΛν = −divQν (99)

and we deduce that ∂tθν ∈ L
4
3 (0, T ; (W 1,4(D))′). Since θν ∈ L4(0, T ;W 1,4(D)) then

θν ∈ C([0, T ];L4(D)) so that θν(0) is well defined and multiplying equation (91) by a
function f ∈ C1([0, T ]) such that f(T ) = 0 and integrating by parts, we obtain the
equation

−
∫

DT

f ′(t)θνa dxdt− f(0)
∫

D
θν(0)a dx−

∫
DT

f(t)θνUν · ∇a dxdt

+ν
∫

DT

f(t)Λν · ∇a dxdt = −
∫

DT

f(t)divQν a dxdt
(100)

for all a ∈W 1,4(D), thus comparing (98) and (100) we deduce that

θν(0) = θν
0 . (101)

Next, since (θn(T ))n is bounded in L4(D), then at least for a subsequence, (θn(T ))n

converge weakly in L4(D). Proceeding as previously using test functions f ∈ C1([0, T ])
(with possibly the condition f(0) = 0 for simplicity), we prove that

Lemma 5
θn(T ) ⇀ θν(T ) weakly in L4(D).

It remains to prove the

Lemma 6 Let Λν be the weak limit of (|∇θn|2∇θn) in L4/3(DT ). We have

Λν = |∇θν |2∇θν

Proof. We use the monotonicity of the operator A defined in (92). We set

An(ϕ) =
∫ T

0
〈A(θn)−A(ϕ), θn − ϕ〉 dt ≥ 0, ∀ϕ ∈ L4(0, T ;W 1,4(D)).

We multiply equation (57) by aj and add these equations for 1 ≤ j ≤ n, then integrating
between 0 and T , we obtain

1
2
‖θn(T )‖2 + ν

∫ T

0
‖∇θn‖4

L4(D) ds =
1
2
‖θν

0n‖2 −
∫

DT

divQnθn dxdt (102)
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We write

An(ϕ) = −
∫

DT

|∇θn|2∇θn · ∇ϕ dxdt−
∫ T

0
〈A(ϕ), θn − ϕ〉 dt

+
1
ν

[1
2
(‖θν

0n‖2 − ‖θn(T )‖2 dx)−
∫

DT

divQnθn dxdt
]
.

Therefore by the convergence results given before, we get

lim supAn(ϕ) ≤ −
∫

DT

Λν · ∇ϕ dxdt−
∫ T

0
〈A(ϕ), θν − ϕ〉 dt

+
1
ν

[1
2
(‖θν

0‖2 − ‖θν(T )‖2 dx)−
∫

DT

divQνθν dxdt
]
.

(103)

Taking a = θν in equation (91) and integrating with respect to the time variable, we
get

1
2
(‖θν(T )‖2 − ‖θν

0‖2) + ν

∫
DT

Λν · ∇θν dxdt = −
∫

DT

divQνθν dxdt.

Coming back to inequality (103), we deduce that

lim supAn(ϕ) ≤
∫

DT

Λν · (∇θν −∇ϕ) dxdt−
∫ T

0
〈A(ϕ), θν − ϕ〉 dt. (104)

Therefore, for all ϕ ∈ L4(0, T ;W 1,4(D)) we have

0 ≤
∫

DT

Λν · (∇θν −∇ϕ) dxdt−
∫ T

0
〈A(ϕ), θν − ϕ〉 dt (105)

Taking ϕ = θν − λψ with λ > 0 and ψ ∈ L4(0, T ;W 1,4(D)), we get

0 ≤
∫

DT

Λν · ∇ψ dxdt−
∫ T

0
〈A(θν − λψ), ψ〉 dt (106)

and since operator A is hemicontinuous, then letting λ→ 0, we obtain

0 ≤
∫

DT

Λν · ∇ψ dxdt−
∫

DT

|∇θν |2∇θν · ∇ψ dxdt (107)

for all ψ ∈ L4(0, T ;W 1,4(D)) which leads to the result.

Going along the same lines, one can pass to the limit in the other equations thanks
to the strong convergence results of Lemma 4. One deduces that Uν ,Mν and Qν

satisfy the weak formulations given in Theorem 2. To verify the corresponding initial
conditions, one can proceed as for θν . In order to prove energy estimates (65) and
(73), we multiply (46) and (48) by a test function f ∈ D(]0, T [) such that f ≥ 0 and
integrate between 0 and T . Thus using Lemma 2, we can take the lim inf which leads to
the desired results. Hence we get a global weak solution with finite energy to problem
(Pν). This ends proof of Theorem 2.
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4 Proof of Theorem 1

4.1 An auxiliary problem
For ν > 0, let (Uν , Mν , Hν , θν , Qν) be the solution of problem (Pν) provided by
Theorem 2. In order to get some compacity result to deal with the limit of the nonlinear
terms of the problem (Pν) when ν → 0, we introduce the following auxiliary function

ζν = τγdivQν −K(θν). (108)

Taking the divergence of the heat-flux equation in (45), we easily see that ζν satisfies
the equation

∂tζν − γ∆ζν = −γdivQν −
τγ

2
div (curlUν ×Qν)− ∂tK(θν). (109)

Multiplying the temperature equation in (45) by K′(θν) we get

∂tK(θν) + Uν · ∇K(θν)− νK′(θν)∇ · (|∇θν |2∇θν) = −K′(θν) divQν . (110)

Hence ζν satisfies the auxiliary problem

∂tζν − γ∆ζν = gν + divGν + µν in DT

ζν(0) = ζν
0 in D, ζν = 0 on ΓT

(111)

where ζν
0 = τγdivQ0 −K(θν

0) and

gν = (κ− γ)divQν

Gν = UνK(θν)− νκ|∇θν |2∇θν − 3ανθ2
ν |∇θν |2∇θν −

τγ

2
curlUν ×Qν

µν = 6ναθν |∇θν |4 + 3αθ2
νdivQν .

(112)

We note that ζν
0 converge strongly in L

4
3 (D) towards ζ0 = τγdivQ0 − K(θ0) and we

have the following results

Lemma 7 There exists C > 0 which is independent of ν such that

‖gν‖L2(0,T ; L2(D)) ≤ C

‖Gν‖L4/3(0,T ; L12/11(D)) ≤ C

‖µν‖L1(0,T ; L1(D)) ≤ C

(113)

Proof. We use the energy estimates (46) and (48) satisfied by (Uν , Mν , Hν , θν , Qν).
So clearly gν is bounded in L2(0, T ;L2(D)). We write Gν in the form Gν = G1,ν −
G2,ν −G3,ν −G4,ν with

G1,ν = UνK(θν), G2,ν = νκ|∇θν |2∇θν ,

G3,ν = 3ανθ2
ν |∇θν |2∇θν , G4,ν = τγ

2 curlUν ×Qν .

Since L2(0, T ;U) is continuously embedded in L2(0, T ; L6(D)) then we see that Uν is
bounded in L2(0, T ; L6(D)) with respect to ν and asK(θν) is bounded in L∞(0, T ;L

4
3 (D)),
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we deduce that G1,ν is bounded in L2(0, T ; L12/11(D)). G2,ν is clearly bounded in
L4/3(0, T ; L4/3(D)). Next since Qν is bounded in L∞(0, T ; L2(D)) ∩ L2(0, T ; H1(D))
then using an interpolation result we get that Qν is bounded in L4(0, T ; L3(D)). There-
fore as curlUν is bounded in L2(0, T ; L2(D)), we conclude that G4,ν is bounded in
L4/3(0, T ; L6/5(D)). Now we write |G3,ν | = (3αν)hνkν with

hν = |θν |3/2|∇θν |3 ∈ L4/3(0, T ;L4/3(D))

kν = |θν |1/2 ∈ L∞(0, T ;L8(D)).

So G3,ν ∈ L4/3(0, T ;L8/7(D)) and p.p. t ∈ (0, T )

‖G3,ν(t)‖L8/7(D) ≤ 3αν‖hν(t)‖L4/3(D)‖kν(t)‖L8(D)

≤ 3αν
( ∫

D
|θν |2|∇θν |4 dx

)3/4
‖θν‖1/2

L4(D)

then

‖G3,ν‖L4/3(0,T ;L8/7(D)) ≤ 3αν
( ∫

DT

|θν |2|∇θν |4 dxdt
)3/4

‖θν‖1/2
L∞(0,T ;L4(D))

therefore G3,ν is uniformly bounded in L4/3(0, T ; L8/7(D)) with respect to ν which
implies that Gν is bounded in L4/3(0, T ; L12/11(D)). To deal with µν , we split it into
two terms µν = µ1,ν + µ2,ν with µ1,ν = 6ναθν |∇θν |4 and µ2,ν = 3αθ2

νdivQν . Then
clearly the second term µ2,ν is bounded in L2(0, T ;L1(D)) whereas for the first term,
we have ∫

DT

|µ1,ν | dxdt = 6αν
∫

DT

|θν ||∇θν |4 dxdt ≤

6αν
∫
{|θν |≤1}

|∇θν |4 + 6αν
∫
{|θν |>1}

|θν |2|∇θν |4 dxdt ≤ C
(114)

The Lemma is then proved.

To use the known regularity results on solutions of parabolic equations, we split the
function ζν into two terms ζ1,ν and ζ2,ν where ζ1,ν satisfies the problem

∂tζ1,ν − γ∆ζ1,ν = gν + divGν in DT

ζ1,ν(0) = ζν
0 in D, ζ1,ν = 0 on ΓT

(115)

with gν and Gν bounded in L12/11(0, T ; L12/11(D)), ζν
0 bounded in L

4
3 (D) whereas the

function ζ2,ν verifies the problem

∂tζ2,ν − γ∆ζ2,ν = µν in DT

ζ2,ν(0) = 0 in D, ζ2,ν = 0 on ΓT

(116)

with µν bounded in L1(0, T ;L1(D)). We have the result

Lemma 8 There exists C > 0 which is independent of ν such that

‖ζ1,ν‖L12/11(0,T ;W 1, 12/11(D)) + ‖∂tζ1,ν‖L12/11(0,T ;W−1, 12/11(D)) ≤ C

‖ζ2,ν‖Lp(0,T ;W 1, p(D)) + ‖∂tζ2,ν‖Lp(0,T ;W−1, p(D))+L1(0,T ;L1(D)) ≤ C
(117)

for all 1 ≤ p <
5
4
.
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Proof. The bounds for ζ1,ν result from the classical Lp estimates of solutions of
parabolic equations (see for example [9], [12] and the references therein) whereas for
ζ2,ν , we use a result given in [2], see also [4] . The estimate of ∂tζ2,ν follows from the
equation (116).
Combining the above estimates and using Aubin’s compactness lemma we get the con-
vergence results

Lemma 9 For subsequences we have

ζ1,ν → ζ1 strongly in L12/11(0, T ;Lq1(D)), 1 ≤ q1 < (12/11)? = 12/7

ζ2,ν → ζ2 strongly in Lp(0, T ;Lq2(D)), 1 ≤ q2 < p? = 3p
3−p , 1 ≤ p < 5/4

ζν → ζ strongly in L12/11(0, T ;Lq1(D)), 1 ≤ q1 < 12/7.

(118)

The strong convergence of ζν is crucial to obtain the limit in the nonlinear term K(θν)
since the regularized equation of θν does not provide any uniform bound of the space
derivative. We will precise this point in the following subsection.

4.2 Convergence in the temperature equation as ν → 0

Let ν > 0 and (Uν ,Mν ,Hν , θν , Qν) be the solution of problem (Pν) provided by Theo-
rem 2. From the estimates (46), we deduce that

Lemma 10 For a subsequence, we have

θν ⇀ θ weakly -∗ in L∞(0, T ;L4(D)) (119)

ν|∇θν |2∇θν → 0 strongly in L4/3(DT ).

Next, assume momentarily that

Uν → U strongly in L2(0, T ;U0)

divQν ⇀ divQ weakly in L2(DT )
(120)

then we can perform the limit when ν → 0 in the equation of θν . We get the result

Lemma 11 θ ∈ L∞(0, T ;L4(D)) is a weak solution of the transport equation

∂tθ + U · ∇θ = −divQ in DT

θ(0) = θ0 in D.
(121)

Moreover, θ ∈ C([0, T ];Lq(D)) for all q < 4 and θ ∈ C([0, T ];L4(D) weak).

We recall that θ ∈ L∞(0, T ;L4(D)) is a weak solution of (121) if∫
DT

θ(∂ta+ U · ∇a) dxdt =
∫

DT

divQadxdt−
∫

D
θ0 a(0) dx (122)

for all a ∈ D([0, T [×D) so equation (121) is satisfied in D′(DT ). The regularity result
given in Lemma 11 is well known in transport equation theory as said in Remark 2.3,
which gives a sense to the initial condition in (121). Moreover, we have
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Lemma 12
θν(T ) ⇀ θ(T ) weakly in L2(D).

Proof. θ(T ) is well defined in L2(D), let v be the weak limit of θν(T ) in L4(D) and
L2(D). We use test functions a ∈ D(D) in the equation (52) of θν , we multiply by
f ∈ D(]0, T ]) and integrating between 0 and T , we get

f(T )
∫

D
θν(T )a dx =

∫
DT

f(t) θν Uν · ∇a dxdt

−ν
∫

DT

f(t) |∇θν |2∇θν · ∇a dxdt−
∫

DT

f(t) divQν a dxdt

thus passing to the limit we get

f(T )
∫

D
v a dx =

∫
DT

f(t) θ U · ∇a dxdt−
∫

DT

f(t) divQa dxdt.

Using equation (121) of θ, we deduce that for all a ∈ D(D), f ∈ D(]0, T ])

f(T )
∫

D
v a dx = f(T )

∫
D
θ(T )a dx

hence v = θ(T ).

Consider now the equation of θν from (45) that we rewrite using ζν in the form

∂tθν + Uν · ∇θν − ν∇ · (|∇θν |2∇θν) + 1
τγK(θν) = − 1

τγ ζν in DT

θν(0) = θν
0 in D, ν|∇θν |2∇θν · n = 0 on ΓT .

(123)

Under the hypothesis (120), we have

Lemma 13 Let χ be the weak-∗ limit of K(θν) in L∞(0, T ;L4/3(D)). We have

χ = K(θ).

Proof. We use the monotonicity of the function K and the strong convergence in
L1(0, T ;L4/3(D)) of ζν given in Lemma 9. We set

aν(ϕ) =
∫

DT

(K(θν)−K(ϕ))(θν − ϕ) dxdt ≥ 0, ∀ϕ ∈ L∞(0, T ;L4(D)).

We multiply equation (123) by θν and integrate over DT to get

1
τγ

∫
DT

K(θν)θν dxdt = − 1
τγ

∫
DT

ζνθν dxdt− ν

∫
DT

|∇θν |4 dxdt

−1
2

∫
D
θ2
ν(T )dx+

1
2

∫
D

(θν
0)2 dx.

Then

aν(ϕ) = −
∫

DT

K(θν)ϕ dxdt−
∫

DT

K(ϕ)(θν − ϕ) dxdt−
∫

DT

ζνθν dxdt

−τγν
∫

DT

|∇θν |4 dxdt−
τγ

2

∫
D
θ2
ν(T )dx+

τγ

2

∫
D

(θν
0)2 dx.
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>From Lemma 12, we have

lim inf
∫

D
|θν(T )|2 dx ≥

∫
D
|θ(T )|2 dx

therefore using hypothesis (44) we obtain

lim sup aν(ϕ) ≤ −
∫

DT

χϕ dxdt−
∫

DT

K(ϕ)(θ − ϕ) dxdt−
∫

DT

ζθ dxdt

−τγ
2

∫
D
θ2(T )dx+

τγ

2

∫
D
θ2
0 dx

for all ϕ in L∞(0, T ;L4(D)). On the other hand, taking the limit in the weak formula-
tion of problem (123), we deduce that θ satisfies the equation

∂tθ + U · ∇θ + 1
τγχ = − 1

τγ ζ in DT

θ(0) = θ0 in D.
(124)

Multiplying the equation by θ we get

−
∫

DT

ζθ dxd− τγ

2

∫
D
θ2(T )dx+

τγ

2

∫
D
θ2
0 dx =

∫
DT

χθ dxdt.

Therefore

lim sup aν(ϕ) ≤
∫

DT

χ(θ − ϕ) dxdt−
∫

DT

K(ϕ)(θ − ϕ) dxdt.

We deduce that∫
DT

(χ−K(ϕ))(θ − ϕ) dxdt ≥ 0, ∀ϕ ∈ L∞(0, T ;L4(D)). (125)

So, taking in (125) ϕ = θ − λψ with λ > 0, ψ ∈ L∞(0, T ;L4(D)), we get∫
DT

(χ−K(θ − λψ))ψ dxdt ≥ 0, ∀ψ ∈ L∞(0, T ;L4(D)),∀λ > 0 (126)

and letting λ→ 0, we obtain∫
DT

(χ−K(θ))ψ dxdt ≥ 0, ∀ψ ∈ L∞(0, T ;L4(D)) (127)

and we conclude that χ = K(θ).

4.3 End of proof of theorem 1
Let (Uν ,Mν ,Hν , θν , Qν) be the solution of problem (Pν) provided by Theorem 2 for
ν > 0. The energy estimates (46) and (48) lead to the following uniform bounds with
respect to ν

Lemma 14

• (Uν) is uniformly bounded in L∞(0, T ;U0) ∩ L2(0, T ;U)
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• (Mν) and (Hν) are uniformly bounded in L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
t (D))

• (Mν ×Hν) is uniformly bounded in L2(0, T ; L2(D))

• (Qν) is uniformly bounded in L∞(0, T ; L2(D)) ∩ L2(0, T ; H1
n(D))

To deal with the nonlinear terms of the equations, we need to estimate the time deriva-
tives (∂tUν), (∂tMν) and (∂tQν). For the first one, we deduce from the weak formulation
of the equation of Uν that in D′(D), p.p. t ∈ (0, T ) it holds

∂tUν = −Lν (128)

where the linear form Lν is defined on U by

〈Lν , ϕ〉 =
∫

D
(Uν · ∇)Uν · ϕdx+ η

∫
D
∇Uν · ∇ϕdx+

∫
D
ρ(θν)g · ϕdx

−µ0

∫
D

(Mν · ∇)Hν · ϕdx−
µ0

2

∫
D
Mν ×Hν · curlϕdx.

(129)

Therefore Lν ∈ U ′ p.p. t ∈ (0, T ) and

‖Lν‖U ′ ≤ C(‖Uν‖2
H1(D) + ‖Uν‖H1(D) + ‖ρ(θν)‖+

‖Mν‖H1(D)‖Hν‖H1(D) + ‖Mν ×Hν‖) ≤ C

thanks to the bounds of Lemma 14. We deduce that ∂tUν is uniformly bounded in
L1(0, T ;U ′). and since the same proofs work for ∂tMν and ∂tQν , we get

Lemma 15 (∂tUν), (∂tMν) and (∂tQν) are uniformly bounded with respect to ν in
L1(0, T ;U ′), L1(0, T ; (H1

t (D))′) and L1(0, T ; (H1
n(D))′) respectively.

Hence we get the convergence results

Lemma 16 There exists subsequences still denoted (Uν), (Mν), (Hν), (Qν) such that
when ν → 0

Uν ⇀ U weakly− ? in L∞(0, T ;U0) and weakly in L2(0, T ;U)

Mν ⇀M weakly− ? in L∞(0, T ; L2(D)) and weakly in L2(0, T ; H1
t (D))

Hν ⇀ H weakly− ? in L∞(0, T ; L2(D)) and weakly in L2(0, T ; H1
t (D))

Qν ⇀ Q weakly− ? in L∞(0, T ; L2(D)) and weakly in L2(0, T ; H1
n(D))

(130)

and the following strong convergence results hold

(Uν , Mν , Hν , Qν) → (U, M, H, Q) strongly in (L2(DT ))4 (131)

where H = H(M,F ).

Once again, the strong convergence of (Hν) is a consequence of subsection 1.3.

Notice that from Lemma 16, the hypotheses (120) are fulfilled leading to the convergence
of the temperature of the previous subsection. Proceeding as for the proof of Theorem
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2, we can verify that (U, M, H, θ, Q) is a weak solution with finite energy of problem
(P) which leads to the conclusion of the first part of Theorem 1.

Let us prove the second part of the Theorem , which is the Lp − Lq- regularity for
the temperature θ. In this purpose, it is enough to show that

Lemma 17 Under hypotheses (36), the regularized temperature θν is uniformly bounded
in L36/11(0, T ;L36/7(D)) with respect to ν.

Proof. From (117) and using the Sobolev embedding W 1, 12/11(D) ⊂ L12/7(D), we see
that (ζν) is uniformly bounded in L12/11(0, T ;L12/7(D)) then from the relation αθ3

ν =
−ζν+τγdivQν−κθν , we deduce that (θν) is uniformly bounded in L36/11(0, T ;L36/7(D)).
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