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Global weak solutions to magnetic fluid flows with
nonlinear Maxwell-Cattaneo heat transfer law

F. Aggoune* K. Hamdache' and D. Hamroun®

Abstract

We discuss the equations describing the dynamic of the heat transfer in a magnetic fluid
flow under the action of an applied magnetic field. Instead of the usual heat transfer
equation we use a generalization given by the Maxwell-Cattaneo law which is a system
satisfied by the temperature and the heat flux. We prove a global existence of weak

solutions to the system having a finite energy.

Keywords : Navier-Stokes equations, Bloch-Torrey equation, magnetostatic equation,
Maxwell-Cattaneo law, heat transfer, magnetic field, magnetization
AMS subject classifications: 76N10, 35Q35.

1 Introduction

1.1 Statement of the model

In this work, we study the heat transfer in a magnetic incompressible fluid flow under
the action of an applied magnetic field. The temperature 6 of the fluid is usually
described by the linear heat transfer equation

00+ U -V =—divQ (1)

related to the linear Fourier law

Q = —kVo (2)

@ being the heat flux and U the fluid velocity. To ovoid the paradox of the instantaneous
heat propagation inherent to the parabolic type equation, another model was offered in
the pioneering work of Vernotte [23] and Cattaneo [6]. In this model, the Fourier law
(2) is replaced by the heat-flux equation

TOQ +Q = —kV0 (3)
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where 7 > 0 is the time relaxation parameter. For 7 = 0, we recover equation (2).
Combining the temperature equation and the heat-flux equation we see that 0 satisfies
an hyperbolic type equation. System (1)-(3) was generalized by Guyer and Krumhansl
see [13] for example, by introducing a diffusion process in (3) so that the heat-flux

equation becomes
T(0,Q —7AQ) = —Q — KVO (4)
where v > 0 is a diffusion coefficient. When the heat conductivity is enhanced by

radiation effects see [12, 10, 11|, the linear Fourier law is replaced by a nonlinear one

which writes aqgs
Q = —VK(0). (5)
In [11], the model of heat transfer by the nonlinear Fourier law in an incompressible

fluid flow has been discussed.

In this work we are dealing with the nonlinear Maxwell-Cattaneo law for heat trans-
fer which is a generalization of the nonlinear Fourier law, more precisely we consider
that the dynamic of the couple (0, Q) is governed by the system

80 +U -V = —divQ

7(0,Q — YAQ) = —gcurl UxQ-—Q—VK(®).

The monotone function K(#) discussed in this work is given by
K®)=r0+ab? (7)

where £ > 0 and a > 0 are the heat conductivity coefficients and we refer the reader to
[19, 20] for the introduction of the rotation term fcurl U x Q. Notice that the power 3
used in the definition of the function K is less than the values indicated in [12].

The Maxwell-Cattaneo system (6) is coupled to the incompressible Navier-Stokes
equations satisfied by the fluid velocity U and the pressure p as well as to the Bloch-
Torrey equation satisfied by the magnetization field M and the magnetostatic equation
for the magnetic field H. Namely, we have

divU =0

U + (UN)U —nAU + Vp = —p(0)g + po(M.V)H + Lcurl (M x H)
(8)
XM + (UNV)M — cAM + %(M —xoH) = %curlU x H— By M x (M x H)

div(H+M)=F, curlH=0
where the density p() is given by the state of law
p(0) = po(1 - (6 - 6%)) (9)

where pg is the fluid density at the the temperature #° and 3 is a physical coefficient.
The function g represents the force of gravity, F' is a function linked to the applied



magnetic field and 7, ug, 0,9, xo, 8o > 0 are physical parameters.

When the magnetization M is assumed to be in equilibrium state meaning it is
parallel to the magnetic field H, the model in consideration is quite different from the
one studied in this work. The magnetization law writes in general as

M = x(0,|H|)H (10)

In that case, the Maxwell-Cattaneo system becomes

oM
O+ U -V + b — - (U-V)H = —divQ + nd(U)

T(atQ — AQ + Lewrl U x Q) — Q- VK(0)

oM
where 110 0 50 (U-V)H is the thermal power and ®(U) is the energy dissipation. The
heat transfer problem in an incompressible fluid flow under the above Maxwell-Cattaneo
law in a magnetic fluid is an open problem.

Let D C R? be an open, bounded, regular and simply connected domain, with boundary
I'. For T > 0 fixed, we set Dy = (0,7) x D and 'y = (0,7) x I". The equations (6)
and (8) are set on Dr with the following initial and boundary conditions

U(0) = Uy, divUy =0, M(0) = My, in D

U=0, M - n=0, curlIM xn=0, H-n=0,on 'y

6(0) = 6o, Q(0) = Qo in D

RQxn=0, 79divQ — K(0) =0 on I'p

(13)

where n represents the unit outward normal to the boundary I'. Problem (6)-(8)-(12)-
(13) will be labeled problem (P).

System (8) with the temperature equation (1) has been discussed in [1, 2]. The linear
Maxwell-Cattaneo system (1)-(3) has been studied in [14, 15| in the case where the
velocity U is fixed.

1.2 Notations and spaces

For 1 < ¢ <ooand s € R, let LY(D) and W*49(D) be the usual Lebesgue and Sobolev
spaces of scalar functions. If ¢ = 2, W%2(D) is denoted by H*(D) and || - || and (-;-)
denote the norm and the scalar product of the Hilbert space L?(D). For vector valued
functions we use the notations L4(D), W*4(D), H*(D) and the notations of norm and
the scalar product of L2(D) are unchanged. If V is a Banach space we denote by
(s )yrxy (or simply (-;-) if no confusion arises) the duality product where V' is the dual
space of V. If V' is an Hilbert space with scalar product (-;-), we set

C([0,T];V weak) = {u:[0,T] — V; (u(-),v) € C([0,T]), Yv € V}.



Let D(D,R3) the set of functions f : D — R? which are infinitely differentiable with
compact support in D and H}(D) its closure in H'(D). Now, we introduce the func-
tional spaces used in the theory of Navier-Stokes equations, see [22, 7] for example

Dy(D) = {v € D(D,R3); dive =0 in D}
U = closure of Dys(D) in HY(D), Uy = closure of Ds(D) in L*(D).
Then it is well known that

U= {veH}D); divv=0in D}
(14)
Uy ={v eL?(D); divv=0in D, v-n=0onT}

and identifying Uy with its dual, we get as usual the inclusions U C Uy C U'.
For the Bloch-Torrey equation satisfied by M and the heat-flux equation satisfied by
Q@ we introduce the Hilbert spaces

H} (D) ={M € H}(D); M -n=0on I}
H! (D) ={Q e H}(D); @ xn=0onT}

equipped with the norm of H!(D). Then (see [7] for example) there exists C' > 0 such
that for all V in either H} (D) or H} (D) the following estimate holds

IVVI < CUVIP + llewrl V][ + ||div V)12 (15)

hence the norm of H'(D) is equivalent to the norm (||V||? + [jcurl V||? + ||div V||?)!/?
on the spaces H} (D) and H! (D). We recall the relation —A = curl? — Vdiv so that
for regular vector fields ¥ and @ the following Green formula holds

—/A\I/-q)dx—/curl‘ll-curl@dx—l—/diV\IIdiVCI)dx
D D D

+/ curl - (& x n)dl’ —/div\II(CID -n)dl.
r r
To deal with the magnetostatic equation, we set

L; = {¢ € L*(D); /l)¢(x) dx =0} and Hf = H'(D)N Lj.

The Hilbert space Htil is equipped with the norm ||V || which is equivalent to the usual
norm of H'(D) thanks to Poincaré-Wirtinger inequality : there exists C' > 0 such that
for all ¢ € H; we have

191l < ClIVY]. (16)

To end these notations, we point out that throughout this paper, C' > 0 indicates
a generic constant depending only on some bounds of the physical data, which takes
different values in different occurrences. The dependency of the constants C' > 0 with
respect to a parameter m is written as Cy,.

Now, let us focus our attention on the magnetostatic equation to give some useful
continuity results on the solution



1.3 The magnetostatic equation

Let M € L?(D) and F € Lf, we consider the following problem

Find ¢ € H}; Vi € Hy, /(w+M)-wdx:—/ Fy dx. (17)
D D

This problem admits a unique solution ¢ in Hﬁ1 and we have

/ Vo.M de = —||Vol|* - / Fy da. (18)
D D

then
Vel < (M| + C| F1]). (19)

In particular the application
H:(M,F)w— ¢ (20)

is continuous from L2(D) x L§ to Hﬁ1 Furthermore testing equation (17) with ¢ —

/ ¢ da,ip € HY(D), we see that
D

/D(Vgo—i-M)-dex:—/DFwd:c, Vi € HY(D) (21)
and H = V solves the problem
div(H+M)=F, carlH=0in D
(H+ M) -n=0onT.

Moreover using classical regularity results for elliptic problems, we conclude that if
F e L§ and M € H} (D), then ¢ € H?(D)N Hﬁ1 and we have

el m2(py < C(lldiv M| + [|F]). (22)
Therefore H = V¢ € H} (D) and we have
[H [ 1 (py < C(lldiv M|+ |[F])- (23)

We can see that H is also continuous from L2(Dr) x L?(0,T; Lg) to L2(0,T; Hﬁl) and
from H'(0,T;1L%(D)) x H(0,T; L?) to H(0,T; Hﬁl) Moreover for F' € H(0,T; L?)
and M € H'(0,T;1L%(D)), we have

/ (V(Bup) + OM) - Vi dar = —/ Qb dr, v € HY(D), te(0,T). (24)
D D

2  Main results

Before stating our main result, let us give the formal energy estimates for problem (P).



2.1 Energy estimates

Let (U, M,H,0,Q) be a regular solution to system (P). We proceed as in [1, 2| to
obtain, for # fixed, the energy estimate satisfied by (U, M, H). For t € [0,T], we set

1 Ho
Enn(t) = SV + 5 (MO + [ H®)]) )
25
1 %
Enao = 5 1Ull® + 5 (100> + || Hol|?)

where Hy = Vg and ¢ is the unique solution of the following problem (see subsection
1.3)
Find ¢g € Htil such that

/ (Voo + My) - Vb da = — / F(O)bdr, Ve H} (26)
D D
and

Fsue(t) = 0| VU @)I* + poo([leurl M(2)|[? + 2(|div M (2)[|*) + %IIM(t)II2+ o)

21+ 2x0) [H(0) 2 + Bopol M (2) x H(B)|

Then we get the energy estimate

Eranll) / Fou(5)ds < Enao + C / lo(8(s)|? ds + C / IG(s)[?ds  (28)

for all ¢ > 0 where

G(t) = [IF @) + 0F(2)]. (29)
Now we consider the Maxwell-Cattaneo system (6) satisfied by (0, Q) for U fixed. Let
w the primitive function of K defined by

= (0) = 302 + %04. (30)

Multiplying the temperature equation by /C(#) and the heat-flux equation by @ then
integrating by parts and adding both results, we get the energy estimate associated
with the Maxwell-Cattaneo system

t
Eme(t) —|—/ Fine(s)ds < Emepo (31)
0
for all ¢ > 0 with

/w Dz + QI mco—/weo ydr+2lQol?  (32)

Fine(t) = my([leurl Q()[I* + [|div Q(1)[I*) + |Q)II*. (33)
The total energy £ and the total dissipation energy F of the full problem (P) are
defined by

E(t) = Ensut(t) + Eme(t), F(t) = Frspr(t) + Fimelt) (34)
and it holds

/]—' ds<€0+0/ 1p(6( szerC/G (35)



2.2 Statement of the result

We will use the following hypotheses

Uy € Uy, My, Qo € L%(D), divQo € L*?/1Y(D), 6y € L*(D)

(36)
g €L>®(Dr), Fe HY0,T;L*D)), / F(t,z)dz =0 for all t € [0,T].
D

Let us give now the definition of a global weak solution to problem (P)

Definition 1 We say that (U, M, H,0,Q) is a global weak solution with finite energy
of problem (P) if the following conditions are fulfilled

U € L®(0,T;Uy) N L0, T;U)
M € L>=(0,T;1L3(D)) N L*(0,T; H} (D))
H e L>°(0,T;L3(D))n L2(0, T; H} (D)) (37)
Q € L>=(0,T;L*(D)) N L*(0, T H, (D))
0 € L>=(0,T; L*(D))
and

(i) the linear momentum equation holds weakly in the sense that for all v € U

d
o7 U vd:c—i—/ (U-V)U - vda?—i—n/ VU -Vudx =
D
—/p( g- de+u0/ (M -V)H - vd:c—I—/MxH curlv dx (38)
D D

=Uo
(ii) the magnetization equation satisfies for all w € H} (D) the weak formulation

d/ M-wdx—l—/(U~V)M-wdx+0/ curlU - curlw dx
dt Jp D D

1
—i—a/ dideivwdm+/(M—xOH)-wd:c—
D 0 Jp

1
/curlUxH-wdx—ﬁo/MxH-wadx
2Jp D

(iii) the magnetic field is given by H = YV where ¢ € L*>(0,T; L%) and satisfies for
all ¢ € Hﬁ1

/ (Voo(t) + M(2)) - Vb da = — / Pty da (40)
D D

(iv) the couple (6,Q) satisfies the Mazwell-Cattaneo system in the following sense

/ 0(0ra+ U - Va)dxdt = / divQ a dxdt — / 6o a(0) dzx (41)
DT DT D



for all a € D([0, T[xD) and for all b € HL(D) with divb € L*(D)

Ti Q- -bdx + 7”)// (curl @ - curlb + div Q div b) dz+

/Q bdr + ~ /curlUxQ-bdx:/ K(6) div b da (42)
D
Q(0) = Qo.
Moreover the energy estimates (28) and (31) hold for all t € (0,T).

Remark 1

1. As usual, we get the pressure p € W—1°(0,T; L*(D)) by using the De Rham
theorem.

2. From the weak formulations, we deduce that (0,U,0;M,0,Q) € L'(0,T;U" x
(H{ (D))" x (Hy(D))') so that (U, M, Q) € C([0,T};U’ x (H}(D))" x (Hy(D)))
and the corresponding initial conditions are meaningful and moreover U, M, Q) €

C([0, T); L%(D) weak).

3. The theory of transport equation leads to the result § € C([0,T];LY(D) weak) N
C([0, T);LP(D)), for alll <p <4 (see [5] for example) which gives a sense to
the initial condition.

Theorem 1 Under hypotheses (36), there exists a global weak solution with finite en-
ergy of problem (P). Moreover 6 has the regularity

0 e L*/"(0,T; L/"(D)). (43)

Remark 2 One can relaz the condition divb € L*(D) on test functions b in (42) to
the condition divb € L'?/5(D).

We will prove existence of solutions to problem (P) in several steps, using a regu-

larization method and some compactness results. The paper is organized as follows.
In section 3, we introduce the regularized problem (P, ) obtained by adding an elliptic
term —vV - (|[V|?>V0) in the temperature equation, v > 0 being a small parameter
together to a regularization of the initial condition 6y. By using the Faedo-Galerkine
method, we obtain a sequence of approximated solutions (U, My,, Hy, 0y, Q,) which
converge towards (U,, M,,, H,,0,,Q,) a global weak solution with finite energy of sys-
tem (P,).
In section 4, we prove Theorem 1. We first introduce an auxiliary problem satisfied by
¢ = 1mydiv @, — K(6,) and establish a compacity result verified by ¢, which allows to
get the limit of the nonlinear term &(6,). Then we get Theorem 1 by passing to the
limit as v — 0.



3 The regularized problem (P,)
Let v > 0 be a small parameter and () such that
(0y) c WHY(D), 65 — 6y strongly in L*(D). (44)

We define the regularized problem (P,) as the system (8) — (12) coupled to the regu-
larized Maxwell-Cattaneo system

810 + (U - V)0 — vV - (|VO[2V6) = —divQ in Dy
7(0,Q — vAQ) = —gcurlU x Q—Q — VK(0) in Dr )
v|VOPVO -n=0, Qxn=0, 7ydivQ — K(f) =0 on I'y

6(0) = 6%, Q(0) = Qo in D

Note that we use the nonlinear elliptic operator —vV-(|V0|>V0) instead of —vAf which
is commonly used to regularize a transport equation, owing to obtain approximate
solutions 6, belonging to W4(D) and therefore to L>(D).

Proceeding as previously the energy associated with (45) takes the form

t t
Emelt) + / Fone(s) ds + v / R(s)ds < €% (46)
0 0
for all ¢ > 0 where

R() = IVl a0, +30z/D€2|V9|4 du (47

which is well defined thanks to the Sobolev embedding W'4(D) c C(D) and
v K v « v
Ereo= [ (GlOSP+ [ Si651%) da + 1Qol?
D D

It is easy to verify that the energy estimate associated with the problem (P,) writes as

¢ t ¢ t
£(t) +/ F(s)ds + u/ R(s)ds < C + C/ 1o(0(s))|1? ds + c/ 1G()|2ds (48)

0 0 0 0

where C' > 0 does not depend on v. We will prove the following existence result

Theorem 2 Under hypotheses (36), there exists a global weak solution (U,, M,, H,,0,,Q,)

of problem (P,) such that
U, € L>®(0,T;Uy) N L*(0, T;U)
M,, H, € L>®(0,T;1L2(D)) N L?(0, T; H} (D))
Q, € L>(0,T;L*(D)) N L?(0,T; HL (D)) )
6, € L>(0,T; L*(D)) N L*(0, T; Wh4(D))

and satisfying the energy estimates (46) and (48) and the problem in the following sense



(1) Uy(0) = Uy and for allv e U
d
/ Uymdar—i—/(Uy'V)Uy-vdx—i—n/ VU, -Vudr =

—/p(@l,)g-vdx—i-,uo/(M,,'V) y vdaH—/M x H, - curlv dx
D D

(50)
(ii) M,(0) = My and for all w € H} (D)
d
/ My-wdm—&—/(Uy-V)My-wdm—&—U/ curl M, - curlw dx
tJp D D
1
—Hf/ divMydivwdaz+/ (M, — xoH,) -wdz = (51)
D 4 Jp

1
/curlU,,xH,,~wda:—ﬁo/M,,XHV-M,,xwda:
2/p D

(iii) 6,(0) = 64 and for all a € W14(D)

d/ Hyadzn—/ QVU-Vadx—i—I// ]V9V|2V9,,-Vad:r——/ div Q, a dx
dt Jp D D D
(52)
(iv) Q,(0) = Qo and for all b € HL (D)
Td/ Q. -bdx —|—T’}// (curl @, - curlb + div @, div b) dz+
dt Ip D

(53)
T/ curlUl,xQ,,-bd:c:—/ Ql,-bda:—i—/ K(6,) div b dx
2 D D D

with H, = Ve, where ¢, = H(M,, F) is defined in (20).

3.1 Faedo-Galerkine approximation for (P,)

Let v > 0 be fixed, consider the weak formulation of problem (P,) given in Theorem 2.
In order to solve this problem by the Faedo-Galerkine method, we introduce the Hilbert
basis (V;)j>1, (W;)j>1, (®;)j>1 of the spaces U, H} (D), HL (D) respectively and a basis
(v;)j>1 of WH4(D). For simplicity, we assume these basis to be orthonormal in L?(D).
We seek for approximated solutions of the system (P,) of the form

ZO‘J Wi My( Zﬁy
Zaj Jui,  Qn(t) Zb

satisfying for alln e N*and 1 < j <n

U

—/p(en)g-vjdwruo/(Mn.V)Hn.dex+2/ M, x Hy - curlV;de  (59)
D D D

(54)

/U de+/(U V)Un Vd:c+77/VU YV da =
D

Un(0) = Uy,

10



(ii) jt/ M, - W;dzx + / (Uy, - V)M, - W; daz—}—a/ curl M, - curl W; dz
D D D
1
O’/ div M,, div W dx + 5/ (M, — xoHp) - W;dr =
D D
1
/ curlU,, x Hn-Wjd:n—ﬁo/ M, x Hy, - M,, x W;dx
2/p D
M, (0) = My,
(iii) i / Opvjde — / 0,U,, - Vvjdx + l// |v9n|2v9n -Vvjde =
dt Jp D D
—/ div @y, v; dx
D
0n(0) = 65,
d
(iv) Tdt/ Qn - ®jdx + T’}// (curl @y, - curl @ + div Q,, div ®;) dox =
D D
;/ curlUnxQn@jdx/ Qn-<1>jd1:+/ K (6,,) div ®; da
D D D
Qn(o) = QOn

where

H, =Vo¢n, ¢n=HM,F))
Uon, = ZaOan, Moy, = Zﬁ(m s
oy, = ZaOn vi, Qon = Zb
We assume that
(Uons Mon, Qon) — (Un, Mo, Qo) strongly in (L*(D))?

0y, — 0 strongly in Wi4(D).

This problem will be labeled (P}}).

3.2 Solving the system (P")

Let the vector valued functions o” = (aq, -+, ap), 8" = (B1,--+, 0n), a" = (a1, -~

and b" = (by,---,by), we consider the function

€ [0,T] — mm(t) = (a"(t), 8"(),a" (¢),b"()) € (R")*

then -, satisfies the ordinary differential system

’Yq/z + Apyn = Zn(ta'Yn)v 'Yn(o) = Yon

(58)

7an)

(60)

where Yo, = (0, Bon, ak,, bon) € (R™)*, A, is a n* x n* constant matrix involving the

terms
77/ VV; - VV; dz, a/ (curl W; - curl W; + div W; div W) dz
D D

T’)// (curl ®; - curl ®; + div ®; div @) dx —I—/ Q- O dx
D D

11



12

and the vector field Z,, = (Z}, 22, 73, Z%) € (R")* is defined as follows
Z)i(t,vn) = —/ (Un-V)Un~X/jdx—/ p(0n)g -V dx
D D
—i—uo/ Uy -V)H,, - Vidx + MZO/ M, x H,, - curl V; dx
D D
1
Z2i(t,vn) = —/ (Un - V)M, - W; dz — 5/ (M,, — xoH,) - W;dx
D D
1
+2/ curl U,, X Hn-Wjdﬂsﬁo/ M, x Hy, - M,, x W dx
D D
Z3i(t, ) —/ 0nUn - Vv, d:c—y/ |V0,|>°V6, - Vu; dw—/ div Qp, v; dz
D D D
Zéj(t,'yn) = —;/ curlUp, x Qy, - ®; dx —I—/ K(0,) div ®; dx
D D

for1 <j<n.

Notice that Z,, has the same regularity in the time variable ¢ as the function I’ appearing
in the magnetostatic equation and it is continuous and locally lipschitz continuous with
respect to the variable 7,. Hence there exists a unique maximal solution =, of (60)
defined on a time interval [0;T},] satisfying v, € H'(0, Ty,; (R™)*). We shall prove that
T, =T with the following estimate.

Let (Up, My, 6y, Qn) be the solution of (P}}) defined on (0,7},). We want to verify that

o ](HUnH2 1M1+ 105l sy + 1Qnl1*)(B) < 0. (61)
€|051in

We multiply equation (58) by b; and add these equations for 1 < j < n, we obtain

Td

5 1@ + 2wt QuP + v @ulP) + 1QulE = [ K(6,)divQuda. (62

We use the equation (57) that we multiply by ©;(t) = / K(6y) - vj dr and add the
D
equalities for 1 < j < n to obtain
d Kk

Onl2 + 1044 py) + (]| V0|4 +3a/93v9n4dx—
G101 + S0l )+ (RIVOul by + 30 [ 02190, )

(63)
—/ div @, K(0,,) dz.
D

Adding (62) and (63) lead to

1d o
5&(/‘1”%”2 + §||9n”4L4(D) +71Qnl?) + V“||V9n‘|%4(D)

+3va|0n|VOu 2| + 7y (llewrl Qul* + [[div Qn[1?) + 1|Qn]* = 0
Therefore, integrating between 0 and ¢ and using (59), we easily deduce that
t
o
([16I* + §H9n”41:4(1:)) +7[Qnll*)(8) + 2’//0 H\|V9nHi4(D) ds
t
+2 [ (3wl VO PI? + 7 (feurl @l + v Qul) + [QulP ds = ()

0
[0
k[|05, 1% + 5’\9571”%4(1)) +7]Qunl* < C



with C' independent of n . Similarly, we obtain from equations (55) and (56)

Unll? + 1| VU, |1? /p@ng'Undl‘
2dtll I IVU||" = D()

(66)
—MO/(U -V)M,, - H,, dz 2 (M, x Hy,) - curl U, dx
D
ld 2 2 2y 2
—IM[|” + ol[curl Mp[|” + of|div M, | *HMnll =
2dt (67)

1
+0/ Hn-Mndx—i—/ curlU,, x Hy, - M, dz
o Jp 2Jp
o0 (66) and (67) lead to

1d . Mo
5%(HUnH2 + 0l | M|?) + 0| VUR|* + poo([|leur] My || + ||div M,[|*) + gHMnH2

:—/ p(en)g.Undm—uo/(Un-V)Mn-Hndx+“°X0/ H, - M, dz.
D D d D

Using equation (24) for unknown ¢,, and data M,,, and testing with ¢ = ¢,,, we get

H, - 8;M, d — = ||H,|I? Fo,d
/D oMy e =~ S|, /atgoa:

Now we multiply equation (56) by h;( / H, - W; dr and add the equalities for
1 < j < n to obtain

/&M - H, da:—i—/(U - V)M, - Hy, d:v—i—a/ div M,, div H,, dz
D
(68)
5/ — XoH,) - Hy, dz = — || M,, x H,|?

SO

/(U V)M, - H, dm———HH 12 + /8tF<pndx /M - H, dx
D 2 dt

(69)
—a/ div M,, (F — div M,,) dz + —||H 1% = Bol| My, x Hy|?.
D

>From (21), we see that

/Hn-Mnd:c:—|]HnH2—/ Fy, d
D D

therefore

1
(Un - V)M, - H, dz = f—HHnﬂz (8tF + = F), dz + o||div M,
D 2 dt 5
(70)
1 +X0

o—/ div M, F dx + —=2||H,||* — Bo|| M, x Hy|%.
D

13



so integrating between 0 and ¢, we get
1 2 2 2 ! 2
o UUII" A+ o ([1Ma|” + | Hn %) (2) + 1 ; VU, *ds
t
+ [ Gooeurl M 2+ 20div My ) + 503, ) ds
0
t 149 t
s [P 2 st g [0, x P ds =
0 0

5
1
5 (1T0nll* + o (11 Mon|* + || Hon|1*)+

t 1 t
/ / p(0n)g - Up dxds — M)(;LXO) / / Fo, dxds
0 JD 0 JD

¢ ¢
—uo/ / O Fpp, dxds + uoa/ / Fdiv M, dxds
o Jp 0o JD

where
Hon = Voon, pon = H(MOnvF(O))~ (72)

Using the inequalities

t t 1 t
|//p<9n>g~Undxds\§cT+c/ 16, ds+/ WU ds,
o Jp 0 2 Jo

1 t t
Ho(l + Xo), / / Fy, dads| + po) / / 8, Fpy, dads| <
d 0 JD 0 JD

pol(l +2x t
CUF (o + 10F o) + 220052 [, 2 s,

t t
uogy/ / Fdiv M, dads| < C|F |2, —i—,uoa/ | div M, |2 ds.
0 JD 0
We get

1
S U0 + oM + | Ha ) () +
t
| IV TR + oo (leur M, |2+ 20div M)+ 22 ) ds
0
(73)

Fuo(1+2
s [T 1, - oo 0, x 1,7 ds <
0

t 1 [t
vt Cr+C [onlPas+ 5 [ 02 ds
0 0

where 1
An = 5 (I1T0nl* + o[ Mon | + || Hon?) < €

14



with C independent of n in view of (59), (72) and (19). Thus thanks to (65) and
Gronwall inequality, we deduce that

1Un ()7 + [| Mo (8)[|> + | Ha(2)]|* < C + exp(Ct) (74)
then )
§(HUnII2 + po (|| Mn]? + || Hn|1?) (8)+
t
| IVUR + poo(learl M|+ 2div M)+ B2 ds - (75)
0

tg(1+2
+/ [Mo( + 2x0)
AT

This ends the proof of (61) so we conclude that T,, = T for all n > 1.

| Hol|2 + Bopol| My, x Hy||?] ds < C + exp(Ct).

3.3 Convergence of the Faedo-Galerkine scheme
Let v be fixed, the estimates (65) and (75) show that
Lemma 1

.

w)n 18 uniformly bounded in L°°(0,T;Uy) N L?(0,T;U)

U,
M) and H,, are uniformly bounded in L°°(0,T;1L2(D)) N L?(0,T; H} (D))

(

(
e (M, x Hy,), is uniformly bounded in L*(0,T;L?(D))
e (Qn)n is uniformly bounded in L>(0,T;1L%(D)) N L*(0, T; HL (D))
o (0,)n is uniformly bounded in L>(0,T; L*(D)) N L4(0, T; Wi4(D)).

Notice that we get the uniform bound of (H,), in L?(0,T;H} (D)) using the bound of
(M,)n and (23). Hence we get the convergence

Lemma 2 Let v > 0 be fized. There exists subsequences still denoted (Uy), (M,),
(Hy), (Qn) and (0,,) such that when n — oo

U, — U, weakly — % in L°°(0, T;1L2(D))and weakly in L*(0,T;U)

M, — M,, H, — H, weakly — % in L>(0,T;1L?(D)) and weakly in L*(0,T;H} (D))
Qn — Q, weakly — % in L>=(0,T;1L?(D)) and weakly in L*(0,T;HL: (D))

0, — 0, weakly — x in L>=(0,T; L*(D)) and weakly in L*(0,T; W'*(D))

Moreover, we have

|V0,|°V0, — A, weakly in L%(DT). (76)

In order to pass to the limit in the nonlinear terms, we need strong convergence for the
sequences in some spaces. To apply compactness results, we need to estimate the time
derivatives of the solutions.

Let us begin with (0;0,,),. We multiply equation (57) by aj(t) and add the resulting
equalities for 1 < j < n to get

\|aten||2+/ 0,6.96, - U, de + 24
D

—|IV,||* :—/ div Q0,6 77
4dtl! 174y . ; (77)
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1
Since we have \/ 00,V 0y, - Uy dx| < Zuaten”? + Hven|’%4(D)HUnH%4(D) we obtain
D

100,11 + ||V9 174(py < 211V Qull + 21Vl F () | Unll 4 (78)

2dt

Therefore, integrating between 0 and ¢, using (59) and (65), we easily deduce that
! 2 v 4 v v |4
; 10051 ds + SV Onllpa(py < 51V 00l La(p)+

T t
2 / Idiv Qul2ds + 2 / 198022 0y 1Un 24y s (79)

t
< c+2/0 160124y 1012 ) dis

with C independent of n.
Setting y(t) = ||V9n(t)\|‘i4(D) and F(t) = ||Uy, HL4(D then from (79), y(t) satisfies the
integral inequality

y(t) < C, +2M, /Dt Vy(s) F(s)ds

Using the Gronwall-Bellman-Bihari inequality (see [3]) we deduce

< (\/07+ M, /OtF(s) ds)z.

Hence we get for all ¢t € [0, 7] the estimate

t
V0 ()74 < \@+My/0 1Un($)I[74(1) ds

which leads to

T T T
| 100 as < 0+ 208 [ 106 oy ds+ 20 ( [ 106 By as)” (50)

and we conclude that (9;6,,),, is uniformly bounded in L?(Dr) with respect to n.

To estimate 0.U,,, 0;M,, and 0;Q),, we need some notations. For a function f defined
on [0,7] with values in a space V, let fbe the function equal to f on [0,7] and to 0
elsewhere and let fbe its Fourier transform defined by

~

_ T
f(r) = / exp(—2imtT) f(t) dt = / exp(—2intT) f(t)dt, T €R.
R 0
We will prove that for 0 < v < 1/4,
[P mIe ar <c. (s1)
R

Proceeding as in [22] (see also [16]) and since (Uy, ), is uniformly bounded in L*(0, T;U),
it is enough to verify that

7 1TUn (7)1 < CNU(T) e + C|Tn(7)]], V7 € R. (82)



We write the equation (55) of U, in the form

d/ U - Vide = (Lo, Vi), Un(0) = Upn (83)
dt J,,

for all 1 < 7 < n where the linear form £,, is defined on U by
Loit) = [ U0 pdatn [ VU-Todot [ o009 ds
D D D

—Mo/(Mn-V)Hn-god:):—’l;O/ M, x H, - curl pdzx
D D

We have £, e U p.p. t € (0,T) and

12aller < CUTNZ iy + [Tl a1y + 0(0) 1+
1Mol 13 () |l s ) + 1M L]

and we conclude thanks to Lemma 1 that (£,) is uniformly bounded in L!(0, T;U").
Now we rewrite (99) as follows

d

£ ﬁn'vjdx=<2;,vj>+(/ Uon - Vj dz) b — (/ Un(T) - V; da)or  (35)
dt Jp D D

for 1 < j < n where 9, denotes the Dirac distribution at a € R. Therefore, we obtain
22'71'7'/ Uy, - Vjdx = <Z;,vj> +/ Uop - V; dx — exp(—2i7rTT)/ Un(T)-V; dx (86)
D D D

Next we multiply equality (86) by an(T) the conjugate of a;(7) and add the equalities
for 1 < j <n to get

2imr|Un? = <Z;,l?7n> +/ Uon a dx — exp(—2z’7rT7')/ Un(T)-U, dz  (87)
D D

therefore since for all 7 € R, we have

T
1Zn(P) e s/o 1L () o dt < C

then using Plancherel identity we get (82).
Similar proofs work for 0;M,, and 0;Q.,,. The above results are summarized in

Lemma 3 There exists C, > 0 such that for all n
/RITIQA’(Hﬁn(T)IIQ + [ Ma(7)IP + [ Qu(7)[?) dr < C, (88)

Moreover we have
10¢6nllL2(Dry < Cu (89)

Combining the bounds of Lemma 1 and Lemma 3 and applying Lions compactness
lemma for (U,, M, @,) and and Aubin compactness lemma for 6,, we get the strong
convergence results we get the strong convergence results
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Lemma 4 For v > 0 fized, we have
(Un, My, Hy, 0n, Qn) — (Uy, My, Hy,, 0,, Q) strongly in (L*(Dr))°  (90)
Moreover we have H, = H(M,, F).

The strong convergence of (H,,), is a consequence of the continuity of operator H (see

subsection 1.3).

Thanks to Lemma 2 and Lemma 4, we can pass to the limit in problem (P}') when
n — oo. We get that (U,, M,, H,,0,,Q,) satisfies the equations of system (P,) except
for the temperature equation satisfied by 6, for which we obtain

d/&,adm—/ GVUZ,-Vadx+u/A,,-Vadx——/din,,a (91)
dt Jp D D D

for all a € WH4(D) and A, being defined in (76).

Passing to the limit in the temperature equation. Hereafter, we detail the pro-
cedure of passing to the limit in the equation of #,,. First we introduce some notations.
Let W = WH4(D) and A the nonlinear operator defined on W by

(), ) = /D Ve’V Vo dr, Ve e W (92)
then A(p) € W’ for all p € W and

1A e < IVl a0 (93)
Next we define on L.2(D) x L*(D) the bilinear operator B by

BEo)v) = [ e Vodn VELHD oL D)V EW
It holds that B(&, ) € W' for all (¢, ¢) € L?(D) x L*(D) and

IB(& o)llwr < [lellam)lI€]l (94)
and we have L?(D) C W’ with

Iflwr < (mes (D)4 £l Vf € L*(D). (95)

We multiply equation (57) by a function f € C([0,7]) such that f(T) = 0 and
integrate by parts. Then integrating by parts, we get for all 1 < j <mn

- I'()0nvj dzdt — f(0) / 0p,v; do — f()0,Uy, - Vu; dadt
Drp D Dp (96)
+v [ )|V, PV, - Vu;dadt = — | f(t)div Qy, v; dadt.
Dr Dr

Therefore letting j7 > 1 be fixed and n — oo, using the previous convergence together
with the fact that 64, — 0% strongly in L?(D), we obtain for all j > 1

[ P, dedt — £(0) / b de— | F()0,U, - Vo, dadi+
Dy D Dy (o7)

I// f(t)A, - Vv dedt = — f(t)div Q, v; dzdt
DT DT

18



Henceforth it holds for all a € Wh4(D) and f € C!([0,7T]) such that f(T) = 0 the
following identity

- f'(t)8,adzdt — f(0) / Opadr — f(®)0,U, - Vadzdt
Dy D Dy (98)
+v f)A, - Vadxdt = — / f(t)divQ, adzdt
DT DT
In particular for f € D(]0,T[), we obtain (91) which is satisfied in D’'(]0, T[). Thus we
get in D/(D) and p.p. t € (0,7T)

o, — B(Uy,0,) +vA, = —divQ, (99)

and we deduce that 9,0, € L3(0,T; (WY 4(D))"). Since 6, € L*(0,T; W4(D)) then
6, € C([0,T]; L*(D)) so that 6,(0) is well defined and multiplying equation (91) by a
function f € C([0,T]) such that f(7) = 0 and integrating by parts, we obtain the
equation

—/ f'(t)0,adxdt — f(O)/ 0,(0)adr — f(®)0,U, - Vadzdt
Dr D Dt

(100)
+v f(A, - Vadzdt = — f()div Q, a dzdt
Dr Dt
for all a € WH4(D), thus comparing (98) and (100) we deduce that
60,(0) = 0g. (101)

Next, since (6,,(T)), is bounded in L*(D), then at least for a subsequence, (6,,(T))y
converge weakly in L*(D). Proceeding as previously using test functions f € C*([0,7T7)
(with possibly the condition f(0) = 0 for simplicity), we prove that

Lemma 5
0, (T) — 0,(T) weakly in L*(D).

It remains to prove the

Lemma 6 Let A, be the weak limit of (|V0,|>V8,) in L*3(Dr). We have

A, = |V6,>Ve,
Proof. We use the monotonicity of the operator A defined in (92). We set
T
(o) = [ (AB) = 4216, 9 dt =0, ¥ & LHO.Ti WD),
0

We multiply equation (57) by a; and add these equations for 1 < j < n, then integrating
between 0 and T', we obtain

1 T 1
§II9n(T)H2 + V/ ||V9n|!4L4<D) ds = §||95n||2 / div @0, dxdt (102)
0

Dy
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We write

T
Anlp) = — /D V0,2V, - Vo dadt — /0 (A(¢), O — @) dt
T

11 _
40 [5U1051 ~ 10.DI? do) ~ [ div Qb dade].
vi2 Dy

Therefore by the convergence results given before, we get

T
MMWAM@S—/°AWVwMﬁ—/<Awwn—@ﬁ
0

Dt
+1[1
vi2

(103)
m%ﬁmmnﬁm%/<M@@mﬂ.

Dr

Taking a = 60, in equation (91) and integrating with respect to the time variable, we
get

1
ST - ||95||2)+y/ A, - V0, dedt — —/ divQ, 6, ddt.
Dr D

T

Coming back to inequality (103), we deduce that

T
lim sup Ay (¢0) < / Ay - (V6 — Vo) dadi — /O (A(),0,— o) dt.  (104)

Dt

Therefore, for all ¢ € L*(0,T; WH4(D)) we have

T
0< /D Ao (T8 V) et - /0 (A(2), 0, — ) dt (105)

Taking ¢ = 6, — Ay with A > 0 and ¢ € L*(0,T; WH4(D)), we get

T
0< / A, - Vb dadt — / (A(6, — X)), ) dt (106)
Dr 0
and since operator A is hemicontinuous, then letting A — 0, we obtain
0< / A, -V ddt — / VO, >V0, - Vi dxdt (107)
Dr Dt
for all ¢ € L*(0,T; WH4(D)) which leads to the result. O

Going along the same lines, one can pass to the limit in the other equations thanks
to the strong convergence results of Lemma 4. One deduces that U,, M, and @,
satisfy the weak formulations given in Theorem 2. To verify the corresponding initial
conditions, one can proceed as for #,. In order to prove energy estimates (65) and
(73), we multiply (46) and (48) by a test function f € D(]0,T[) such that f > 0 and
integrate between 0 and T'. Thus using Lemma 2, we can take the lim inf which leads to

the desired results. Hence we get a global weak solution with finite energy to problem
(P,). This ends proof of Theorem 2.
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4 Proof of Theorem 1

4.1 An auxiliary problem

For v > 0, let (U,, M,, H,, 0,, Q,) be the solution of problem (P,) provided by
Theorem 2. In order to get some compacity result to deal with the limit of the nonlinear
terms of the problem (P,) when v — 0, we introduce the following auxiliary function

Cv = Tydiv Qv — ’C(eu) (108)

Taking the divergence of the heat-flux equation in (45), we easily see that (, satisfies
the equation

0iy = 7AG, = —ydiv Q, — Thdiv (curl U, x Q,) = %K (6). (109)
Multiplying the temperature equation in (45) by K'(6,) we get
oK(0,) + U, - VK(0,) — vK'(0,)V - (IV6,*V6,) = —K'(6,) div Q,. (110)
Hence (, satisfies the auxiliary problem

8t(l/ - ’YACZ/ =gy + div GV + Uy in Dy

(111)
G0)=¢ inD, (,=00nTr
where (§ = Tydiv Qo — K(6§) and
gy = (kK —7)div@,
G, = U,K(6,) — vk|V0,[2V0, — 3av02|V0,|>V0, — %curl U, x Q, (112)

oy = 6vaf,|VO,|* + 3a6%div Q,.

We note that ¢ converge strongly in L%(D) towards (y = 7ydiv Qo — K(6p) and we
have the following results

Lemma 7 There exists C > 0 which is independent of v such that
lgvllz20.7; L2(D)) < C
GVl /s 0,75 L1z (pyy < C (113)
ltwllror; Lrpyy < C

Proof. We use the energy estimates (46) and (48) satisfied by (U,, M,, H,, 6,, Q.).
So clearly g, is bounded in L?(0,7T; L*(D)). We write G, in the form G, = Gy, —
G27V — G37,, — G47,, with

G, =UK(0,), Ga, = vk|V0,2V0,,
Gs, = 3av02|V0, 12V, Gy, = SeurlU, x Q,.

Since L2(0,T;U) is continuously embedded in L?(0,7;1L5(D)) then we see that U, is

bounded in L?(0, T;1L5(D)) with respect to v and as K(6,) is bounded in L>(0, T’; Ls (D)),
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we deduce that Gp, is bounded in LQ(O,T;]LH/H(D)). G, is clearly bounded in
LA3(0,T;1L43(D)). Next since Q, is bounded in L>(0,T;1L2(D)) N L?(0,T;H' (D))
then using an interpolation result we get that Q, is bounded in L*(0, T; L3(D)). There-
fore as curlU, is bounded in L?(0,7T;L?(D)), we conclude that G4, is bounded in
L*3(0,T;1L.5/5(D)). Now we write |G| = (3av)h,k, with

hy, = |0,°/2|V86, > € LY3(0,T; LY3(D))
k, =160,|'/? € L>(0,T; L8(D)).
So Gs,, € L*3(0,T; L¥7(D)) and p.p. t € (0,T)

1G3.0 (Ol s/ (py < 3wl ()] pars pyllk (B) [l s ()

3/4 9
<sav( [ 0 PIvOl dz) " 101,

then

3/4 1/2
[Gaullsrrasmoy < 3av( [ 1021901 dode)" 10,132 0100

Dt
therefore G, is uniformly bounded in L*/3(0,T;1L8/7(D)) with respect to v which
implies that G, is bounded in L*/3(0, T;L'>/1Y(D)). To deal with p,, we split it into
two terms p, = p1,, + po, with g, = 6vaf,|Ve,|* and M2,y = 3af?divQ,. Then
clearly the second term psg,, is bounded in L?(0,T; L*(D)) whereas for the first term,
we have

/ ym,,,ydxdtzﬁay/ 10,||V0,|* dedt <

br br (114)

6a1// v, |* +6a1// 10,12|V6,|* dzdt < C
{16,1<1} {16,]>1}

The Lemma is then proved. m]

To use the known regularity results on solutions of parabolic equations, we split the
function ¢, into two terms (1, and (2, where (7, satisfies the problem

N1y —YAG L = gy +divGyin Dr
(115)
C1(0)=¢5inD, 1, =0o0nTIr

with g, and G, bounded in L'%/11(0, T;1L'?/11(D)), ¢4 bounded in L%(D) whereas the
function (2, verifies the problem

atCQ,V - ’YA427I/ = Hy in Dy

(116)
C(2,(0)=0in D, (3, =0o0nI'r
with g, bounded in L!(0,T; L*(D)). We have the result
Lemma 8 There exists C' > 0 which is independent of v such that
(¢l Lz o mw 12 (pyy + 1061wl Lz o o —11211(pyy < C 117)

¢l oo, p(Dyy + 10eC2wll oo, 75w~ v (DY) 122 (0,130 (D)) < C

5
forall1§p<1.
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Proof.  The bounds for (i, result from the classical L? estimates of solutions of
parabolic equations (see for example [9], [12] and the references therein) whereas for
(2,v, We use a result given in [2], see also [4] . The estimate of 0;(2, follows from the
equation (116). |
Combining the above estimates and using Aubin’s compactness lemma we get the con-

vergence results

Lemma 9 For subsequences we have
Gl — G strongly in LM (0,T; L7 (D)), 1 < qi < (12/11)* = 12/7
Go — Ga strongly in LP(0,T; L?(D)), 1< gy <p* =355, 1<p<5/4  (118)
¢, — € strongly in LY?/11(0,T; L9 (D)), 1 < q; < 12/7.

The strong convergence of (, is crucial to obtain the limit in the nonlinear term (6,)
since the regularized equation of 6, does not provide any uniform bound of the space
derivative. We will precise this point in the following subsection.

4.2 Convergence in the temperature equation as v — 0

Let v > 0 and (U,, M, H,,0,,Q,) be the solution of problem (P,) provided by Theo-
rem 2. From the estimates (46), we deduce that

Lemma 10 For a subsequence, we have
0, — 0 weakly -+ in L°°(0,T; L*(D)) (119)

v|V0,|?V0, — 0 strongly in LY3(Dr).

Next, assume momentarily that
U, — U strongly in L2(0, T; Up)
(120)
div Q, — div Q weakly in L?(Dr)
then we can perform the limit when v — 0 in the equation of 8,,. We get the result

Lemma 11 6 € L>(0,T; L*(D)) is a weak solution of the transport equation

a0 +U-VO=—-divQ in Drp

(121)
6(0) =0, in D.
Moreover, 6 € C([0,T]; L4(D)) for all ¢ < 4 and 0 € C([0,T); L*(D) weak).
We recall that § € L°°(0,T; L*(D)) is a weak solution of (121) if
/ 0(0ra+ U - Va)dxdt = / divQ a dxdt — / o a(0) dzx (122)
DT DT D

for all @ € D([0, T[x D) so equation (121) is satisfied in D'(Dr). The regularity result
given in Lemma 11 is well known in transport equation theory as said in Remark 2.3,
which gives a sense to the initial condition in (121). Moreover, we have
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Lemma 12
0,(T) — O(T) weakly in L*(D).

Proof. 6(T) is well defined in L?(D), let v be the weak limit of 6,(T) in L*(D) and
L?(D). We use test functions a € D(D) in the equation (52) of 6,, we multiply by
f € D(]0,T]) and integrating between 0 and 7', we get

f(T)/ 0,(T)a dz = f()6,U, - Va dzdt
D Drp
—v [ f(t)|V8,*V8, - Va dxdt — f(t)divQ, a dzdt
Dr Dr
thus passing to the limit we get

f(T)/Dvadm: f)0U -Va dxdt — i f(t)divQa dxdt.

Dy

Using equation (121) of 6, we deduce that for all a € D(D), f € D(]0,T])

1@) [ vade= 1) [ 6T)ada

D D

hence v = (7). |

Consider now the equation of 6, from (45) that we rewrite using (, in the form
o0, +U, -V0, —vV - (|V0,>°V0,) + LK(,) =—-2L¢ in Dr
m m (123)

0,(0) =05 in D, v|V0,|>°Vl, -n=0onI'r.

Under the hypothesis (120), we have

Lemma 13 Let x be the weak-+ limit of K(0,) in L>°(0,T; L*/3(D)). We have

x = K(0).

Proof.  We use the monotonicity of the function X and the strong convergence in
LY0,T; L*3(D)) of ¢, given in Lemma 9. We set

a(p) = /D (K(6,) — K(2))(6, — ) dedt > 0, Vi € L°(0, T; L*(D)).

We multiply equation (123) by 6, and integrate over Dr to get

1 1
— [ K(6,)0, dedt = —— | (.0, dedt —v / VO, |* dzdt
Y JDr ™Y JDrp Dr
1 1
—/ 02(T)de + / (68)? du.
2Jp 2Jp
Then
a,(p) = — K(6,)e dxdt — K(p)(0, — ) dxdt — (0, dxdt

Dr Dr Dr
—my/ VO, |* dedt — ”/ 02(T)dx + W/ (0)* da.
Dr 2 Jp 2 Jp
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>From Lemma 12, we have

liminf/ 10,(T)[? da z/ 0(T)[? da
D D

therefore using hypothesis (44) we obtain

limsup a, (¢) < —/

D

X dxdt — / K(9)(0 — ¢) dxdt — ¢O dxdt
T Dr

Dr
—”/ 92(T)dac+m/ 62 da
2 Jp 2 Jp

for all ¢ in L>°(0,T; L4(D)). On the other hand, taking the limit in the weak formula-

tion of problem (123), we deduce that 6 satisfies the equation

(%(9+UV9+%X:—%CH1DT

6(0) = 6o in D.

Multiplying the equation by 6 we get

— | <o dxd—”/ 92(T)dx+”/ 02 dx:/ X0 dzdt.
Dy 2 Jp 2 Jp Dy
Therefore

limsup a,(¢) < / X(0 — @) dxdt — K(e)(0 — ¢) dxdt.
DT DT

We deduce that
/D (x = K(0))(0 — o) dedt > 0, ¥ € L®(0,T; L*(D)).
T
So, taking in (125) ¢ = 6 — A\ with A > 0, € L*>(0,T; L*(D)), we get
/D (x — K(6 — X)) dedt > 0, Vi € L°°(0,T; L*(D)),¥A >0
T
and letting A — 0, we obtain
/D (x — K(0) dedt >0, Vo € L>=(0,T; L*(D))
T

and we conclude that x = ().

4.3 End of proof of theorem 1

(124)

(125)

(126)

(127)

Let (U,,M,,H,,0,,Q,) be the solution of problem (P,) provided by Theorem 2 for
v > 0. The energy estimates (46) and (48) lead to the following uniform bounds with

respect to v
Lemma 14

e (U,) is uniformly bounded in L°°(0, T;Up) N L2(0, T;U)



e (M,) and (H,) are uniformly bounded in L°°(0,T;1L2(D)) N L?(0,T;H} (D))
o (M, x H,) is uniformly bounded in L?(0,T;1L?(D))
e (Q,) is uniformly bounded in L°°(0,T;1L2(D)) N L?(0,T; HL (D))

To deal with the nonlinear terms of the equations, we need to estimate the time deriva-
tives (0:U,), (0:M,) and (0;Q, ). For the first one, we deduce from the weak formulation
of the equation of U, that in D'(D), p.p. t € (0,7T) it holds

oU, =—-L, (128)
where the linear form £, is defined on U by
(Lo, ) = / (U, - V)U, - sodw+77/ VU, - deer/ p(0y)g - pdx
D D D

. (129)
—,uo/(M,,'V)H,,-cpda:—O/ M, x H, - curl p dz.
D 2 Jp

Therefore £, e U’ p.p. t € (0,T) and
1Luller < CUUN Gy + 101 () + [1(0)]|+
M llgr oyl Hullgr oy + [My x Hy||) < C

thanks to the bounds of Lemma 14. We deduce that 0;U, is uniformly bounded in
Ll(O, T;U"). and since the same proofs work for 9; M, and 9;Q,, we get

Lemma 15 (0,U,), (0;M,) and (0;Q,) are uniformly bounded with respect to v in
LYo, T;u"y, LY0,T; (H}(D))) and L*(0,T; (HL(D))') respectively.

Hence we get the convergence results

Lemma 16 There exists subsequences still denoted (U,), (M,), (Hy,), (Q.) such that
when v — 0

U, — U weakly — * in L>=(0,T;Uy) and weakly in L?(0,T;U)

M, — M weakly — % in L*°(0, T;1L?(D)) and weakly in L*(0,T;H} (D))

130
H, — H weakly — % in L>(0,T;1L%(D)) and weakly in L*(0,T;H} (D)) (130)
Q. — Q weakly — % in L>=(0,T;1L?(D)) and weakly in L*(0,T;H: (D))
and the following strong convergence results hold
Uy, My, H,, Q,) — (U, M, H, Q) strongly in (L*(Dr))* (131)

where H = H(M, F).

Once again, the strong convergence of (H),) is a consequence of subsection 1.3.

Notice that from Lemma 16, the hypotheses (120) are fulfilled leading to the convergence
of the temperature of the previous subsection. Proceeding as for the proof of Theorem
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2, we can verify that (U, M, H, 0, Q)) is a weak solution with finite energy of problem
(P) which leads to the conclusion of the first part of Theorem 1.

Let us prove the second part of the Theorem , which is the LP — L9- regularity for
the temperature 6. In this purpose, it is enough to show that

Lemma 17 Under hypotheses (36), the reqularized temperature 0,, is uniformly bounded
in L3/1(0,T; L39/7(D)) with respect to v.

Proof. From (117) and using the Sobolev embedding W' '2/11(D) c L'?/7(D), we see
that (¢,) is uniformly bounded in L'?/™(0,T; L'?/7(D)) then from the relation a3 =

—(+7ydiv Q,—kb,, we deduce that (6,,) is uniformly bounded in L3/11(0, T; L3%/7(D)).

O
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