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Abstract—This paper investigates the use of recent visual
features based on second-order statistics, as well as new pro-
cessing techniques to improve the quality of features. More
specifically, we present and evaluate Fisher Vectors (FV), Vec-
tors of Locally Aggregated Descriptors (VLAD), and Vectors
of Locally Aggregated Tensors (VLAT). These techniques are
combined with several normalization techniques, such as power
law normalization and orthogonalisation/whitening of descriptor
spaces. Results on the UC Merced land use dataset shows the
relevance of these new methods for land-use classification, as
well as a significant improvement over Bag-of-Words.

I. INTRODUCTION

In land-use classification of high-resolution overhead im-
agery, the most popular pipeline is composed of two parts:
the extraction of image descriptors; and the use of statistical
learning tools. To extract the descriptors, two types of methods
are used: global descriptors; aggregated descriptors. The global
descriptors commonly used are color descriptors [1] (e.g.
histogram of RGB, HSV, CIE Lab) and homogeneous texture
descriptors [1] (Gabor filter responses). The aggregated image
descriptors are computed in two steps: the extraction of a
set of local descriptors; and their aggregation in a single
descriptor. The most polular local descriptors is the well known
SIFT descriptor [2]. Many aggregation methods have been
proposed and evaluated [1], [3-7]. Yang et al. [1], [3] evaluated
numerous methods used in computer vision: the bag-of-visual-
words [8] and its spacial extentions (Spatial Pyramid Match
Kernel [9] and Spatial Co-occurrence Kernel [10]). Risojevic
et al. [4] propose to use the cross-cerrelations between Gabor
wavelet coefficient and quaternion framework for the repre-
sentation of color images to compute the image descriptor.
Recently, Cheriyadat et al. [5] propose to use a coding/pooling
method [11] to aggregate the local descriptors into a single
descriptor.

In this paper, we propose to evaluate recent methods of
aggregated descriptors for visual representation of land-use
classification in high-resolution overhead imagery [1]. This
includes improved Fisher Vectors (FV) [12], Vectors of Locally
Aggregated Descriptors (VLAD) [13], Vectors of Locally Ag-
gregated Tensors (VLAT) [14], and many improvements that
were recently proposed [15]. These methods are the extension
of visual dictionaries approaches introduced by Bag-of-Words
(BoW) [8], thanks to several key ideas. A first key idea is
the introduction of the deviation approach, which was first
motivated by statistical models from Fisher Kernels [12]. The
idea is to consider the deviation between the local image

model and a global model, rather than only the local image
model. As a result, specific properties of an image are better
emphasised. A second key idea is the introduction of second-
order statistics, for instance using covariance data in addition
to mean data. While the feature size is then significantly
increased, recent techniques for high dimensionality reduction
have solved this problem [13], [15]. Another key idea is
the introduction of normalisation processing at the different
levels of the tool-chain, like the power law [12] or cluster-wise
component analysis [15]. A last key idea is to only consider
features vectors compared with a linear similarity (e.g. dot
product). These constraints allow the use of very efficient
retrieval and learning techniques, like Stochastic Gradient
Descent SVM [16]. Furthermore, in most cases this leads to
methods with computational and memory complexity linear
with the size of datasets, rather than quadratic complexity with
non-linear features.

In this scope, we first propose a detailed presentation of
these methods in Section II. Then, we present in Section III
evaluation results on UC Merced land use dataset [1].

II. IMAGE FEATURES

Most image features are obtained by a two steps scheme.
The first step is to extract a set of local visual descriptors from
the images. The most commonly used visual descriptors are
highly discriminant local descriptors (HOG, SIFT, SUREF, ...).
Regions of interest can be selected by uniform sampling, or by
automatic point of interest detection. The set extracted from
an image is called a bag. We denote by B, = {b,;}, the set
of descriptors b,; € R” in image 4. The second step is to map
the descriptors of the bag B, into a single vector x; € R",
known as the image feature.

A. Statistical Approaches

The first methods to map the descriptors in a feature are
based on the statistical study of the distribution of descriptors
in the bag. These approaches have been inspired by text
retrieval methods. To study the distribution of descriptors, we
use a visual codebook composed by C visual words. The visual
codebook is generally computed by a clustering algorithm
(e.g., k-means) on a large sample of descriptors. A bag can
then be described by a statistical analysis of occurrences of
visual words.

The first method of this kind, named Bag of Words
(BoW) [8] counts the number of descriptors belonging to



each cluster. The dimension of the feature is then C. Many
extension of BoW has been proposed [11], for example in the
classification of urban scenes in geo-referenced images [17].
These approaches obtain good results in similarity search and
in images classification. However, to obtain good results with
these methods it is necessary to use visual codebooks with
very large dictionaries (about 100k visual word), and the use
of a non-linear metric.

B. Model Deviation Approaches

Perronnin et al. [12] proposed a successful method called
Fisher Vectors. This method uses a probability density function
denoted by wu) of parameters A as model of the descriptors
space. To describe the image, they compute the derivative of
the log-likelihood of image descriptors to the model:

) 1
Gy = 7 Valogux(B;). (1)

The authors propose to use a Gaussian Mixture Model (GMM)
of parameters p, and o.. Elements of the Fisher Vector for
each Gaussian ¢ can be written as:

B; . 1 b7’i — M.
Oue = 7 @er%(bm (O_C > @)
; 1 b'ri - M 2
Gre = T\/@Zvc(bm-) [( Ug“‘) —1] 3)

Where (wc, pt,,0.) are the weight, mean and standard
deviation of Gaussian ¢, and 7.(b,.;) the normalized likelihood
of b,; to Gaussian c. The final feature is obtained by con-
catenation of QE”C and QB for all Gaussians. Fisher Vectors
achieve very good results [12] However, Fisher Vectors are
limited to the simple model of mixtures of Gaussians with
diagonal covariance matrices. Moreover, the GMM algorithm

is computationally very intensive.

Jegou et al. [13] proposed a simplified version of Fisher
Vector by aggregating local descriptors, called Vectors of
Locally Aggregated Descriptors (VLAD). They proposed to
model the descriptors space by a small codebook obtained by
clustering a large set of descriptors. The model is simply the
sum of all centered descriptors B.; = {b;c;}» C B; from
image ¢ and cluster c:

Ve = Z brci — M. (4)

brci€Bei

with p, the center of cluster c. The final feature is obtained
by a concatenation of v; for all c. The feature size is D x C.

Picard et al. [14] proposed an extension of VLAD by
aggregating tensor products of local descriptors, called Vector
of Locally Aggregated Tensors (VLAT). They proposed to use
the covariance matrix of the descriptors of each cluster. Let us
denote by “u.” the mean of cluster ¢ and ““7.” the covariance
matrix of cluster ¢ with b,..; descriptors belonging to cluster

C:
o= 1 2 b )
7—0 - Ti| Z Z(brci - l‘l’c)(b’l"ci - HC)T7 (6)

with |c| being the total number of descriptors in cluster c.

For each cluster ¢, the feature of image ¢ is the sum of
centered tensors of centered descriptors belonging to cluster c:

7;0 = Z(brci - IJ‘C)(chi - IJ/C)T - 7; (7)

r
Each 7. is flattened into a vector v;.. The VLAT feature v;
for image ¢ consists of the concatenation of v, for all clusters:

V; = (Vﬂ NN ViC)- (8)

As the 7;. matrices are symmetric, only the diagonal and
the upper part are kept while flattening 7;. into a vector v;.
The size of the feature is then C' X w.

C. Normalization

Several normalization processing are proposed in the lit-
erature to enhance the quality of visual features. The most
popular one is the power law normalization, which first raises
each value to a power «, and then ¢5-normalize the resulting
vector:

x; = Vi, vili] = sign (vi[i]) [vil7]]", @

Vi
Vil
with « typically set to 0,5. This normalization was first
introduced for the final visual features [12], and more recently
for the normalization of low-level descriptors, such as Root-
SIFT [18].

Another common improvement is the orthogonalization
and/or whitening of vector spaces, using a Principal Com-
ponent Analysis. This can be performed at different levels.
For instance, this is a required pre-processing on low-level
descriptors for Fisher Vectors [12]. It can also be used to
normalize each cluster of the dictionary, as it is done for
VLAD [19] and for VLAT [15].

In the case of VLAT, the processing is the following one.
First, we compute the eigendecomposition of the covariance
matrix of each cluster c:

T.=V.D.V/, (10)

where D, is a real non-negative diagonal matrix (eigenvalues),
and V. is unitary (eigenvectors). Then we project the centered
descriptors belonging to ¢ on the eigenvectors:

bl =V!(bri —p.). (11)

rct

Combining eq.(11) and eq.(7), we get:
T = VT <Z(brcz - Mc)(brci - NC)T - 77:) Vc
= Z V rcz

= Z V;r rci T Hp)) (V:(br(‘z - Au’c))T - DC'

)(chi - NC)T) V.-D.

The cluster-wise normalized VLAT feature of image ¢ in
cluster ¢ is the sum of tensors of projected descriptors b/,
belonging to cluster ¢, centered by D.:

Z brczbg‘zz - (12)



a

‘ j L “ 8

CS;}er Péss Parking Lot

River

Fig. 1. UC Merced land use dataset.

III. EXPERIMENTS

In this section, we present the result using FV, VLAD and
VLAT features on UC Merced land use dataset [1].

A. Dataset

This dataset is composed of 256 x 256 pixels RGB im-
ages, with pixel resolution of one foot. They are manually
classified into 21 classes, corresponding to various land cover
and land use types: agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, freeway,
golf course, harbor, intersection, medium density residential,
mobile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts. Each class con-
tains 100 images. Examples are presented in Fig. 1.

We evaluate methods using the same protocol as in [1].
This is a five-fold multi-classification protocol. We randomly
split the dataset into five subsets, train using four subsets
and test using the remaining one. The results presented in
the following sections are then average classification accuracy
over the five runs. We follow a one-versus-all classification
strategy: for each class, we train a linear SVM classifier, and
label each test image with the classifier that returns the highest
classification score.

For all the following experiments, we {5 normalize low-
level descriptors (no power law at this stage), and normalize
final visual features using a power law with a = 0.5.

B. Features comparison

We first evaluated the scale parameter of low-level descrip-
tors. For this purpose, we used HOG descriptors at different
scales: cells of 4 pixels, 6 pixels, 8 pixels and 10 pixels. Then,
we carried out experiment with VLAD features for different
dictionary sizes D, from 32 to 256 keywords. As presented in
Table I, individual scales presents similar performance. Fur-
thermore, this behaviour is the same with different dictionary
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TABLE 1. CLASSIFICATION ACCURACY (%) FOR VARIOUS
EXTRACTION SCALES OF HOG DESCRIPTORS AND VARIOUS VISUAL
CODEBOOKS SIZE WITH VLAD FEATURE.

D 32 64 128 256
4 84.5 | 86.7 | 88.5 | 89.0
6 84.8 | 86.0 | 87.6 | 89.0
8 832 | 86.7 | 87.7 | 88.6
10 83.8 | 86.5 | 87.8 | 887
4+6+8+10 | 85.2 | 87.5 | 89.6 | 90.9

TABLE II. CLASSIFICATION ACCURACY (%) FOR HOG AND RGB
DESCRIPTORS AND FOR VARIOUS VISUAL CODEBOOKS SIZE WITH FV,
VLAD, VLAT FEATURES.

D

32 64 128 256
FV 883 | 90.0 | 91.2 | 91.8
HOG | VLAD [ 852 | 875 [ 89.6 | 90.9
VLAT | 915 | 91.7 | 91.8 | 923

FV 843 | 85.6 | 87.2 | 882
RGB | VLAD | 80.0 | 825 | 83.7 | 854
VLAT | 87.5 | 88.1 | 88.1 | 889

size: in all cases, performance is improved by the size of the
dictionary, but is similar from one scale to another. However,
when combining all scales, the performance is improved. As a
result, we always consider the combination of these four scales
in the following experiments.

The second set of experiments compares FV, VLAD and
VLAT using HOG descriptors and RGB descriptors [12],
for different dictionary sizes D. Results are presented in
Table II. If we compare HOG and RGB descriptors, HOG
are more effective. Let note that we did not combine HOG
and RGB descriptors because no normalization is performed
on descriptor spaces in these experiments. Focusing on the
dictionary size, improvement can be observed with VLAD,
however, this is less significant for FV and VLAT. Finally, the
best feature in these experiment is the VLAT feature.



TABLE IV. COMPARISON TO STATE-OF-THE-ART RESULTS.
Method BOVWI[1] SCK[1] BOVW+SCK]1] ColorRGB[1] ColorHLS[1] Texture[1] Our (VLAT)
Accuracy (%) 76.81 72.52 77.71 76.71 81.19 76.91 94.3
Method SPCK][3] SPCK+[3] SPCK++[3] Color O.E.[4] Color 0.D.[4] Quater. O.D.[4] Our (FV)
Accuracy (%) 73.14 76.05 77.38 81.10 84.86 85.48 93.8

TABLE III. CLASSIFICATION ACCURACY (%) FOR HOG AND RGB
DESCRIPTORS AND FOR VARIOUS COMPRESSION RATIOS OF DESCRIPTORS
WITH FV, VLAD, VLAT FEATURES (D = 64).

d

128 96 64 32
FV 920 | 91.5 | 91.2 | 90.1
HOG VLAD | 89.1 88.8 | 889 | 874
VLAT | 925 | 92.7 | 92.7 | 91.8
FV - 89.3 | 894 | 87.2
RGB VLAD - 86.5 | 86.0 | 84.6
VLAT - 90.6 | 90.5 | 89.4
FV - 938 | 934 | 928
HOG+RGB | VLAD - 925 | 925 | 91.6
VLAT - 941 | 943 | 938

C. Descriptor spaces normalization

In this section, we analyse the normalization of descriptor
spaces using methods based on Principal Components Analysis
(PCA). The motivation is two-fold: improve the quality of
features, but also combine several features from different
descriptors. For FV, we considered different number d of
component for the normalization and reduction of low-level de-
scriptors. For VLAD and VLAT, this processing is performed
for each cluster of the visual dictionary. Results are presented
in Table III, were d is the number of principal component for
the global PCA (FV) or for cluster-wise PCAs (VLAD and
VLAT). Note that cases with 128 components are not presented
for RGB descriptors, since the original descriptor only have 96
dimensions. Furthermore, the size of the dictionary is always
set of 64.

Overall, if we compare to the previous set of experiments
with D = 64, performance is increased in all cases, even if
we reduce the size of descriptors to d = 32 dimensions. If
we compare HOG and RGB descriptors, HOG are also more
effective. Thanks to the normalization, we can create a relevant
combination of HOG and RGB descriptors, which present the
highest results, especially with VLAT features.

We present in Fig. 2 these results according to the size
of features, using HOG and RGB descriptors, and dictionary
sizes D = 32 and D = 64. If we focus on features with 1,000
dimensions, we can see that performance over 92% can be
obtained with FV and VLAD methods. This can be compared
to the results using BoW [1], which are from 77% to 82%
with the same number of dimensions. Finally, we compare
our results to the state of the art in Table IV. As we can see,
model deviation approaches clearly outperform their methods
by a fair margin of at least 9%.

IV. CONCLUSION

In this paper, we presented recent methods for computing
visual features, as well as related normalization techniques.
We carried out experiments to analyse the benefit of each new
component on the UC Merced land use dataset [1]. Overall,
all considered method (FV, VLAD and VLAT) showed high
classification accuracies. Furthermore, a high accuracy can be
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Fig. 2. Classification accuracy (%) as function of dimensionality reduction
of descriptors (i.e., d € {96, 64, 32}) for various visual codebooks size and
features.

obtain with small visual dictionaries (64 words), especially for
FV and VLAT features. Descriptor space normalization using
PCA-based methods improve the results, but also allows effec-
tive combination of different descriptors types (HOG and RGB
in our experiments). Finally, when compared to BoW methods,
these methods lead to large performance improvement, as it
is seen for generalist image categorization. A new component
that will be worth investigating in the future is the compression
of visual features for large-scale indexing, and their evaluation
on very large land-use datasets.
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