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Abstract

Ternary sextics and quaternary quartics are the smallest cases where there exist nonneg-
ative polynomials that are not sums of squares (SOS). A complete classification of the
difference between these cones was given by G. Blekherman via analyzing the extreme
rays of the corresponding dual cones. However, an exact computational approach in or-
der to build separating extreme rays for nonnegative polynomials that are not sums of
squares is a widely open problem. We provide a method substantially simplifying this
computation for certain classes of polynomials on the boundary of the PSD cones. In par-
ticular, our method yields separating extreme rays for every nonnegative ternary sextic
with at least seven zeros, which proves a slight variation of a conjecture by Blekherman for
many instances. As an application, we compute rational certificates for some prominent
polynomials.
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1. Introduction

We consider real polynomials in the vector space of all homogeneous polynomials in n
variables of degree d, denoted by Hn,d. For every p ∈ Hn,d we denote its real projective
variety as V(p). Let Pn,d ⊂ Hn,d be the cone of all nonnegative polynomials in n variables
of degree d.

Inside Hn,2d, there are two full dimensional convex cones of special interest, the cone
of nonnegative polynomials and the cone of sums of squares (for a general background
about nonnegative polynomials and sums of squares see e.g. [11, 15, 17, 22]; for some
metric and convexity properties of these cones see [2]).

Pn,2d := {f ∈ Hn,2d : f(x) ≥ 0, for all x ∈ Rn}

Σn,2d :=
{

f ∈ Pn,2d : f =
∑

i
f 2
i for some fi ∈ Hn,d

}

.
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The investigation of the relationship between the cone of nonnegative polynomials and
the cone of sums of squares began in the seminal work of Hilbert when he showed that
the cone of nonnegative polynomials coincides with the cone of sums of squares exactly
in the cases of bivariate forms (n = 2), quadratic forms (2d = 2) and ternary quartics
(n = 3, 2d = 4) ([14]).

The Motzkin polynomial m(x, y, z) = x4y2+x2y4−3x2y2z2+z6 was the first explicitly
known example for a nonnegative polynomial which is not a sum of squares. Most proofs
for this fact are based on term by term inspections (see e.g. [18, 22]). In near past other
proofs were found, e.g. using representation theory (see [9]).

In [3], Blekherman showed that for fixed dimension 2d ≥ 4 there are significantly
more nonnegative polynomials than sums of squares as n tends to infinity. However, the
question of precisely when nonnegative polynomials begin to significantly overtake sums
of squares is much less understood. In the smallest cases where there exist nonnegative
polynomials which are not sums of squares ((n, 2d) = (3, 6), (4, 4)) the general conjecture
is that these two cones do not differ very much. This conjecture is supported by the
following two facts: Firstly, the maximal dimensional difference between exposed faces of
the cone of nonnegative polynomials and sums of squares is one (see [7]). Secondly, all
extreme rays of the dual sums of squares cone Σ∗

3,6 have rank one or rank seven (see [4]).
Recently, in [6], it is shown that, except the discriminant, there is a unique component

of the algebraic boundary of Σ3,6 with degree 83200, which indicates the complicated
structure of the SOS cone. But still, the geometry and the relationship between these two
cones in the smallest cases are less understood.

In the smallest cases (n, 2d) = (3, 6) and (n, 2d) = (4, 4), Blekherman shows that
it is precisely the Cayley-Bacharach relation that prevents sums of squares from filling
out the cone of nonnegative polynomials. More precisely, in [4], it is shown that every
separating extreme ray in the dual SOS cone for a given nonnegative polynomial that is
not a sum of squares depends on an 9-point configuration for (n, 2d) = (3, 6) resp. an
8-point configuration for (n, 2d) = (4, 4) coming from the intersection of two qubic resp.
three quadric polynomials. Furthermore, given an appropriate 9-point (resp. 8-point)
configuration, one can write down an extreme ray of the dual SOS cone (see Theorems 2.6
and 2.7) corresponding to faces of maximal dimension of the SOS cone. In [5], Blekherman
extends the investigation of the extreme rays of the dual sums of squares cones, especially
for ternary forms.

A central problem in this area is how to determine the separating inequalities efficiently.
This can always be done in a numerical way (see Section 2.2), but is widely open for
exact methods currently. Of course, symbolic results are strongly prefered – not only
since they provide algebraic certificates, which are exact. Furthermore, they can also be
connected to the whole machinery of algebraic geometry and thus be used to tackle follow-
up questions (like the semi-algebraic description of appropriate nine point configurations
for the Motzkin polynomial, which we provide here; see e.g., Figure 5). Hence, finding
constructive symbolic methods for computing these inequalities is one main research issue.
Blekherman’s result does not provide an efficient symbolic way to obtain a proper 9-point
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(resp. 8-point) configuration to solve this problem (see 2.2 for further details).
The key idea of this article is to construct a proper 9-point (resp. 8-point) configuration

out of a given initial set of points. Specifically, we investigate nonnegative polynomials p
which lie on the boundary of the cones P3,6 and P4,4 (which cover most of the explicitly
known nonnegative polynomials that are not SOS, see [3]). Our main result, Theorem 3.1,
provides a sufficient condition for using k zeros of p as a subset of a 9-point (resp. 8-point)
configuration. The idea is to fill up the set of k zeros with 9−k (resp. 8−k) points such that
a genericity and a quadratic condition based on the Cayley-Bacharach relation hold (note
that k ≤ 10 for p ∈ P3,6\Σ3,6 and p ∈ P4,4\Σ4,4; see [6, 10]). Given these conditions, which
are computationally easy to check, we can construct a separating extreme ray immediately.
This method reduces the difficulty of constructing separating extreme rays via symbolic
computation significantly. Furthermore, it yields rational certificates for rational point
configurations and even for rational varieties V(p) ⊂ Q3 resp. V(p) ⊂ Q4.

We show that for p ∈ P3,6 \ Σ3,6 and k ≥ 7 (resp. p ∈ P4,4 \ Σ4,4 and k ≥ 6) almost
every 9-point (resp. 8-point) configuration containing the seven (resp. six) zeros leads to
a certificate for a nonnegative polynomial p to be not SOS. This proves a slightly modified
version of Blekherman’s Conjecture 3.6 for many instances.

In Section 2, we review some curve theoretical issues as, e.g., the Cayley-Bacharach
relation and present Blekherman’s results on the SOS cones Σ3,6 and Σ4,4. In Section 3, we
state and prove our main Theorems 3.1 and 3.3 for ternary sextics and quaternary quartics
and discuss exactness and rationality of our methods. Section 4 deals with the special case
of polynomials with exactly seven zeros. We show that in this case our method generically
yields a separating extreme ray (Theorem 4.1), which also proves the special instances
in Blekherman’s Conjecture 3.6. Finally, we discuss the difficulties of dropping zeros in
our method in Section 5 by applying it to the Motzkin polynomial and constructing a
rational extreme ray certificate for it. Furthermore, based on the Motzkin polynomial we
investigate some geometric aspects of the set of appropriate point configurations for our
method (see Figure 5).

2. Preliminaries

2.1. Curve theoretical background

We recall some classical results from algebraic geometry. From now on we consider
every investigated polynomial to be homogeneous. We start with the Cayley-Bacharach
relation. It exists in various formulations (see [13]); we use the ones given in [4].

Lemma 2.1. Let p1, p2 ∈ C[x1, x2, x3] be two ternary cubics intersecting transversely in
nine projective points γ1, . . . , γ9. Let v1, . . . , v9 be affine representatives of γi. Then there
is a unique linear relation on the values of any ternary cubic on vi

9
∑

j=1

ujf(vj) = 0 for all ternary cubics f (2.1)
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with nonzero uj ∈ C. Furthermore, if (2.1) is satisfied, then the following genericity
condition holds

no four of the vi lie on a line and no seven on a quadric. (2.2)

Analogously, we have for quaternary quadrics

Lemma 2.2. Let p1, p2, p3 ∈ C[x1, . . . , x4] be three quaternary quadrics intersecting trans-
versely in eight projective points γ1, . . . , γ8. Let v1, . . . , v8 be affine representatives of γi.
Then there is a unique linear relation on the values of any quaternary quadric on vi

8
∑

j=1

ujf(vj) = 0 for all quaternary quadrics f (2.3)

with nonzero uj ∈ C. Furthermore, if (2.3) is satisfied, then the following genericity
condition holds

no five of the vi lie on a plane (i.e., a projective linear 2-space). (2.4)

For the genericity condition (2.4) see e.g. [14]. Note that, if all points vj are real,
then all Cayley-Bacharach coefficients uj are real, too (see e.g. [4, Lemma 4.1]) and can
be computed by solving a system of linear equations with the coefficients of forms in H3,3

resp. H4,2 as variables.
Each of the conditions (2.2) and (2.4) can be checked easily by investigating the minors

of the matrix given by the vectors vj .

For the description of separating extreme rays of Σ∗
3,6 yielded by Blekherman’s Theorem

2.6 one needs to investigate 9-point configurations given as the intersection of two coprime
ternary cubics. The following lemma shows that coprimality is the case generically (see
[23]).

Lemma 2.3. Suppose A := {v1, . . . , v8} is a set of eight distinct points in R3, no four
on a line and no seven on a quadric and let f1, f2 be a basis for the vector space of all
homogeneous cubics with projective variety affinely represented by A. Then f1 and f2 are
relatively prime.

This lemma yields that one can apply Bezout’s theorem in order to compute a ninth
intersection point v9 of f1 and f2. However, v9 might not be different from v1, . . . , v8 (i.e.
the intersection multiplicity might be greater than 1). But, again, generically this will
not be the case as the following lemma shows (see [19]).

Lemma 2.4. Let f1, f2 be two homogeneous polynomials in n variables (with n ≥ 2)
of degree d and generic coefficients. The discriminant ∆(f1, f2) vanishes if and only if
f1(x) = f2(x) = 0 has a singular solution. The set of polynomials for which this is the
case is a hypersurface.
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In Section 4 we will investigate the special case of polynomials p ∈ P3,6 \ Σ3,6 with
exactly seven zeros. In this context we use the following lemma (see [23]).

Lemma 2.5. Suppose A is a set of seven distinct points in R3, no four on a line and no
seven on a quadric with basis f1, f2, f3 for the vector space of homogeneous cubics with
projective variety affinely represented by A. Then f1, f2, f3 have no common zeros outside
of A.

2.2. Blekherman’s results

In [4], Blekherman was able to fully characterize the extreme rays of the dual SOS
cones Σ∗

3,6 and Σ∗
4,4, basically via the Cayley-Bacharach relation. We recall his main result,

concentrating on ternary sextics.

Theorem 2.6 (Blekherman [4]). Suppose that a ternary sextic p is nonnegative but not a
sum of squares. Then there exist two real cubics q1, q2 ∈ H3,3 intersecting transversely in
9 projective points γ1, . . . , γ9 which yield a certificate for p ∈ P3,6 \ Σ3,6. More precisely,
let v1, . . . , v9 be affine representatives of γ1, . . . , γ9. Then there exists a linear functional
l : H3,6 → R given by

l(f) =
9

∑

i=1

aif(vi)

for some ai ∈ C such that l(p) < 0 and l(Σ3,6) ≥ 0. Furthermore, at most two of the
points γi are complex.

This theorem works the same way for p ∈ P4,4 \ Σ4,4 (see [4]).

Recall that for every l ∈ Σ∗
3,6 there is a corresponding quadratic for Ql defined by

Ql : H3,3 → R, f 7→ l(f 2) (see e.g. [4, 16]). One defines the rank of a linear functional
l ∈ Σ∗

3,6 by rank(l) := rank(Ql). In [4] it is shown that every extreme ray of Σ∗
3,6, which

does not correspond to point evaluation (i.e., a rank 1 form), is given by a rank 7 form
which comes from a 9-point evaluation.

Theorem 2.7 (Blekherman [4]). Suppose l spans an extreme ray of Σ∗
3,6, which does not

correspond to a point evaluation. Let Wl be the kernel of the corresponding quadratic form
Ql and suppose q1, q2 ∈ Wl intersect transversely in 9 real projective points γ1, . . . , γ9 with
affine representatives v1, . . . , v9 such that the unique Cayley-Bacharach relation is given
by

u1f(v1) + · · ·+ u9f(v9) = 0 for f ∈ H3,3.

Then Ql can be uniquely written as

Ql(f) = a1f(v1)
2 + · · ·+ a9f(v9)

2
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with exactly one single negative coefficient ak and the rest of the ai being strictly positive
and ak is given by

ak =
−u2

k

u2

1

a1
+ · · ·+

u2

9

a9
−

u2

k

ak

. (2.5)

Furthermore, any such form is extreme in Σ∗
3,6.

Again, an analogue version for p ∈ P4,4 \ Σ4,4 holds (see [4]).

Suppose p ∈ P3,6 \ Σ3,6 and we want to construct a separating extreme ray l for p
using the upper theorem. Therefore, we need to find two coprime ternary cubics q1, q2
intersecting in 9 points. But, q1, q2 need to be contained in the kernel Wl of the quadratic
form Ql corresponding to l. Hence, one already needs to know l in advance to determine
q1, q2.

This problem can be avoided by choosing a 9-point configuration A = {v1, . . . , v9}
coming from an intersection of two real ternary cubics q1, q2. So, a separating extreme ray
l is obtained by finding an appropriate a = (a1, . . . , a9) satisfying (2.5) with respect to A
such that la(p) < 0. The question whether such an a exists is unclear a priori though it
can be answered by quantifier elimination methods (see, e.g., [1, 8]). But, to the best of
our knowledge, no methods are known to compute an appropriate a in a symbolic, exact
way efficiently.

However, one can solve this problem numerically. Let p ∈ P3,6\Σ3,6 be a ternary sextic

and r ∈ int
(

Σ3,6

)

(e.g., r = x6 + y6 + z6 or r = (x2 + y2 + z2)3). Consider the following
semidefinite optimization problem.

min
λ∈R

λ such that p+ λr ∈ Σ3,6.

For λ minimal the polynomial p + λr is strictly positive and lies on the boundary of
Σ3,6. Hence, p+ λr is a sum of exactly three squares s21 + s22 + s23 (see [4]).

The polynomials s1, s2, s3 have no common zeros and an appropriate linear combina-
tion of two of these polynomials can be used as q1 and q2 in Blekherman’s theorem (see [4,
Corollary 2.3]). Of course, the computation of the corresponding nine intersection points
will be difficult and not exact, too. Furthermore, getting “nice” values (e.g., a rational
minimal λ) depends also highly on the choice of the polynomial r ∈ int

(

Σ3,6

)

. It is not
clear how to choose r in dependence of p.

In the case p ∈ P4,4 \ Σ4,4 this approach works the same way. For λ minimal the
polynomial p + λr is a sum of exactly four squares p + λr = s21 + s22 + s23 + s24. Three of
these four sj have a common zero (see [4]).

3. A certificate for boundary polynomials not to be SOS

Our approach to construct a separating extreme ray for a given boundary polynomial
p ∈ ∂P3,6 \Σ3,6 is to investigate certain point sets A := {v1, . . . , v9} containing the variety
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V(p), satisfying the genericity condition (2.2) and for which we can certify that there are
coprime polynomials q1, q2 ∈ H3,3 with V(q1) ∩ V(q2) = A.

Note that, if we talk about zeros of homogeneous polynomials in this and the following
sections, then we always consider their affine representatives with slight abuse of notation.

The easiest case is when p has at least eight zeros v1, . . . , v8 (satisfying (2.2)). Lemma
2.3 provides the existence of coprime q1, q2 vanishing on v1, . . . , v8 and thus a ninth point
v9 is given by Bezout’s Theorem. For a generic set of zeros v1, . . . , v8 the corresponding
coprime polynomials q1, q2 have generic coefficients and hence, due to Lemma 2.4, we
have v9 /∈ {v1, . . . , v8} generically. Thus, A := {v1, . . . , v9} satisfies (2.2) generically. This
yields a certificate l immediately since for any choice of a1, . . . , a8 we obtain an a9 < 0 by
(2.5) and hence

l(p) =

9
∑

j=1

ajp(vj) = a9p(v9) < 0.

In the following we generalize this idea to any number of zeros between one and
eight. We choose the zeros v1, . . . , vk of a polynomial p ∈ ∂P3,6 \Σ3,6 as a subset of the
nine intersection points A := {v1, . . . , v9} of two coprime ternary cubics. We provide a
symbolic method based on genericity conditions, which yields a separating extreme ray
if one finds a (9 − k)-point configuration satisfying some quadratic relation. Specifically,
the following theorem holds.

Theorem 3.1. Let p ∈ ∂P3,6 such that p is not SOS. Let A := {v1, . . . , v9} ⊂ R3 such
that the genericity condition (2.2) holds and V(p) = {v1, . . . , vk} with 1 ≤ k ≤ 8 (i.e.: the
projectivization of A is the intersection of two coprime polynomials q1, q2 ∈ H3,3). Then
one can compute a certificate la : H3,6 → R, f 7→

∑9
j=1 ajf(vj), a := (a1, . . . , a9) ∈ R9

with respect to A for p to be not SOS, if the following inequality holds

(u2
k+1 + · · ·+ u2

8)(p(vk+1) + · · ·+ p(v8)) < u2
9p(v9). (3.1)

Here the uj are given by the unique Cayley-Bacharach relation on A and la is an extreme
ray of Σ∗

3,6.

Note that the Cayley-Bacharach coefficients uj can be computed by solving a system
of linear equations (see exemplarily in Section 5). Additionally, all uj are rational, if every
point in A is rational. Note furthermore that, for an arbitrary p, it is not clear whether
an A with V(p) ⊂ A satisfying (3.1) does always exist. We discuss certain special cases
in the two following sections.

Proof. Let p ∈ ∂P3,6 with V(p) = {v1, . . . , vk}, 1 ≤ k ≤ 8 such that the genericity condi-
tion (2.2) holds for V(p). We choose points vk+1, . . . , v8 such that (2.2) is still satisfied. We
obtain v9 as the intersection of two relatively prime, cubic polynomials spanning the vector
space of all ternary cubics vanishing on v1, . . . , v8 (see Lemma 2.3). Notice that, generi-
cally, we obtain v9 /∈ {v1, . . . , v8} due to Lemma 2.4 and v9 has to be real since v1, . . . , v9

7



is the intersection of two real polynomials (see, e.g., [23]). Let u1, . . . , u9 be the unique
Cayley-Bacharach coefficients for v1, . . . , v9 in the sense of (2.1). Since v1, . . . , v9 ∈ R3 we
have u1, . . . , u9 ∈ R (see [4, Lemma 4.1]).

By Theorem 2.7 every vector a := (a1, . . . , a9) ∈ R9 satisfying (2.5) with a1, . . . , a8 > 0,
a9 < 0 yields an extreme ray la : H3,6 → R, f 7→

∑9
j=1 ajf(vj) of the dual SOS cone Σ∗

3,6.
la is the dual of a separating hyperplane for p if la(p) < 0, i.e., since V(p) = {v1, . . . , vk},
if ak+1p(vk+1) + · · ·+ a9p(v9) < 0. By (2.5) this is equivalent to

ak+1p(vk+1) + · · · −
u2
9

u2

1

a1
+ · · ·+

u2

8

a8

p(v9) < 0

⇔ (ak+1p(vk+1) + · · ·+ a8p(v8)) ·

(

u2
1

a1
+ · · ·+

u2
8

a8

)

< u2
9p(v9).

Let λa1,...,ak :=
∑k

j=1

u2

j

aj
· (ak+1p(vk+1) + · · ·+ a8p(v8)) > 0. Thus, la(p) < 0, if

λa1,...,ak +

8
∑

j=k+1

p(vj)



u2
j +

∑

i∈{k+1,...,8} \{j}

aju
2
i

ai



 < u2
9p(v9).

We choose ak+1 := 1, . . . , a8 := 1 and obtain

λa1,...,ak + (u2
k+1 + · · ·+ u2

8)(p(vk+1) + · · ·+ p(v8)) < u2
9p(v9).

Since lima1,...,ak→∞ λa1,...,ak ց 0 the relaxation (3.1) yields an extreme ray la on A sepa-
rating p from the SOS cone Σ3,6.

If on the other hand any SOS polynomial g ∈ Σ3,6 with V(g) = V(p) would satisfy
(3.1), then it follows from the upper construction that la(g) < 0 for a1, . . . , ak sufficiently
large, ak+1, . . . , a8 = 1 and a9 given by (2.5). This is a contradiction to Blekherman’s
Theorems 2.6 and 2.7. Thus, (3.1) is indeed a certificate for p to be not SOS.

Note that it is also easy to show that condition (3.1) is never satisfied for SOS polyno-
mials g ∈ Σ3,6 with V(g) = V(p) in order to prove extremality of la by direct calculation
and without usage of Blekherman’s Theorems. This follows already from g =

∑r

j=1 h
2
i

and the Cayley-Bacharach relations.

In order to prove an analogon of the above theorem for P4,4 \ Σ4,4, we need to show
that Lemma 2.3 also holds for a seven point set A := {v1, . . . , v7} ⊂ R4. Generically, the
vector space of all quadrics vanishing on A has dimension three (see [12]).

Lemma 3.2. Suppose A := {v1, . . . , v7} is a set of seven distinct points in R4, no four
on a plane such that q1, q2, q3 is a basis for the vector space of all homogeneous quadrics
with projective variety affinely represented by A. Then q1, q2, q3 are relatively prime.
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Proof. Suppose q1, q2, q3 have a common factor g. Then qj = g · q′j for j ∈ {1, 2, 3} and
g, q′j have to be linear in R[x1, . . . , x4]. Due to the genericity condition at most three
zeros (w.l.o.g. v1, v2, v3) are located on V(g) since otherwise there would exist at least five
points are contained in a plane. Hence, V(q′1),V(q

′
2) and V(q′3) share four points, which is

a contradiction since for each j all points in V(q′j) are contained in a line.

Theorem 3.3. Let p ∈ ∂P4,4 such that p is not SOS. Let A := {v1, . . . , v8} ⊂ R4 such
that the genericity condition (2.4) holds and V(p) = {v1, . . . , vk} with 1 ≤ k ≤ 7 (i.e.:
the projectivization of A is the intersection of three coprime polynomials q1, q2, q3 ∈ H4,2).
Then there exists a certificate la : H4,4 → R, f 7→

∑8
j=1 ajf(vj), a := (a1, . . . , a8) ∈ R8

with respect to A for p to be not SOS, if the following inequality holds

(u2
k+1 + · · ·+ u2

7)(p(vk+1) + · · ·+ p(v7)) < u2
8p(v8). (3.2)

Here the uj are given by the unique Cayley-Bacharach relation on A and la is an extreme
ray of Σ∗

4,4.

The proof works the same way as for Theorem 3.1 with the obvious modifications.
In fact, the proof of Theorem 3.1 already shows one possible way how to choose

a = (a1, . . . , a9) ∈ R9 to obtain a separating extreme ray la.

Corollary 3.4. For p ∈ ∂P3,6 \ Σ3,6 and A = {v1, . . . , v9} ⊃ V(p) with (3.1) satisfied,
one valid certificate is given by a1 = · · · = ak = N ∈ R (for N sufficiently large), ak+1 =
· · · = a8 = 1 and a9 given by (2.5). For p ∈ ∂P4,4 \Σ4,4 and A = {v1, . . . , v8} ⊃ V(p) with
(3.2) satisfied, one valid certificate is given by a1 = · · · = ak = N ∈ R (for N sufficiently
large), ak+1 = · · · = a7 = 1 and a8 given by the analogon of (2.5) for Σ∗

4,4 (see [4]).
In particular, la is a rational certificate, i.e., every aj is rational, if every point vj ∈ A

is rational.
�

If one is interested in computing rational certificates, then, from an application view-
point, there is the following problem. Suppose, we have a rational variety V(p) =
{v1, . . . , vk} and we choose vk+1, . . . , v8 ∈ Q3 (resp. vk+1, . . . , v7 ∈ Q4) such that the
genericity condition (2.2) (resp. (2.4)) holds (which is always possible). Then it is not
clear a priori that the ninth intersection point v9 ∈ R3 (resp. eighth intersection point
v8 ∈ R4), given by Bezout, is rational, too.

By results in [20] and [21], for p ∈ P3,6 \Σ3,6 (resp. p ∈ P4,4 \Σ4,4), the ninth (resp.
eighth) intersection point can always be computed exactly. In particular, it can be deduced
that this last point will always be rational whenever the remaining points are rational and
hence, whenever V(p) is rational.

Corollary 3.5. Let p ∈ ∂P3,6 \ Σ3,6 with V(p) = {v1, . . . , vk} ⊂ Q3 and {vk+1, . . . , v8} ⊂
Q3 such that (2.2) holds. Then there is a rational certificate la on A = {v1, . . . , v9} with
v9 given by Bezout, whenever (3.1) holds.
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Obviously, an analogous result also holds in the case (n, 2d) = (4, 4).

Note that in our Theorems 3.1 and 3.3 we only consider real points v1, . . . , v9, whereas
in Blekherman’s Theorem 2.6 (at most) one pair of complex conjugated points are allowed.
However, in [4], Blekherman states the following conjecture

Conjecture 3.6. Every extreme ray l ∈ Σ∗
3,6, which is not a point evaluation, is given by

two ternary cubics intersecting in only real points. Analogously, for l ∈ Σ∗
4,4.

Based on our results, we formulate a slightly modified conjecture here.

Conjecture 3.7. For p ∈ P3,6 \ Σ3,6 there exist v1, . . . , v9 ∈ R3 yielding a separating
extreme ray for p in the sense of Theorem 2.6. Analogously, for p ∈ P4,4 \ Σ4,4.

Clearly, Conjecture 3.6 implies Conjecture 3.7, since if every extreme ray is real rep-
resentable, every nonnegative polynomial that is not SOS can be separated by a real
intersection. It is unclear whether the two conjectures are indeed equivalent, however, we
strongly suppose it.

4. The seven point case

Let p ∈ P3,6 \Σ3,6 and assume we are interested in finding a separating extreme ray la
in Σ∗

3,6 for p. That means we need to find a generic 9-point set A being the intersection
of two coprime polynomials q1, q2 ∈ H3,3 such that the conditions in Theorem 2.6 hold. If
p is located on the boundary of P3,6, i.e., V(p) = {v1, . . . , vk} 6= ∅, then Theorem 3.1 and
Corollary 3.4 yield a certificate la whenever one can fill up V(p) with points vk+1, . . . , v9
such that condition (3.1) is satisfied.

However, it is not obvious a priori if and how points vk+1, . . . , v9 can be chosen such
that the sufficient condition (3.1) of Theorem 3.1 holds (note that v9 is always given by
Bezout in this approach). It turns out that for k = 7, i.e., the easiest non-trivial case,
the problem of choosing an appropriate v8 is easy, since almost every point v8 yields a
point v9 such that (3.1) is satisfied. Note that for p ∈ ∂P3,6 \Σ3,6 the variety V(p) always
satisfies the genericity condition (2.2) (see [23]).

One reason why this case is of special interest is that k = 7 with v1, . . . , v7 satisfying
the genericity condition (2.2) is the smallest number of zeros of a nonnegative polynomial
such that the dimensional difference between exposed faces of P3,6 and Σ3,6 given by the
vanishing of polynomials on these zeros is strictly positive (see [7]). In particular, by
results in [7], this implies that for every generic configuration of at least seven points, one
can always construct nonnegative polynomials that are not sums of squares vanishing at
these points.
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Theorem 4.1. Let p ∈ ∂P3,6 \ Σ3,6. Let A := {v1, . . . , v9} ⊂ R3 such that the genericity
condition (2.2) holds and V(p) = {v1, . . . , v7}. Then there exists a certificate la : H3,6 →
R, f 7→

∑9
j=1 ajf(vj), aj ∈ R with respect to A for p to be not SOS if

u2
8p(v8) 6= u2

9p(v9). (4.1)

Furthermore, la is an extreme ray of Σ∗
3,6.

Theorem 4.1 holds analogously in the case of p ∈ P4,4\Σ4,4 and k = 6 with the obvious
modifications. We omit to formulate the result for this case separately.

Proof. We choose v8 such that the genericity condition (2.2) still holds for {v1, . . . , v8}
and obtain a real v9 /∈ {v1, . . . , v8} such that (2.2) and Cayley-Bacharach hold for A
generically (see proof of Theorem 3.1). Since all conditions of Theorem 3.1 are satisfied,
there is a certificate l if u2

8p(v8) < u2
9p(v9). But since {v1, . . . , v7, v9} also yields A with

Bezout’s theorem, this condition holds w.l.o.g. as long as u2
8p(v8) 6= u2

9p(v9).

A nice consequence of this theorem is that it immediately verifies Conjecture 3.7 for
special instances.

Corollary 4.2. Conjecture 3.7 holds for p ∈ ∂P3,6 \ Σ3,6 with #V(p) ≥ 7 and p ∈
∂P4,4 \ Σ4,4 with #V(p) ≥ 6. Furthermore, Conjecture 3.7 also holds for every exposed
extremal form in P3,6 \ Σ3,6.

Proof. The first part immediately follows from Theorem 4.1. Furthermore, in [6], it is
shown that every exposed extremal form in P3,6 \Σ3,6 has exactly ten zeros. By choosing
seven of them, the results follow.

Let p ∈ P3,6 such that p is not SOS with V(p) = {v1, . . . , vk} ⊂ R3. Assume that we
want to test for a large amount of point sets {vk+1, . . . , v8} in R3 if (3.1) can be satisfied
for each point set (under the condition that (2.2) holds for v1, . . . , v8). We have to do
two steps. Firstly, we have to compute v9 by calculating two coprime polynomials q1, q2
vanishing on {v1, . . . , v8} via solving a system of linear equations on the coefficients of a
ternary cubic and then calculate their Gröbner basis. If we are in the case (n, 2d) = (3, 6),
then this can also be done by using the formula given in [21]. Secondly, we have to
compute the Cayley-Bacharach relation on A := {v1, . . . , v9} via solving a system of
linear equations again.

In the seven point case, i.e. if we want to check (4.1) for a large amount of point sets,
we can avoid calculating the Cayley-Bacharach relation for each {v8, v9} if we are not
interested in computing the separating hyperplane given by la explicitly. The trick is to
use Reznick’s Lemma 2.5. Let V (V(p)) := {h ∈ H3,3 : V(p) ⊆ V(h)} be the vector space
of all real ternary cubics vanishing on V(p). By Lemma 2.5 there is a basis {h1, h2, h3}
of V (V(p)) such that V(h1) ∩ V(h2) ∩ V(h3) = V(p) and h1, h2, h3 do not depend on the
choice of v8 and v9.
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Corollary 4.3. Let p and A be as in Theorem 4.1. Let h ∈ V (V(p)) with V(h) = V(p).
Then there exists a certificate la : H3,6 → R, f 7→

∑9
j=1 ajf(vj), aj ∈ R with respect to A

for p to be not SOS if

h2(v9)p(v8) 6= h2(v8)p(v9).

Furthermore, la is an extreme ray of Σ∗
3,6.

Proof. By Lemma 2.5 there is a h ∈ V (V(p)) with V(h) = V(p). Since A satisfies (2.2)
and h ∈ H3,3 the Cayley-Bacharach relation (2.1) holds for h. Since V(h) = V(p) =
{v1, . . . , v7} this means u8h(v8) + u9h(v9) = 0 and thus u2

8h
2(v8) = u2

9h
2(v9). Hence,

u2
8p(v8) 6= u2

9p(v9) ⇔ h2(v9)p(v8) 6= h2(v8)p(v9).

The assertion follows with Theorem 4.1.

If we want to compute a specific la, then the approach of Corollary 4.3 does not suffice,
since, by (2.5), we need to know the coefficients uj of the Cayley-Bacharach relation (2.1)
on A to compute the scalar a9 for la.

5. An application: the Motzkin polynomial

In this section we demonstrate applications of our method. It turns out that finding
a separating extreme ray becomes more difficult for polynomials in p ∈ ∂P3,6 \ Σ3,6 with
six or less zeros. The condition (3.1) provides more degrees of freedom and, in particular,
the left hand side of this inequality has more than one summand. This fact yields that
the set of point configurations A := {v1, . . . , v9} ⊂ R3 with V(p) ⊂ A which do not satisfy
(3.1) will not be a lower dimensional subset in general – in contrast to the seven point
case (independently from which point corresponds to the negative entry a9 in an extreme
ray). The same difficulties arise for p ∈ P4,4 \ Σ4,4 with five or less zeros.

As an example, we investigate the Motzkin polynomial

m(x, y, z) = x4y2 + x2y4 − 3x2y2z2 + z6.

The Motzkin polynomial has six zeros

v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (1, 1, 1),
v4 := (−1, 1, 1), v5 := (1,−1, 1), v6 := (1, 1,−1).

As a first instance we choose v7 := (0, 4, 1) and v8 := (4, 0, 1). These eight points satisfy
the genericity condition (2.2). This can be checked by looking at the (3 × 3)-minors of
the (8 × 3)-matrix given by the coordinates (x, y, z) of the points v1, . . . , v8 and looking
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at the (6× 6)-minors of the (8× 6)-matrix given by the coordinates (x2, y2, z2, xy, xz, yz)
of the points v1, . . . , v8. Hence we can compute two coprime ternary cubics

q1 = −16z3 + 15x2z + y2z + 56y2x− 56z2x

q2 = −4z3 − x2y + 4x2z + 15y2x− 15z2x+ z2y

vanishing on v1, . . . , v8 by solving the system of linear equations

h(v1) = 0, . . . , h(v8) = 0

on the coefficients of h. Here,

h := b1x
3 + b2y

3 + b3z
3 + b4x

2y + b5x
2z + b6y

2z + b7y
2x+ b8z

2x+ b9z
2y + b10xyz

We compute the Gröbner basis

{7z − 26z2 − 15z3 + 26z4 + 8z5,−2z + 8z2 + 2z3 − 105y − 8z4 + 105z2y,

8z4 − 422z3 + 1575y2 − 1583z2 + 422z, x − 1}

of q1, q2 and x−1 with lexicographic ordering. We obtain v9 = (1, 1,−7/2) and compute
the Cayley-Bacharach coefficients uj by solving the system of linear equations

u1h(v1) + · · ·+ u9h(v9) = 0

in u1, . . . , u9. The solution is (up to scalar multiplication)

u =

(

−64,−64,−
40

9
,−4,−4,

24

5
, 1, 1,

118098

5

)T

We have

(u2
7 + u2

8) · (m(v7) +m(v8)) = 4,

u2
9m(v9) = 228.

Hence, the condition (3.1) of Theorem 3.1 is satisfied and we find a separating hyper-
plane for m on A. According to Corollary 3.4, we choose a1, . . . , a6 := 100 and a7, a8 := 1.
By (2.5) we obtain

a9 =
−u2

9

u2

1

a1
+ · · ·+

u2

8

a8

=
−14121476824050

2143157
.

We check the correctness of our result by

la(m) = a1m(v1) + · · ·+ a9m(v9)

= m(0, 4, 1) +m(4, 0, 1)−
14121476824050

2143157
·m

(

1, 1,−
7

2

)

= −
1484936

2143157
< 0.
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Thus, by Blekherman’s Theorem 2.7, la is a (rational) extreme ray of Σ∗
3,6 separating the

Motzkin polynomial m from the SOS cone.

In contrast to the seven point case, not every generic point configuration yields a
separating certificate. For example, with the same approach it is easy to show that the
instance v7 := (2/7, 2/3, 1) and v8 := (2/3, 2/7, 1) does not satisfy the condition (3.1).

We show that for a symmetric choice of v7, v8, i.e., v7 = (q, s, 1), v8 = (s, q, 1) with
q, s ∈ R, the set

S := {(q, s) ∈ R2 : (u2
7 + u2

8) · (m(v7) +m(v8)) < u2
9m(v9)}

yieding a 9-point configuration, which satisfies (3.1) is full dimensional with some nice
geometric structure (see Figure (5)).

With the formula in [21] we obtain the ninth Cayley-Bacharach point

v9 =
1

n(q, s)
·





q3s+ 2q2s2 − q2 + s3q − 2sq − s2

q3s+ 2q2s2 − q2 + s3q − 2sq − s2

q3 + q2s− 2q + s2q − 2s + s3



 ,

where

n(q, s) = 12 · (q3s2 − 2q3s+ q3 + s3q2 − 2q2s2 + q2s− 3q + 4sq − 2s3q + s2q + 2− 3s+ s3)

vanishing at q = −2 − s, q = 1, s = 1. Furthermore we obtain a non-generic point set
for q = s, q = −s, q = −1, s = −1 and q = 2 − s. We compute the Cayley-Bacharach
coefficients in dependence of q, s and obtain

(u2

7 + u2

8) · (m(v7) +m(v8)) =
64(1 + s4q2 + q4s2 − 3q2s2)

(q − s)4

u2

9m(v9) =
16(2q4s2 + q4 + 4s3q3 − 4q3s+ 2s4q2 − 6q2s2 − 2q2 − 4s3q + 4sq + s4 − 2s2 + 4)

(q − s)4
.

Note that the numerator of (u2
7 + u2

8) · (m(v7) + m(v8)) is exactly the dehomogenized
Motzkin polynomial in s, q for z = 1. We set

K(q, s)/L(q, s) := (u2
7 + u2

8) · (m(v7) +m(v8))− u2
9m(v9)

= 16(2q2s2 − q2 + 2sq − s2 + 2)/(q − s)2.

Since q 6= s by assumption we just need to investigate K(q, s). Thus, by (3.1) we have
(q, s) ∈ S if and only if K(q, s) < 0 and q /∈ {±s,±1,±2− s}. Equivalently, S = ∅ if and
only if K(q, s) is PSD and q /∈ {±s,±1,±2 − s}. Since K(q, s) is a bivariate polynomial
of degree 4, K(q, s) is PSD if only if it is SOS. It can be checked easily that this is not
the case.

We provide a plot of the set S := {(q, s) : K(q, s) < 0}\{(q, s) : q = 2−s or q = −2−s}
in Figure 1 one Page 15 (note that the other non-generic cases are not part of S although
they are relevant for the computation). Obviously, this set is symmetric in q = s and
q = −s, semi-algebraic and for every q there is an s such that (q, s) ∈ S.
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Figure 1: The set S := {(q, s) : K(q, s) < 0} \ {(q, s) : q = 2− s or q = −2− s} is given by the red (dark)
area without the diagonal blue (dark) lines.

Due to the rich geometric structure of S, it would be of interest to investigate the geo-
metric structure of the set of appropriate point configurations satisfying (3.1) for general
nonnegative polynomials with k zeros.

In contrast, we briefly demonstrate the numerical method for finding a 9-point cer-
tificate given in Section 2.2 and the corresponding problems. Let r = (x2 + y2 + z2)3 ∈
int(Σ3,6). Then, consider the following semidefinite optimization problem

min
λ∈R

λ such that m+ λ(x2 + y2 + z2)3 ∈ Σ3,6.

The optimal λ is given numerically by λ ≈ 0.004596411406567 and the corresponding sum
of squares decomposition of m+ λr ≈ s21 + s22 + s23 is given by

m+ λ(x2 + y2 + z2)3 ≈ (−0.858558xz2 + 0.941354xy2 + 0.067796x3)2+

(−0.858558yz2 + 0.067796y3 + 0.941354x2y)2 + (−1.002295z3 + 0.360838y2z + 0.360838x2z)2.

Now, one has to choose an appropriate linear combination of two of the polynomials
si to obtain the nine intersection points. But it seems unclear how to do this. E.g., since
the coefficients of the si are given numerically, computing the Gröbner basis of two of the
si and, say, x− 1 cannot be expected to work properly.

Finally, we remark that our method allows to generate strictly positive polynomials
that are not sums of squares including a certificate without optimization, if (3.1) is satisfied
for a polynomial p ∈ ∂P3,6\Σ3,6 (resp. for (n, 2d) = (4, 4)). Let la be a separating extreme
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ray for p and define n := p + λ · r with λ ∈ R>0 and r ∈ int(Σ3,6) (resp. r ∈ int(Σ4,4)).
Then n is strictly positive and evaluating n on la yields

la(n) = la(p) + λ · la(r)

with la(p) < 0 and la(r) > 0. Hence, we can immediately solve for λ such that la(n) < 0.
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Appendix A. An example for the seven point case

As an example of our method we investigate the polynomial

p := x2y2(x− y)2 + y2z2(y − z)2 + z2x2(z − x)2 + xyz(x− y)(y − z)(z − x),

given by Reznick in [23]. It has the seven zeros

v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (0, 0, 1), v4 := (1, 1, 0)
v5 := (1, 0, 1), v6 := (0, 1, 1), v7 := (1, 1, 1).

We choose v8 := (−2, 5,−1) which satisfies (2.2). We obtain a ninth intersection point
v9 = (3, 10, 1) by the formula in [21] and compute the Cayley-Bacharach coefficients.
According to Corollary 3.4 we choose a1, . . . , a7 := 109 and a8 := 1. By (2.5) we obtain

a9 =
−u29

u2

1

a1
+ · · ·+

u2

8

a8

=
−109

842 + (−1260)2 + (−36)2 + (−90)2 + 632 + 352 + (−60)2 + 9 · 109

= −
500000000

4500806423
.

We check correctness of our result by

la(p) = a1p(v1) + · · ·+ a9p(v9) = p(−2, 5,−1)−
500000000

4500806423
· p(3, 10, 1)

= −
471957277321

5626008028750
< 0.
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