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Abstract

We consider Conway polynomials of two-bridge links as Euler continuant polynomi-
als. As a consequence, we obtain new and elementary proofs of classical Murasugi’s
1958 alternating theorem and Hartley’s 1979 trapezoidal theorem. We give a modulo
2 congruence for links, which implies the classical Murasugi’s 1971 congruence for
knots. We also give sharp bounds for the coefficients of Euler continuants and deduce
bounds for the Alexander polynomials of two-bridge links. These bounds improve
and generalize those of Nakanishi-Suketa’96. We easily obtain some bounds for the
roots of the Alexander polynomials of two-bridge links. This is a partial answer to
Hoste’s conjecture on the roots of Alexander polynomials of alternating knots.

Keywords: Euler continuant polynomial, two-bridge link, Conway polynomial,
Alexander polynomial
2010 MSC: 57M25, 11C08

1. Introduction

In this paper, we consider the Conway polynomial of a two-bridge link as an
Euler continuant polynomial. We study the problem of determining whether a given
polynomial is the Conway polynomial of a two-bridge link (or knot), or equivalently, if
it is an Euler continuant polynomial. For small degrees, this problem can be solved by
an exhaustive search of possible two-bridge links. Here, we give necessary conditions
on the coefficients of the polynomial, which can be tested for high degree polynomials.

In section 2 we present Euler continuant polynomials and give some properties of
their coefficients. We show their relations with the Fibonacci polynomials fk defined
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by:
f0 = 0, f1 = 1, fn+2(z) = zfn+1(z) + fn(z).

In section 3, we recall the definitions of two-bridge links and we present the description
of the Conway polynomial of a two-bridge link as an extended Euler continuant poly-
nomial. We obtain a characterization of modulo 2 two-bridged Conway polynomials.

Theorem 3.5. Let ∇(z) ∈ Z[z] be the Conway polynomial of a two-bridge link (or
knot). There exists a Fibonacci polynomial fD(z) such that ∇(z) ≡ fD(z) (mod 2).

We give a simple method (Algorithm 3.6) that determines the integer D such that
∇(z) ≡ fD(z) (mod 2). This is used to test when ∇(z) ≡ 1 (mod 2), which is a
necessary condition to be a two-bridge Lissajous knot.

In section 4, we find inequalities for the coefficients of the Conway polynomials of
two-bridge links denoted by

∇m(z) =

⌊
m
2
⌋

∑

k=0

cm−2kz
m−2k.

Theorem 4.1. For k ≥ 0,
|cm−2k| ≤

(

m−k
k

)

|cm| .
If equality holds for some integer 0 < k < ⌊m

2
⌋, then it holds for all integers 0 ≤ k ≤

⌊m
2
⌋. In this case, the link is isotopic to the link C(2, 2, . . . , 2), or to the torus link

T(2, m) = C(2,−2, . . . , (−1)m−12), up to mirror symmetry.

When |cm| 6= 1, we have the following sharper bounds:

Theorem 4.4. Let g ≥ 1 be the greatest prime divisor of cm, and let k 6= 0. Then

|cm−2k| ≤
((

m−k−1
k

)

+ 1
g
(
(

m−k−1
k−1

)

− 1)
)

|cm|+ 1.

Equality holds for C(2g, 2, . . . , 2) and C(2g,−2, 2, . . . , (−1)m−12).

In section 5, we apply our results to the Alexander polynomials. Our modulo 2
congruence of Theorem 3.5 provides a simple proof of a congruence of Murasugi
[22] for periodic knots (two-bridge knots have period two). Moreover, we deduce a
congruence for the Hosokawa polynomials of two-bridge links (Corollary 5.5). Then,
we obtain a simple proof of both the Murasugi alternating theorem [23, 21], and the
Hartley trapezoidal theorem [7] (see also [9]) using the trapezoidal property:

Theorem 4.6. Let K be a two-bridge link (or knot). Let

∇K = cm
(

⌊
m
2
⌋

∑

i=0

(−1)iαifm−2i+1

)

, α0 = 1
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be its Conway polynomial written in the Fibonacci basis. Then we have

1. αj ≥ 0, j = 0, . . . , ⌊m
2
⌋.

2. If αi = 0 for some i > 0 then αj = 0 for j ≥ i.

We conclude this section with bounds for the coefficients of the Alexander poynomial.
These bounds improve those of Nakanishi and Suketa for the Alexander polynomials
of two-bridge knots (see [24, theorems 2 and 3]). Moreover, they are sharp and hold
for any k.

We prove that the conditions on Conway coefficients are sharper than the conditions
on the Alexander coefficients deduced from them.

In section 6, we conclude our paper with the following convexity conjecture:

Conjecture 6.2. Let P (t) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n)
be the Alexander polynomial of a two-bridge knot. Then there exists an integer k ≤ n
such that (a0, . . . , ak) is convex and (ak, . . . , an) is concave.

We have verified this conjecture for all two-bridge knots with 20 crossings or fewer.

We also deduce some bounds for the roots of Alexander polynomials of two-bridge
links (or knots) from the properties of Euler continuant polynomials. This gives a
partial answer to the Hoste conjecture 6.3.

2. Extended Euler continuant polynomial

We define the extended Euler continuant polynomial Dm(b1, . . . , bm)(z) for m ≥ 1
as the determinant of the tridiagonal matrix





















b1z −1 0 . . . 0

1 b2z −1
. . .

...

0
. . .

. . . 0
...

. . .
. . . −1

0 . . . 0 1 bmz





















. (1)

If D−1 = 0 and D0 = 1, then the polynomials Di satisfy the recurrence relation

Dk = bkzDk−1 +Dk−2. (2)

When z = 1, this is the classical Euler continuant polynomial (see [14]).

When all the bi are equal to 1, we obtain the Fibonacci polynomials defined by

f0 = 0, f1 = 1, fn+2(z) = zfn+1(z) + fn(z), n ∈ Z. (3)

Let us recall some basic facts about Fibonacci polynomials.
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Lemma 2.1. For m ≥ 0:

fm+1(z) =

⌊
m
2
⌋

∑

k=0

(

m−k
k

)

zm−2k.

Proof. By induction on m. The result is clear for m = 1 and for m = 2. Let us
suppose the result true for m − 1 and m. By induction, the coefficient of zm−2k is
(

m−1−k
k

)

in zfm(z), and
(

m−1−k
k−1

)

in fm−1(z). Consequently, the coefficient of zm−2k in

fm+1(z) is

(

m−1−k
k

)

+
(

m−1−k
k−1

)

=
(

m−k
k

)

.

Remark 2.2. This means that the Fibonacci polynomials can be read on the diagonals
of Pascal’s triangle. When z = 1, we recover the classical Lucas identity

Fm =

⌊
m
2
⌋

∑

k=0

(

m−k
k

)

,

where Fm are the Fibonacci numbers (F0 = 0, F1 = 1, . . . , Fn+1 = Fn + Fn−1).

We shall need the following explicit notation for Euler continuant polynomials:

Dm(z) =

⌊
m
2
⌋

∑

k=0

cm−2k(b1, . . . , bm)z
m−2k. (4)

We obtain some properties of cm−2k(b1, . . . , bm), considered as a polynomial in the m
variables b1, . . . , bm.

Proposition 2.3. Let M be the set of all monomials
b1 · · · bm

∏k
h=1 bihbih+1

, where k 6= 0 and

ih + 1 < ih+1. Let Mj be the subset of all monomials of M that are relatively prime
to bj . Then we have

1. The polynomial cm−2k(b1, . . . , bm) is the sum of all monomials of M.

2. The set M has
(

m−k
k

)

elements.

3. The monomials of M do not have a common divisor except 1.

4. The number of elements of Mj is at least
(

m−1−k
k−1

)

.

5. If m ≥ 4, then the monomials of Mj do not have a common divisor except 1.

Proof. 1. This is a classical property of the Euler continuant (see [14]).
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2. This number is cm−2k(1, 1, . . . , 1), which is a coefficient of the Fibonacci poly-
nomial

fm+1(z) =

⌊
m
2
⌋

∑

k=0

cm−2k(1, 1, . . . , 1)z
m−2k =

⌊
m
2
⌋

∑

k=0

(

m−k
k

)

zm−2k.

3. For every integer i ≤ m, there is an element of M which is not divisible by bi.
Hence the GCD of the elements of M is 1.

4. Let 1 ≤ j ≤ m and b = (1, . . . , 1, 0, 1, . . . , 1) where bj = 0, and bk = 1 for k 6= j.
Let us define the polynomials gn, for n ≤ m by gn(z) = Dn(b)(z). The number
of elements of Mj is the coefficient cm−2k(b) of gm(z).

If j = 1, then we have g1 = 0, g2 = 1. Then, an easy induction shows that
gn = zgn−1 + gn−2 is the Fibonacci polynomial gn = fn−1.

If j > 1, then we have

g1 = f2, . . . , gj−1 = fj , gj = fj−1, and gn+1 = zgn + gn−1 if n ≥ j.

Let us write p(z) � q(z) when each coefficient of p is greater than or equal to
the corresponding coefficient of q. We have fk+2 � fk, and therefore gj+1 =
zfj−1+ fj � zfj−1+ fj−2 = fj. Then a simple induction shows that gm � fm−1,

and consequently cm−2k(b) ≥
(

m−1−k
k−1

)

.

5. Since m ≥ 4, for every i 6= j, there is a monomial which is not divisible by bi.
Consequently, the GCD of the elements of Mj is 1.

3. Conway polynomials of two-bridge links

A two-bridge knot (or link) admits a diagram in Conway’s normal form. This
form, denoted by C(a1, a2, . . . , an) where ai are integers, is explained by Figure 1 (see
[4], [18, pp. 407-408] or [23, p. 187]).

The number of twists is denoted by the integer |ai|, and the sign of ai is defined as
follows: if i is odd, then the right twist is positive, if i is even, then the right twist is
negative. In Figure 1 the ai are positive (the a1 first twists are right twists).

The two-bridge links are classified by their Schubert fractions (see [25])

α

β
= a1 +

1

a2 +
1

· · ·+ 1

an

= [a1, . . . , an], α > 0.
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a1

a2 an−1

an

a1

a2

an−1

an

Figure 1: Conway’s normal forms (n odd or even)

We shall denote by S(
α

β
) a two-bridge link with Schubert fraction

α

β
. The two-bridge

links S(
α

β
) and S(

α′

β ′
) are equivalent if and only if α = α′ and β ′ ≡ β±1(mod α).

The two-bridge link S(
α

−β
) is the mirror image of the two-bridge link S(

α

β
). The

integer α is odd for a knot, and even for a two-component link.

Example 3.1. The torus link T(2, m) = S(m) is a knot iff m is odd. We have

the continued fraction expansion of length m − 1:
m

m− 1
= [2,−2, . . . , (−1)m−22].

Consequently C(2,−2, . . . , (−1)m−22) is a diagram of the mirror-image of T(2, m)

Remark 3.2. When αβ is even, one shows (see [13, p. 26], [15, 11]) that there

is a unique continued fraction expansion
α

β
= [2b1, 2b2, . . . , 2bm], bi ∈ Z − {0}. It

means that any oriented two-bridge link can be put in the form shown in Figure 2. It
will be denoted by C(2b1, 2b2, . . . , 2 bm), including the indicated orientation. This is a
two-component link if and only if m is odd.

2b1

2b2 2bm−1

2bm

Figure 2: Oriented two-bridge links (m odd)
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The Conway polynomial ∇K(z) ∈ Z[z] is a polynomial invariant of the oriented link
K (see [5]). When K is a two-bridge link its Conway polynomial ∇m is given by the
following method (see [26] and [5, Th. 8.7.4]):

Theorem 3.3 ([26, 5]). Let us consider the oriented two-bridge link

C(2b1,−2b2, . . . , (−1)m−12bm).

Its Conway polynomial ∇m(z) is the Euler continuant polynomial Dm(b1, . . . , bm)(z).

Example 3.4 (The torus links). The Conway polynomial of the torus link T(2, m)
is the Fibonacci polynomial fm(z) (see [12, 17]).

Consequently, the following result gives in fact a characterization of modulo 2 Conway
polynomials of two-bridge links.

Theorem 3.5. Let ∇(z) ∈ Z[z] be the Conway polynomial of a two-bridge link (or
knot). There exists a Fibonacci polynomial fd(z) such that ∇(z) ≡ fd(z) (mod 2).

Proof. Let us write (a, b) ≡ (c, d) (mod2) when a ≡ c (mod 2) and b ≡ d (mod 2).
We will show by induction on m that there exist integers d and e = ±1 such that
(∇m−1,∇m) ≡ (fd−e, fd) (mod 2).

The result is true for m = 0 as (∇−1,∇0) = (0, 1) = (f0, f1), that is d = e = 1.

Suppose that (∇m−1,∇m) ≡ (fd−e, fd) (mod 2), with e = ±1 for some m ≥ 0. Then
we have ∇m+1 = bm+1z∇m +∇m−1.

If bm+1 ≡ 0 (mod 2) then∇m+1 ≡ ∇m−1 ≡ ∇d−e (mod 2) and (∇m,∇m+1) ≡ (fd, fd−e).

If bm+1 ≡ 1 (mod2) then∇m+1 ≡ zfd+fd−e ≡ fd+e (mod 2). Consequently (∇m,∇m+1) ≡
(fd, fd+e).

We thus deduce a fast algorithm for the determination of the integer d such that
∇m ≡ fd (mod 2), see also [3].

Algorithm 3.6. Let us define the sequences of integers ei and di, i = 0, . . . , m, by

e0 = 1, d0 = 1, ei+1 = −(−1)bi+1ei, di+1 = di + ei+1.

Then we have ∇m(z) ≡ fd(z) (mod 2) where d = |dm|.
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Remark 3.7. Let us consider the two-bridge linkK = C(2b1,−2b2, . . . , (−1)m−12bm).
From [28], the crossing number N of K is 2

∑m
i=1 |bi| −#{i, bibi+1 < 0} ≥ m+1. We

deduce that one computes d such that ∇K ≡ fd (mod 2) in O(N) steps. On the
other hand, the equality m = N − 1 is obtained when we consider the torus link
T(2, m+ 1) = S(m+ 1).

Jones, Przytycki, and Lamm proved that the Conway polynomial of a two-bridge
Lissajous knot satisfies the congruence ∇(z) ≡ 1 (mod 2), that is d = 1 (see [8,
19]). Using Algorithm 3.6 we deduce the number of two-bridge knots with a Conway
polynomial congruent to 1 modulo 2 (see Table 1 and compare [2]).

Crossing Number 3 4 5 6 7 8 9 10 11 12

Two-bridge 1 1 2 3 7 12 24 45 91 176

∇(z) ≡ 1 0 0 1 1 2 4 8 13 26 51

Crossing Number 13 14 15 16 17 18 19 20 21 22

Two-bridge 352 693 1387 2752 5504 10965 21931 43776 87552 174933

∇(z) ≡ 1 97 185 365 705 1369 2675 5233 10211 20011 39221

Table 1: The number of two-bridge knots, and two-bridge knots with Conway polynomial congruent
to 1 modulo 2.

4. Inequalities for Conway Polynomials

We shall write the Conway polynomial of a two-bridge link

∇m(z) =

⌊
m
2
⌋

∑

k=0

cm−2kz
m−2k.

Theorem 4.1. For k ≥ 0,
|cm−2k| ≤

(

m−k
k

)

|cm| .
If equality holds for some integer 0 < k < ⌊m

2
⌋, then it holds for all integers 0 ≤ k ≤

⌊m
2
⌋. In this case, the link is isotopic to the link C(2, 2, . . . , 2), or to the torus link

T(2, m) = C(2,−2, . . . , (−1)m−12), up to mirror symmetry.

Proof. Let K be the two-bridge link C(2b1,−2b2, . . . , (−1)m−12bm). By Theo-
rem 3.3, ∇K = Dm(b1, . . . , bm). By Proposition 2.3, the number of monomials of

cm−2k(b1, . . . , bm) is
(

m−k
k

)

. The result follows since no monomial is greater than

|cm| = |b1 · · · bm|.
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If the equality holds for some positive integer k < ⌊m
2
⌋, we deduce that each monomial

∏k
h=1 bihbih+1 is equal to the same value ε = ±1 and then |bi| = 1, i = 1, . . . , m.

Let i be an integer 1 ≤ i ≤ m − 2. Let us consider the ⌊m
2
⌋ disjoint sets {2j −

1, 2j}, j = 1, . . . , ⌊m
2
⌋. There are ⌊m

2
⌋−2 member of this family that do not intersect

{i, i + 1, i + 2}. Let us consider k − 1 of these and the corresponding product p =
∏k−1

h=1 b2ih−1b2ih . From p · bibi+1 = p · bi+1bi+2 = ε, we deduce that bi = bi+2 which
concludes the proof.

Example 4.2. The knot 10145 has Conway polynomial ∇ = 1 + 5z2 + z4. We have
∇ ≡ f5 (mod 2), but ∇ does not satisfy the condition |c2| ≤ 3, and then 10145 is not a
two-bridge knot.

The knot 11n109 has Conway polynomial 1 + 6z2 + z4 − z6. It satisfies the bounds
of Theorem 4.1: |c2| ≤ 6, |c4| ≤ 5, but not the equality condition: c2 = 6 whereas
c4 6= 5. Consequently, 11n109 is not a two-bridge knot.

We shall use the following lemma, which generalizes the inequality a + b ≤ ab + 1,
valid for positive integers (see also [24]).

Lemma 4.3. Let pi, i ∈ S be relatively prime divisors of p = x1x2 · · ·xm inQ[x1, . . . , xm].
Let b = (b1, . . . , bm) be a m-tuple of positive integers. Then

∑

i∈S

pi(b) ≤
(

card(S)− 1
)

p(b) + 1. (5)

Proof. We do not suppose the pi distinct. Let us prove the result by induction on
k = card(S). The result is clear if k = 1, we have p1 = ±1, and the inequality is

±1 ≤ 1.

If all the pi = 1, the result is clear. Otherwise, let xh be a divisor of some pi.

Let S1 = {i ∈ S : xh|pi}, and S2 = S−S1. We have k = k1+k2, where kj = card(Sj).
Let qj = GCD{pi, i ∈ Sj}, then q1 and q2 are coprime, and q1q2 is a divisor of p.

By induction we obtain for j = 1, 2:

∑

i∈Sj

pi(b) ≤ qj(b)
(

(kj − 1)
p(b)

qj(b)
+ 1

)

= (kj − 1)p(b) + qj(b).

Adding these two inequalities we get
∑

i∈S

pi(b) ≤ (k1 + k2 − 1)p(b) + q1(b) + q2(b)− p(b)

≤ (k1 + k2 − 1)p(b) + q1(b)q2(b)− p(b) + 1,

which proves the result, since q1(b)q2(b) ≤ p(b).
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With this lemma we can prove:

Theorem 4.4. Let ∇m(z) =
∑⌊

m
2
⌋

k=0 cm−2kz
m−2k be the Conway polynomial of a two-

bridge link. Let g ≥ 1 be the greatest prime divisor of cm, and let k 6= 0. Then

|cm−2k| ≤
((

m−k−1
k

)

+ 1
g
(
(

m−k−1
k−1

)

− 1)
)

|cm|+ 1.

Equality holds for the links C(2g, 2, . . . , 2) and C(2g,−2, 2, . . . , (−1)m−12).

Proof. Let K be the two-bridge link C(2b1,−2b2, . . . , (−1)m−12bm). Then ∇K(z) =

Dm(b) =
∑⌊

m
2
⌋

k=0 cm−2kz
m−2k where b = (b1, . . . , bm). If k = 1, there are m − 1

monomials in the polynomial cm−2(b), by Proposition 2.3. Then, using Lemma 4.3
and the notation |b| = (|b1| , . . . , |bm|), we get

|cm−2| = |cm−2(b)| ≤ cm−2(|b|) ≤ (m− 2)cm(|b|) + 1 = (m− 2) |cm|+ 1.

Now, suppose k ≥ 2. Let g be the greatest prime divisor of the integer cm = b1 · · · bm,
and suppose that g | bj . Let N be the number of monomials of cm−2k(b1, . . . , bm) that
are prime to the monomial bj . By Proposition 2.3, these monomials are relatively

prime, and N ≥
(

m−1−k
k−1

)

.

Using Lemma 4.3 we obtain:
∑

pi∈Mj
pi(b) ≤ (N − 1)

|cm|
|bj |

+ 1 and then

|cm−2k| =
∣

∣

∣

∑

pi∈Mpi(b)
∣

∣

∣ ≤
(N − 1

g
+ (

(

m−k
k

)

−N)
)

|cm|+ 1

=
((

m−k
k

)

−N(1 − 1
g
)− 1

g

)

|cm|+ 1

≤
((

m−k
k

)

−
(

m−1−k
k−1

)

(1− 1
g
)− 1

g

)

|cm|+ 1

=
((

m−1−k
k

)

+ 1
g
(
(

m−1−k
k−1

)

− 1)
)

|cm|+ 1.

For b = (g, 1, . . . , 1) we obtain N =
(

m−1−k
k−1

)

, cm = g, and cm−2k = g
(

m−1−k
k

)

+
(

m−1−k
k−1

)

, and equality holds throughout.

For b = (g,−1, 1, . . . , (−1)m−1) we get cm−2k = (−1)⌊
m
2
⌋+k

(

g
(

m−1−k
k

)

+
(

m−1−k
k−1

))

.

Example 4.5. The knot 13n3010 has Conway polynomial ∇ = 1+10 z2+4 z4−2 z6.
It satisfies all conditions of Theorems 4.1 and 3.5 but not those of Theorem 4.4.

Now, we will express the Conway polynomials in terms of Fibonacci polynomials, and
show that their coefficients are alternating.
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Theorem 4.6. Let K be a two-bridge link (or knot). Let

∇K = cm
(

⌊
m
2
⌋

∑

i=0

(−1)iαifm−2i+1

)

, α0 = 1

be its Conway polynomial expressed in the Fibonacci basis. Then we have

1. αj ≥ 0, j = 0, . . . , ⌊m
2
⌋.

2. If αi = 0 for some i > 0 then αj = 0 for j ≥ i.

Proof. Let K be the two-bridge link C(2b1,−2b2, . . . , (−1)m−12bm), then ∇K(z) =

Dm(b1, . . . , bm) =
∑⌊

m
2
⌋

k=0 cm−2kz
m−2k.

We have ∇0 = f1, ∇1 = b1f2, ∇2 = b1b2
(

f3 − (1− 1
b1b2

)f1
)

.
Let us show by induction that if

∇m = b1 · · · bm
(

⌊
m
2
⌋

∑

i=0

(−1)iαifm+1−2i

)

, ∇m−1 = b1 · · · bm−1

(

⌊
m−1
2

⌋
∑

i=0

(−1)iβifm−2i

)

then αj ≥ βj ≥ 0, and if αi = 0 for some i, then αj = 0 for j ≥ i.

The result is true for m = 2 from the expressions of ∇1 and ∇2. Using zfm+1−2i =
fm+2−2i − fm−2i and ∇m+1 = bm+1z∇m +∇m−1, we deduce that

∇m+1 = b1 · · · bm+1

(

⌊
m+1
2

⌋
∑

i=0

(−1)iγifm+2−2i

)

,

where γ0 = 1 and

γi = αi + (αi−1 − βi−1) + (1− 1
bmbm+1

)βi−1, i = 1, . . . , ⌊m+1
2

⌋. (6)

As |bmbm+1| ≥ 1, we deduce by induction that γi ≥ αi ≥ 0.
Furthermore, if γi = 0, then by Formula (6) αi = 0, and then, by induction,

αj = βj = 0 for j ≥ i. Finally, by Formula (6), we get γj = 0 for j ≥ i.

5. Applications to the Alexander polynomial

In this section, we will see that our necessary conditions on the Euler continuant
polynomials imply analogous necessary conditions on both Conway coefficients and
Alexander coefficients of two-bridge knots and links. These conditions are improve-
ments of the classical results.
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The Conway and the Alexander polynomials of a knot K will be denoted by

∇K(z) = 1 + c̃1z
2 + · · ·+ c̃nz

2n

and
∆K(t) = a0 − a1(t+ t−1) + · · ·+ (−1)nan(t

n + t−n).

The Alexander polynomial ∆K(t) is deduced from the Conway polynomial:

∆K(t) = ∇K

(

t1/2 − t−1/2
)

.

It is often normalized so that an is positive. Thanks to this formula, it is not difficult
to deduce the Alexander polynomial from the Conway polynomial. If we use the
Fibonacci basis, it is even easier to deduce the Conway polynomial of a knot from its
Alexander polynomial.

Lemma 5.1. If z = t1/2− t−1/2, and n ∈ Z is an integer, then we have the identity

fn+1(z) + fn−1(z) = (t1/2)n + (−t−1/2)n,

where fk(z) are the Fibonacci polynomials.

Proof. Let A =
[

z 1
1 0

]

be the (polynomial) Fibonacci matrix. If z = t1/2−t−1/2, the

eigenvalues of A are t1/2 and −t−1/2, and consequently trAn = (t1/2)n+(−t−1/2)n. On

the other hand, we have An =
[

fn+1(z) fn(z)
fn(z) fn−1(z)

]

, and then trAn = fn+1(z)+fn−1(z).

From Lemma 5.1, we immediately deduce:

Proposition 5.2. Let the Laurent polynomial P (t) be defined by

P (t) = a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n).

We have

P (t) =
n
∑

k=0

(−1)k(ak − ak+1)f2k+1(z),

where z = t1/2 − t−1/2, and an+1 = 0.

We deduce a useful formula (by substituting a0 = . . . = an = 1).

f2n+1(t
1/2 − t−1/2) = (tn + t−n)− (tn−1 + t1−n) + · · ·+ (−1)n. (7)

Then, we deduce a simple proof of an elegant criterion due to Murasugi ([22, 3])
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Corollary 5.3 (Murasugi (1971)). Let ∆(t) = a0 − a1(t + t−1) + a2(t
2 + t−2) −

· · ·+(−1)nan(t
n+t−n) be the Alexander polynomial of a two-bridge knot. There exists

an integer k ≤ n such that a0, a1, . . . , ak are odd, and ak+1, . . . , an are even.

Proof. If K is a two-bridge knot, its Conway polynomial is a modulo 2 Fibonacci
polynomial f2k+1 by Theorem 3.5. By Proposition 5.2 we have f2k+1(t

1/2 − t−1/2) =
(tk + t−k)− (tk−1 + t1−k) + · · ·+ (−1)k, and the result follows.

Remark 5.4. This congruence may be used as a simple criterion to prove that some
knots cannot be two-bridge knots. There is a more efficient criterion by Kanenobu
[10, 27] using the Jones and Q polynomials.

We also deduce an analogous result for two-component links (see also [3, p. 186])

Corollary 5.5 (Modulo 2 Hosokawa polynomials of two-bridge links). Let

∆(t) = (t1/2 − t−1/2)
(

a0 − a1(t+ t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n)
)

be the
Alexander polynomial of a two-component two-bridge link. Then all the coefficients
ai are even or there exists an integer k ≤ n such that ak, ak−2, ak−4, . . . are odd, and
the other coefficients are even.

Proof. If K is a two-component two-bridge link, its Conway polynomial is an odd
Fibonacci polynomial modulo 2, that is of the form f2h(z). An easy induction shows
that

f4k(t
1/2 − t−1/2) = (t1/2 − t−1/2)(u1 + u3 + · · ·+ u2k−1)

and
f4k+2(t

1/2 − t−1/2) = (t1/2 − t−1/2)(1 + u2 + · · ·+ u2k),

where uj = tj + t−j, and the result follows.

Theorem 4.6 implies both Murasugi and Hartley theorems for two-bridge knots.

Theorem 5.6 (Murasugi (1958), Hartley (1979)). Let

∆(t) = a0 − a1(t + t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n), an > 0

be the Alexander polynomial of a two-bridge knot. There exists an integer k ≤ n such
that a0 = a1 = . . . = ak > ak+1 > . . . > an.
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Proof. Let K be a two-bridge knot and ∇(z) = α0f1 − α1f3 + · · ·+ (−1)nαnf2n+1

be its Conway polynomial written in the Fibonacci basis. By Theorem 4.6, αnαk ≥ 0
for all k, and if αi = 0 for some i then αj = 0 for j ≤ i.

Let ∆(t) = a0 − a1(t + t−1) + a2(t
2 + t−2) − · · · + (−1)nan(t

n + t−n), an > 0 be
the Alexander polynomial of K. We have ∆(t) = ε∇(t1/2 − t−1/2), where ε = ±1, and
then, by Proposition 5.2, εαk = ak − ak+1. We deduce that εαn = an > 0, and then
ak − ak+1 = εαk ≥ 0 for all k. Consequently we obtain a0 ≥ a1 ≥ . . . ≥ an > 0.

Furthermore, if ak = ak−1 for some k, then αk−1 = 0, and consequently αj−1 = 0 for
all j ≤ k. This implies that for all j ≤ k, aj = aj−1, which concludes the proof.

Now, we shall give explicit formulas for Alexander coefficients in terms of Conway
coefficients.

Proposition 5.7. Let Q(z) = c̃0 + c̃1z
2 + · · ·+ c̃nz

2n be a polynomial. We have

Q(t1/2 − t−1/2) = a0 − a1(t + t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n),

where

an−j =
j

∑

k=0

(−1)n−kc̃n−k

(

2n−2k
j−k

)

. (8)

Proof. It is sufficient to prove Formula (8) for the monomials Q(z) = z2m. Let us
consider ui = ti + t−i. By the binomial formula we have

(

t1/2 − t−1/2
)2m

=
m−1
∑

k=0

(−1)k
(

2m
k

)

um−k + (−1)m
(

2m
m

)

.

and then an−j = (−1)m
(

2m
h

)

where m− h = n− j. On the other hand, the proposed
formula asserts

an−j =
j

∑

k=0

(−1)n−kc̃n−k

(

2n−2k
j−k

)

= (−1)m
(

2m
h

)

where h = m+ j − n,

which is the same result.

Remark 5.8. Considering the Fibonacci polynomials f2n+1 =
∑n

k=0

(

2n−k
k

)

z2n−2k,

Formulas (7) and (8) give the identity

1 =
j

∑

k=0

(−1)k
(

2n−k
k

)(

2n−2k
j−k

)

, n, j ≥ 0.
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Remark 5.9. Fukuhara [6] gives a converse formula for the c̃k in terms of the ak,

c̃n−j =
j

∑

k=0

(−1)n−kan−k
2n−2k
2n−j−k

(

2n−j−k
2n−2j

)

.

From the bounds we obtained for Conway coefficients we can deduce a simple proof
of the Nakanishi–Suketa bounds ([24, Th. 1, 2]) for the Alexander coefficients.

Theorem 5.10 (Nakanishi–Suketa (1993)). Let

∆(t) = a0 − a1(t + t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n), an > 0

be the Alexander polynomial of a two-bridge knot. We have the following sharp in-
equalities:

1. 0 < an−j ≤ an
(

∑j
k=0

(

2n−2k
j−k

)(

2n−k
k

))

.

2. 2an − 1 ≤ an−1 ≤ (4n− 2)an + 1.

Proof. We first have ai > 0 from Theorem 5.6.

1. Using Formula (8) and Theorem 4.1, we obtain

an−j ≤
j

∑

k=0

|c̃n−k|
(

2n−2k
j−k

)

≤ an

j
∑

k=0

(

2n−k
k

)(

2n−2k
j−k

)

. (9)

2. We have |c̃n−1| ≤
(

2n−2
1

)

|c̃n| + 1 by Theorem 4.4, and an−1 = c̃n−1 −
(

2n
1

)

c̃n by
Proposition 5.7. We thus deduce

an−1 ≤
(

2n
1

)

|c̃n|+
(

2n−2
1

)

|c̃n|+ 1 = (4n− 2)an + 1. (10)

We also have

an−1 ≥
(

2n
1

)

|c̃n| − |c̃n−1| ≥
(

2n
1

)

|c̃n| −
(

2n−2
1

)

|c̃n| − 1 = 2an − 1.

The upper bounds (9) and (10) are attained by the knots C(2, 2, . . . , 2).

We also have the following sharp bound, which improves the Nakanishi–Suketa third
bound ([24, Th. 3])

Theorem 5.11. Let

∆(t) = a0 − a1(t + t−1) + a2(t
2 + t−2)− · · ·+ (−1)nan(t

n + t−n), an > 0

be the Alexander polynomial of a two-bridge knot. If an 6= 1, then an−2 ≤ (8n2 −
15n+ 8)an + 2n− 1. This bound is sharp.
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Proof. From Proposition 5.7 and Theorem 4.4, we get

|an−2| ≤
(

2n
2

)

|c̃n|+
(

2n−2
1

)

|c̃n−1|+
(

2n−4
0

)

|c̃n−2|
≤

(

2n
2

)

|c̃n|+
(

2n−2
1

)

(
(

2n−2
1

)

|c̃n|+ 1) +
((

2n−3
2

)

+ 1
g
(
(

2n−3
1

)

− 1)
)

|c̃n|+ 1

= (8n2 − 16n+ 10 + 2(n−2)
g

) |an|+ 2n− 1.

If an 6= 1 then g ≥ 2, and we obtain

|an−2| ≤ |an| (8n2 − 15n+ 8) + 2n− 1. (11)

This bound is attained for the knot C(4, 2, 2, 2, . . . , 2).

Example 5.12. Let us consider the Conway polynomial ∇K(z) = 1+ 8z2 + 3z4 − z6

of the knot K = 13n1862 (see [1]). It does not verify the bounds of Theorem 4.1,
and thus it is not a two-bridge knot. Nevertheless, its Alexander polynomial ∆K(t) =
23 − 19(t + 1/t) + 9(t2 + 1/t2) − (t3 + 1/t3) satisfies the bounds of Nakanishi and
Suketa, and also the conditions of Murasugi and Hartley. This example shows that
the conditions on the Conway coefficients are stronger than the conditions on the
Alexander coefficient deduced from them.

Remarks 5.13. The inequality in the statement of Theorem 5.11 can be improved:

1. If g ≥ 3 then

an−2 ≤ (8n2 − 16n+ 10 + 2(n−2)
g

)an + 2n− 1.

2. For j = 3 we obtain

an−3 ≤ 2/3 (2n− 3)
(

8n2 − 24n+ 25
)

an +
(3n−5)(2n−5)

g
an + n (2n− 3)

≤ 1/6
(

64n3 − 270n2 + 413n− 225
)

an + n (2n− 3) .

3. Since the inequalities on Conway coefficients are simpler and stronger, we shall
not give the inequalities on Alexander coefficients for j ≥ 4. Furthermore, if we
want to apply our bounds to the Alexander polynomials, we first compute

c̃n−j =
j

∑

k=0

(−1)n−kan−k
2n−2k
2n−j−k

(

2n−j−k
2n−2j

)

,

using Remark 5.9 and test if |c̃n−j| ≤
(

2n−j
j

)

|c̃n|, which is stronger than the

inequality (9), or if |c̃n−j| ≤
((

2n−j−1
j

)

+ 1
g
(
(

2n−j−1
j−1

)

− 1)
)

|cn| + 1. The cost of
these evaluations is less than the cost of the evaluations of the inequalities of
Theorem 5.10. They are also sharper.
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The following example shows an infinite family of polynomials satisfying all the nec-
essary conditions except the equality case of Theorem 4.1.

Example 5.14. Consider the polynomial P (z) = fm+1(z)− 2dz2, m = 4n ≥ 4, d 6=
0. All its coefficients, except one, satisfy cm−2k =

(

m−k
k

)

. By Theorem 4.1, it is not
the Conway polynomial of a two-bridge knot. Hence, the corresponding Alexander
polynomial

∆(t) = 4d+ 1− (2d+ 1)u1 + u2 − u3 + · · ·+ u2n,

where ui = ti+t−i, is not the Alexander polynomial of a two-bridge knot. Nevertheless,
it satisfies all the necessary conditions of Hartley and Murasugi. If 0 < d < 1

2
n(n+1),

it also satisfies the bounds of Theorems 4.1 and 4.4, and then the Nakanishi–Suketa
bounds.

6. Conjectures

We observed a trapezoidal property for the Conway polynomials of two-bridged
links with 20 or fewer crossings (their number is 131 839).

Conjecture 6.1. Let ∇m = cm
(

∑⌊
m
2
⌋

i=0 (−1)iαifm+1−2i

)

, α0 = 1, be the Conway poly-

nomial of a two-bridge link (or knot) written in the Fibonacci basis. Then there exists
n ≤ ⌊m

2
⌋ such that

0 ≤ α0 ≤ α1 ≤ · · · ≤ αn, αn ≥ αn+1 ≥ · · · ≥ α
⌊
m
2
⌋
≥ 0.

If this conjecture was true, it would imply the following property of Alexander poly-
nomials:

Conjecture 6.2. Let ∆(t) = a0− a1(t+ t−1)+ a2(t
2+ t−2)−· · ·+(−1)nan(t

n + t−n)
be the Alexander polynomial of a two-bridge knot. Then there exists an integer k ≤ n
such that (a0, . . . , ak) is convex and (ak, . . . , an) is concave.

This last result is a consequence of Conjecture 6.1 and Proposition 5.2. As usual
we say that the sequence (ai) is convex (resp. concave) if (ai + ai+2 − 2ai+1) is
nonnegative (resp. nonpositive). It is shown in [24] that the sequence (aj) is not
necessarily convex.

The following conjecture is attributed to Hoste:

Conjecture 6.3 (Hoste). If z ∈ C is a root of the Alexander polynomial of an
alternating knot, then Re z > −1.
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This conjecture is shown to be true in some peculiar cases (see [20, 29]). As a direct
consequence of the definition of Euler continuant polynomials, we show that:

Theorem 6.4. Let K be a two-bridge link (or knot). Let α be a root of the Alexander

polynomial ∆K , then −3

2
< Reα < 3+2

√
2. If α is real then 3−2

√
2 < α < 3+2

√
2.

Proof. LetK be a two-bridge link. ∇K is an Euler continuant polynomialDm(b1, . . . , bm).
If z is a root of ∇K , then the determinant in Formula (1) is equal to 0.

By the classical theorems of Gershgörin, there exists i such that |biz| < 2. We
thus deduce that |z| < 2.

Let α be a root of ∆K . Then z = α1/2 − α−1/2 is a root of ∇K and we have the
relation P (α, z) = α2 − (z2 + 2)α + 1 = 0. Eliminating z between P and |z| < 2, we
obtain that α = x+ iy satisfies R(x, y) < 0 where

R = x4 + 2 x2y2 + y4 − 4 x3 − 4 xy2 − 10 x2 − 14 y2 − 4 x+ 1.

An easy computation shows that the curve R = 0 has vertical tangents at the four

Figure 3: Region (R < 0) containing the roots of Alexander polynomials of two-bridge links.

points:

(−3

2
,±

√
7

2
), (3± 2

√
2, 0).

Suppose that α is real. Then z2 = α+1/α−2 is real and Discr(P ) = z2(z2+4) ≥ 0. We
thus deduce that z is real and belongs to (−2, 2). We thus have α ∈ (3−2

√
2, 3+2

√
2).
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Theorem 6.4 is an improvement of a Theorem of Lyubich and Murasugi [20]. We
subsequently found that it was independently obtained by Stoimenow, but later [30].
It should be improved by a careful study of the tridiagonal determinantDm in Formula
(1).
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