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Abstract

Stratification for nonlinear differential equations in positive characteristic is introduced.
Testing this notion for first order equations is discussed, and related to the Cartier
operator on curves. A variant of the Grothendieck-Katz conjecture is formulated, and
proved in a special case.
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Introduction

Let F be a field of characteristic p > 0. A higher derivation on F is a set of additive
maps {∂(n) : F → F | n ≥ 0} satisfying the formulas

∂(n)(fg) =
∑
a,b≥0
a+b=n

∂(a)(f)∂(b)(g)

and

∂(0) = id; ∂(n)∂(m) =

(
m+ n

n

)
∂(n+m).

The standard higher derivation {∂(n)
z | n ≥ 0} on the field C(z), where C is an algebraically

closed field of characteristic p > 0, is given and determined by the formulas ∂(n)zm =(
m
n

)
zm−n for all n,m ≥ 0. These formulas imitate the maps 1

n! (
d
dz )n. The standard

higher derivation on C(z) extends uniquely to a higher derivation on any finite separable
extension K of C(z).

The algebra of the differential operators D = DK on the field K (see [EGA4, § 16,
particularly 16.10],[Gie] for the concept and terminology) is a skew K-algebra and has
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K-basis {∂(n)
z | n ≥ 0}. For the purely transcendental extension C(z1, . . . , zd) of C, one

considers operators ∂
(n1)
z1 · · · ∂(nd)

zd with similar formulas

∂(n1)
z1 · · · ∂(nd)

zd
(zm1

1 · · · zmd

d ) =

(
m1

n1

)
· · ·
(
md

nd

)
zm1−n1

1 · · · zmd−nd

d .

This is the standard higher derivation of C(z1, . . . , zd) and extends uniquely to any finite
separable extension K of C(z1, . . . , zd). As before the algebra of differential operators of
K has K-basis

{∂(n1)
z1 · · · ∂(nd)

zd
| n1, . . . , nd ≥ 0}.

A stratified differential module M over K is a left D-module which has finite dimension
over K. This concept coincides with that of iterative differential module (ID-module)
over K (see [M-P1, M-P2]). This notion is seen as the correct analogue in positive
characteristic of complex differential modules.

The naive translation of a differential module in positive characteristic is a K-vector
space M of finite dimension over K equipped with an additive map ∂ : M →M satisfying
∂(fm) = f∂(m) + df

dzm (where K a finite separable extension of C(z)).
This naive approach does not have good properties and is not very interesting. In

fact, M as a naive differential module is determined by its p-curvature ∂p (compare
[vdP1, Prop. 2.1]). The action of ∂ on M extends to a left action of D, if and only if
∂p = 0. Indeed, this condition is necessary since (∂(1))p = 0. It is sufficient since, by
Cartier’s lemma (see [vdP2, Lemma 1.2], ∂p = 0 implies that M is a trivial differential
module and has therefore a left D-action, for instance the (non interesting) trivial one.

In this paper we introduce the notion of stratification for non linear differential equa-
tions. We restrict ourselves mainly to non linear order one differential equations over
a finite separable extension K of C(z). Such an equation has the form f(y′, y) = 0
where f ∈ K[S, T ] is an absolutely irreducible polynomial such that the image d of df

dS in

K[S, T ]/(f) is non zero. The differential algebra A := K[y′, y, 1
d ] = K[S, T, ( dfdS )−1]/(f)

is given by the derivation D with D(z) = 1 and D(y) = y′.
A separable algebraic solution of f is a K-linear differential homomorphism φ : A→

K
sep

with φ(1) = 1. Then φ(y) is the actual solution.
The derivation D on A extends uniquely to its field of fractions F . We note that F is

the function field of a curve X over K. By the genus of f we will mean the genus of X.

Two differential equations over K will be called strictly equivalent if the correspond-
ing differential fields become isomorphic after a finite separable extension of K (compare
[NNPT]).

The equation f(y′, y) = 0 is called stratified (or admits a stratification) if the field F
(or equivalently A) has a left DK-action such that the action of ∂(1) coincides with D.
Alternatively, A should be an Artinian simple module algebra over the Hopf algebra DK

in the sense of [H1, Example 3.2(5); Example 3.4(6); Example 3.6]. See also [AM], [H2].
We will show that f(y′, y) = 0 is stratified if and only if Dp = 0. This leads to criteria

for stratification. Further we try to classify the stratified order one differential equations.
A useful observation for this is: if f1 and f2 are strictly equivalent and f1 is stratified,
then so is f2.
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The order one equation f(y′, y) = 0 is called autonomous if f ∈ C[S, T ]. The equation
f(y′, y) = 0 is called semi-autonomous if there exists a finite separable extension K̃ of K
and a curveX0 over C such that curveX overK defined by f satisfies K̃×KX ∼= K̃×CX0.

The aim of this paper, which is a sequel to [NNPT], is to produce and classify stratified
order one differential equations in positive characteristic. In the last section, a conjecture
in the spirit of the Grothendieck-Katz conjecture is formulated. A proof is given for
autonomous equations.

1. Criteria for stratification

Theorem 1.1. Let K be a finite separable extension of C(z) and let f ∈ K[S, T ] be ab-
solutely irreducible. Suppose that df

dS is not zero modulo (f). Let D denote the derivation
on F := K(y′, y), the field of fractions of K[S, T ]/(f), such that D(z) = 1, D(y) = y′.
The following are equivalent:
(a). The equation f(y′, y) = 0 is stratified.
(b). Dp = 0.
(c). ker(D,F ) contains an element h 6∈ F p.
(d). f(y′, y) = 0 has infinitely many separable algebraic solutions.

Proof. (a)⇒(b) is obvious because Dp = (p!)∂(p).
(b)⇒(c). Suppose that Dp = 0. The field F is a finite separable extension of the purely
transcendental field C(z, y) and therefore [F : F p] = p2. The derivation D is a F p-linear
map on F . Since Dp = 0 and [F : F p] = p2, the operator D has more than one Jordan
block. Thus F̃ = ker(D,F ) lies properly in between F p and F .

(c)⇒(a). Let ∂
∂z and ∂

∂y denote the obvious partial derivations on C(z, y). Their unique

extensions to the finite separable extension F of C(z, y) are denoted by the same symbols.
The derivation D has the form D = ∂

∂z + y′ ∂∂y . Let D(h) = 0 hold for some element

h 6∈ F p. Then ∂h
∂z +y′ · ∂h∂y = 0. The assumption ∂h

∂y = 0 implies ∂h
∂z = 0 and h ∈ F p. Thus

∂h
∂y 6= 0 and ∂h

∂z 6= 0. The element h is not algebraic over K, since otherwise h would be

separable algebraic over K and ∂h
∂y = 0. Now K(h) ⊂ F is a finite algebraic extension,

since both fields have transcendence degree two over C and F is finitely generated. If the
field F p(z, h) is a proper subfield of F , then there is a derivation E := α ∂

∂z + β ∂
∂y 6= 0

which is zero on F p(z, h). Applying E to z and h yields α = β = 0. Thus F p(z, h) = F
and K(h) ⊂ F is a finite separable extension. On the field K(h) we define the action of
DK = K[∂(n)|n ≥ 0] by ∂(0) is the identity, ∂(n) is on K the given higher derivation and
∂(n)h = 0 for all n ≥ 1. This action extends in a unique way to an action of DK on F .
By construction ∂(1) coincides with D on K(h) and therefore also on F .

(c)⇒(d). We continue the reasoning of (c)⇒(a). After multiplying h by a non zero
element in F p, we may suppose that h ∈ A := K[y′, y, 1

d ]. The field extension K(h) ⊂ F
is finite separable. After localization at an element k ∈ K[h], k 6= 0 we have that
K[h, 1

k ] ⊂ A[ 1
k ] is a finite separable integral extension. For almost all c ∈ C there is

a K-algebra homomorphism ψ : K[h, 1
k ] → K, given by ψ(h) = c. This extends to a

K-algebra homomorphism φ : A[ 1
k ] → K

sep
. By definition ψ ◦ D = d

dz ◦ ψ (where d
dz

denotes the derivation on K
sep

with d
dz z = 1). The same holds for φ, i.e., φ ◦D = d

dz ◦φ
3



and thus φ is a separable algebraic solution. By varying c ∈ C one obtains infinitely
many separable algebraic solutions of f(y′, y) = 0.

(d)⇒(b). Suppose that f(y′, y) = 0 has infinitely many separable algebraic solutions
and suppose that Dp 6= 0. There exists a ∈ A = K[y′, y, 1

d ] with b := Dp(a) 6= 0. Let

φ : A → K
sep

be a separable algebraic solution. Then φ ◦ D = d
dz ◦ φ and then also

φ ◦Dp = ( ddz )p ◦ φ. Since ( ddz )p = 0 one has φ(Dp(a)) = 0. Since the K-algebra A/bA
has Krull dimension zero, there are at most finitely many K-algebra homomorphisms
A/bA→ K

sep
, contradicting the assumption (d).

Note that property (c) is usually called “existence of a rational first integral”.
Now we consider a criterion for stratification of autonomous equations.

Proposition 1.2. Let F be a field of characteristic p > 0 such that [F : F p] = p and
let D 6= 0 be a derivation on F . Write F = F p(x) and u = D(x). The following are
equivalent:
(a). D extends to a higher derivation on F .
(b). Dp = 0.
(c). there exists t ∈ F with D(t) = 1.
(d). u−1 = a0 + a1x+ · · ·+ ap−2x

p−2 with all a∗ ∈ F p.
(e). ( d

dx )p−1(up−1) = 0.

Proof. (a)⇒(b) is obvious.
(b)⇒(c). Suppose Dp = 0. The operator D is a F p-linear on F and kerD ⊃ F p is a
field. Hence kerD = F p and D has precisely one Jordan block. Hence 1 ∈ F p lies in the
image of D.
(c)⇒(a). Suppose that D(t) = 1 holds for some t. Then F = F p(t) and there is a higher

derivation {∂(n)
t | n ≥ 0}, given by the formulas ∂

(n)
t (tm) =

(
m
n

)
tm−n. Now D = d

dt

coincides with ∂
(1)
t .

(c)⇔(d). D = u · ddx . The equation D(t) = 1 translates into d
dx t = u−1 and there is a

solution if and only if u−1 has the prescribed form.
Further (d) is equivalent to ( d

dx )p−1(u−1) = 0 and after multiplying with up one obtains
(d)⇔(e).

Corollary 1.3. [Autonomous equations] Let the autonomous first order equation f(y′, y) =
0 determine the field C(y′, y) provided with the derivation D given by D(y) = y′. The
following are equivalent:
(a). The equation is stratified.
(b). There exists t ∈ C(y′, y) with D(t) = 1.
(c). The equation has a separable algebraic solution.

Proof. (a)⇔(b) holds according to Proposition 1.2. Suppose D(t) = 1 for some t ∈
C(y′, y). Then C(t) ⊂ C(y′, y) is a separable extension and the embedding C(t)→ C(z),

by t 7→ z + c with c ∈ C, extends to an embedding of C(y′, y) into C(z)
sep

. Thus the
equation has a family of separable algebraic solutions. This shows (b)⇒(c).

Suppose that (c) holds. Then there is an embedding C(y′, y) ⊂ C(z)
sep

= C(y′, y)
sep

and the equation D(t) = 1 over the field C(y′, y) has a separable algebraic solution,
4



say z. Let G denote the Galois group of C(y′, y)
sep
/C(y′, y). For any g ∈ G one has

g(z) = z + c(g)p for a unique element c(g) ∈ C(y′, y)
sep

. Now g 7→ c(g) is a 1-cocyle

and trivial since H1(G,C(y′, y)
sep

) = 0. Write c(g) = g(h)− h for some h ∈ C(y′, y)
sep

.
Then t := z − hp satisfies D(t) = 1 and t ∈ C(y′, y) since g(t) = t for all g ∈ G. Hence
(c)⇒(b).

2. Testing the existence of a stratification for autonomous equations

An autonomous equation translates into the function field C(X) of a curve X over
C, provided with a meromorphic vector field D 6= 0 (i.e., a derivation of the field C(X)).
The equation is stratified if and only if Dp = 0. There are many autonomous stratified
equations and we are interested in equations having a geometric meaning. These equa-
tions will be called “special”. If the genus of X is zero, then the holomorphic vector
fields are special.

Example 2.1. The autonomous Riccati equation y′ + a2y
2 + a1y + a0 = 0.

By 1.2 and 1.3, this equation is stratified if and only if the coefficient of yp−1 in the
expression (a2y

2 + a1y + a0)p−1 is zero. A computation shows that this is equivalent to
(a2y

2 + a1y + a0) is a square.

The general case is as follows.

Corollary 2.2. The autonomous equation y′r(y) = 1 with r(y) ∈ C(y)∗ (i.e., D(y) =
1
r(y)) is stratified if and only if r(y) = d

dy s(y) for some s(y) ∈ C(y).

Proof. Suppose that s(y) exists, then D(s(y)) = D(y) · ddy s(y) = 1. Apply now Corol-

lary 1.3. On the other hand, if the equation is stratified then there is a t ∈ C(y) with
D(t) = 1. Then 1 = D(t) = D(y) · ddy t and r(y) = d

dy t.

We note that one can test whether r(y) equals d
dy s(y) by, for instance, considering

the fractional expansion of r(y). Moreover, if s(y) exists, then infinitely many separable
algebraic solutions are produced by the equation s(y) = z + c with c ∈ C.

Suppose that the genus g of X is ≥ 1. Now D corresponds to an OX -linear homo-
morphism ΩX → C(X), which is determined by its restriction ` : H0(X,ΩX) → C(X).
We consider only those D’s such that there exists ω ∈ H0(X,ΩX) with `(ω) = 1 and call
such a D special.

Let x be a separating variable (i.e., C(x) ⊂ C(X) is a finite separable extension)
and write H0(X,ΩX) = V dx, where V ⊂ C(X) is a C-vector space of dimension g. Let
`(vdx) = 1. Then D = v−1 d

dx .

According to 1.2, D is stratified if and only if vdx =
∑p−2
i=0 v

p
i x

idx for certain elements
vi ∈ C(X). Equivalently C(vdx) = 0, where C : H0(X,ΩX)→ H0(X,ΩX) is the Cartier
operator.

We recall that C is defined by C(
∑p−1
i=0 v

p
i x

idx) = vp−1dx. This definition does not
depend on the choice of the separating variable x. Further C is the dual, by Serre duality,
of the Frobenius operator acting upon H1(X,OX).
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Conclusion. The special vector fields D with Dp = 0 correspond to the lines Cω in
H0(X,ΩX) such that C(ω) = 0.
We finish the autonomous case by some examples.

Proposition 2.3. The autonomous Weierstrass differential equation is
(x′)2 = x(x− 1)(x−λ) with λ ∈ C, λ 6= 0, 1 and p > 2. This equation is stratified if and
only if the elliptic curve y2 = x(x− 1)(x− λ) is supersingular.

Proof. We note that the Weierstrass equation is (up to multiplication by an element in
C∗) the only special equation for genus 1. From the above it follows that stratification is
equivalent to the action of Frobenius on H1(X,OX) is zero, or, equivalently, the elliptic
curve is supersingular. We present another explicit proof.

The function field of the elliptic curve X is F = C(y, x) and D is the standard holo-
morphic vector field y d

dx . Now F = F p(x) and D(x) = y. By 1.2 and 1.3, the equation
is stratified if and only if the coefficient cp−1 of xp−1 in the polynomial (x(x − 1)(x −
λ))(p−1)/2) is zero. A standard computation with Čech cohomology shows that the ac-
tion of Frobenius Fr on the 1-dimensional C-vector space H1(X,OX) is multiplication by

cp−1. This proves the statement. We note that cp−1 = (−1)(p−1)/2 ·
∑(p−1)/2
i=0

(
(p−1)/2

i

)2
λi

is the well known Deuring polynomial for the supersingular elliptic curves.

Remark 2.4. For the situation in Proposition 2.3 we have in fact: (y d
dx )p = α(y d

dx )

with α = (−1)(p−1)/2 ·
∑(p−1)/2
i=0

(
(p−1)/2

i

)2
λi.

Example 2.5. The Weierstrass equation (x′)2 = x3 − x for p = 3.
The elliptic curve y2 = x3 − x is supersingular and the equation admits a stratification.
We want to make part (c) of Corollary 1.3 explicit and compute the solutions in C(z)

sep
.

Let x 6= 0, 1,−1 denote a solution in C(z)
sep

. Then x′ 6= 0 and by differentiating
(x′)2 = x3−x one obtains x′′ = 1. Thus x′ = z+k1 with k1 = h3

1 and x = −z2 +k1z+k2

with k2 = h3
2. Substitution in the equation and taking the third root leads to h3

2 − h2 =
z2 − h3

1z + h2
1. A pair (h1, h2) satisfying this equation yields a solution x = −h2

1 + h2.

The choice h1 = 0 leads to h3
2 − h2 = z2 which has a solution a in C(z)

sep
. Then a is a

solution. After shifting z 7→ z + c, c ∈ C one finds other separable algebraic solutions.
By taking h1 ∈ C one obtains a family of separable algebraic solutions.

We note that there is no rational solution x ∈ C(z), since C(x′, x) is the function
field of an elliptic curve.

3. Testing the existence of a stratification for some non autonomous equations

Applying Theorem 1.1(c), stratification is equivalent to the existence of h withD(h) =
0, h 6∈ F p. This can be tested, since D is an explicit F p-linear operator on F . In the
genus zero case with y′ = D(y) in K(y) = F , it seems more efficient to compute Dp(y)
and apply Theorem 1.1(b).

3.1. Genus one, semi-autonomous, special D and p > 2

After replacing K by a finite separable extension, the function field F is K(x, y)
with y2 = x(x − 1)(x − λ), λ ∈ C, λ 6= 0, 1 and D = f(z) · y d

dx + d
dz with f(z) ∈ K∗.

We have to investigate whether ker(D,F ) 6= F p holds. For this, we may replace D by
6



E := y d
dx + f(z)−1 d

dz .

The two parts T1 = y d
dx and T2 = 1

f(z)
d
dz of E commute and so Ep = T p1 + T p2 .

Further T p1 is a derivation on C(x, y) without singularities and therefore equal to αT1.

In fact Remark 2.4 shows α = (−1)(p−1)/2 ·
∑(p−1)/2
i=0

(
(p−1)/2

i

)2
λi. Furthermore T p2 is a

derivation on K and has the form β(z) ddz with β(z) ∈ K.

Suppose that the elliptic curve is supersingular (equivalently α = 0).
Let E(h) = 0. Then Ep(h) = 0 and β(z) ddz (h) = 0.

If β(z) 6= 0, then d
dz (h) = 0, h ∈ Kp(x, y) and T1(h) = 0. The Kp(xp, yp)-linear operator

T1 on Kp(x, y) is nilpotent and has only one Jordan block. Hence h ∈ Kp(xp, yp) and D
is not stratified.
If β(z) = 0, then T p2 = 0 and there is an element h2 ∈ K with T2(h2) = 1. There is an
element h1 ∈ C(x, y) with T1h1 = 1. Then E(h1 − h2) = 0 and D is stratified.

Moreover, the condition β(z) = 0 (or T p2 = 0) is equivalent to the existence of h ∈ K
with 1

f(z)
d
dxh = 1, which translates into: f(z) is the derivative of some element in K.

This can be tested.

Suppose that the elliptic curve is ordinary (equivalently α 6= 0).
Let E(h) = 0. Then Ep(h) = 0. If β(z) − α

f(z) 6= 0, then y d
dxh = d

dzh = 0 and

h ∈ K(x, y)p. In this case D is not stratified.
If β(z)− α

f(z) = 0. Then T1, as C(x, y)p-linear operator on C(x, y), satisfies T p1 −αT1 = 0

and its eigenvalues are {nγ | 0 ≤ n < p} where γp−1 = α. The operator T2 satisfies the
same equation and has the same eigenvalues. Take h1 ∈ C(x, y)∗ with T1h1 = γh1 and
take h2 ∈ K∗ with T2(h2) = −γh2. Then E(h1h2) = 0 and D is stratified.

Finally we have to test β(z)− α
f(z) = 0 in the ordinary case.

This is equivalent to T p2 −αT2 = 0. Since T2 is a Kp-linear operator on K this is easy to
test. �

3.2. Higher genus, semi-autonomous and special D

Here, a brief sketch is presented. After a finite separable extension of K we may
suppose that the function field F is K · C(X), where C(X) is the function field of a
curve X over C and K a finite separable extension of C(z). For a special derivation D
one has to test whether ker(D,F ) 6= F p. After replacing D by a suitable multiple E
(as in the genus one case) one has E = T1 + T2 with T1, T2 commuting derivations, T1

a special derivation on the field C(X) with T1(z) = 0 and T2 a derivation on K which
is zero on C(X). Combining the special autonomous equation corresponding to T1 with
properties of T2 one can decide, as in the case of genus one, whether the original equation
is stratified.
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4. A Grothendieck-Katz conjecture for first order equations

Let the equation f(y′, y) = 0 with absolute irreducible f ∈ K[S, T ] correspond to a
curve X over a finite extension K of C(z) and a meromorphic derivation D. In the spirit
of [K] we present the following conjecture.

Conjecture 4.1. All solutions of f(y′, y) = 0 are algebraic if and only if for almost all
primes p the reduced equation f mod p is stratified.

As in [K], reduction modulo p means that we replace C by a suitable finitely generated
Z-subalgebra R and divide R by a minimal prime ideal above pR.

First we will sketch a proof of the easy implication of Conjecture 4.1. In the terminol-
ogy of [NNPT] a solution of f(y′, y) = 0 is a K-linear homomorphism φ : K[s, t, 1

d ]→ F ,
where F ⊃ K is an extension of differential fields, the field of constants of F is C and φ
commutes with differentiation. The element φ(y) ∈ F is the actual solution.

Suppose that all solutions of f(y′, y) = 0 are algebraic. Then the kernel of D on the
field of fractions F of K[s, t, 1

d ] is strictly larger than C. Indeed, otherwise the embedding
K[s, t, 1

d ] ⊂ F is a transcendental solution. Choose u ∈ F, u 6∈ C with D(u) = 0. Then u
is transcendental over C(u) and F is a finite extension of the field C(u, z) and D(u) = 0.

It can be seen that, for almost all primes p, the reduction modulo p has the same
feature. Namely: C is replaced by an algebraically closed field C of characteristic p; K
is replaced by a finite separable extension K̃ of C(z); the differential algebra K[s, t, 1

d ] is

replaced by K̃[s̄, t̄, 1
d̄
]. The field of fractions of the latter is a finite separable extension

of C(ū, z) with D(ū) = 0, D(z) = 1. According to Theorem 1.1, part (c), this implies
that f mod p is stratified.

In the proof of Proposition 4.2 below, the “easy implication” of the conjecture is given
a more explicit proof.

Proposition 4.2. Conjecture 4.1 holds for autonomous equations.

Proof. Suppose that the equation has an algebraic solution. This is, according to [NNPT],
equivalent to the existence of a t ∈ C(X) with D(t) = 1. One may suppose that t, t−1 ∈ R
and for almost all primes p the reduction of t modulo p is non zero. The reduced equation
f mod p is stratified according to Corollary 1.3.

Suppose that f mod p is stratified for almost all primes p. Write C(X) as a finite
extension of C(x). The derivation D has the form D = a d

dx . We have to investigate

whether there exists t ∈ C(X) with D(t) = 1 or, equivalently, dt = ω := dx
a .

According to Corollary 1.3, it is given that, for almost all primes p, the equation
D(t) = 1 has a modulo p solution tp. In other words, the differential form ω mod p is
exact for almost all primes p. According to Y. André’s work, [A] (especially Proposition
6.2.1) and that of D.V. Chudnovsky & G.V. Chudnovsky [CC], it follows that ω is
exact.

Remark. Conjecture 4.1 holds for the Risch equation y′ = ay + b where a, b ∈ K∗ and K
is a finite extension of C(z).
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Indeed, suppose that for almost all p, the reduced equation has infinitely many separable
algebraic solutions. The difference of two of these is a non trivial separable algebraic
solution of the reduction modulo p of y′ = ay. Hence y′ = ay has a non trivial algebraic
solution y0. Replacing y by fy0 yields the equation f ′ = y−1

0 b. The reduction modulo p
of the latter has for almost all p a separable algebraic solution. It follows that f ′ = y−1

0 b
has an algebraic solution. Hence all solutions of y′ = ay + b are algebraic (compare [A],
[CC], [vdP2]).

Following a remark by a referee. Consider the equation (1) y′′ = ry with r ∈ K and K
a finite extension of C(z) and its Riccati equation (2) u′ + u2 = r.

Suppose that all solutions of (2) are algebraic, then the same holds for (1).
Indeed, let G denote the differential Galois group of (1). A line Cy in the solution space

V of (1) corresponds to a solution u = y′

y of (2). Since u is algebraic, the line Cy is
invariant under a closed subgroup of finite index of G. In particular, every line of V is
invariant under Go, the component of the identity of G. Since G ⊂ SL(2,C) one has
Go = {1} and G is finite. Thus all solutions of (1) are algebraic. (compare [vdP-S,
Lemma 4.8] for more details). �

Let (1)p and (2)p denote the reductions of (1) and (2) module a prime p. Suppose
that (1)p has p-curvature zero for almost all p. Then (2)p has infinitely many separable
algebraic solutions.

Assume that Conjecture 4.1 holds for equation (2).
Then all solutions of (2) are algebraic and the same holds for (1). Thus Conjecture 4.1
for (2) implies the usual Grothendieck–Katz conjecture for (1).
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