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Explicit computations of invariants of plane quartic
curves

Andreas-Stephan Elsenhansa

aMathematisches Institut der Universität Paderborn, Warburger Str. 100, 33098 Paderborn,
Germany

Abstract

We establish a complete set of invariants for ternary quartic forms. Further, we
express four classical invariants in terms of these generators.

1. Introduction

Studing rings of invariants is classical (19th century) algebra. For example,
it was known in those days that a ternery cubic has two invariants S and T of
degrees 4 and 6, respectively. Every invariant of the cubic can be expressed as a
rational function of S and T [10, p. 186]. Here, rational should be interpreted
as being a polynomial.

The ring of invariants of ternary quartics is more complicated. First, one
can show that the degree of each invariant is divisible by 3. In 1968, Shioda [11]
conjectured that the ring of invariants of ternary quartic forms is generated by
13 invariants of degrees 3, 6, 9, 9, 12, 12, 15, 15, 18, 18, 21, 21, 27.

In 1987, Dixmier [4] proved that invariants of degree 3, 6, 9, 12, 15, 18, 27
form a complete system of primary invariants [3, Def. 2.4.6]. Further, he proved
that at most 56 invariants suffice to generate the entire ring of invariants.

Using the Clebsch transfer principle and invariants of binary quartics, we
describe an efficient algorithm to compute invariants of the degrees given above.
As an application, we show that Shioda was right. Finally, we express four
classical invariants in terms of the listed generators.

2. Invariants, covariants, and contravariants

The standard left action of Gln(C) on Cn induces a right action on the
polynomial ring C[X1, . . . , Xn] by fM := f(MX).

Let C[X1, . . . , Xn]d be the space of homogeneous polynomials of degree d.
A polynomial mapping I : C[X1, . . . , Xn]d → C is called an invariant if

I(fM ) = I(f) det(M)e
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holds for some e ∈ Z and all M ∈ Gln(C), f ∈ C[X1, . . . , Xn]d. The degree of I
is the degree of I as a polynomial in the coefficients of f .

A covariant c is a mapping c : C[X1, . . . , Xn]d1
→ C[X1, . . . , Xn]d2

with

c(fM ) = c(f)M det(M)e

for some e ∈ Z and all M ∈ Gln(C), f ∈ C[X1, . . . , Xn]d1 .
A contravariant C is a mapping C : C[X1, . . . , Xn]d1 → C[X1, . . . , Xn]d2 with

C(fM ) = C(f)(M
>)−1

det(M)e

for some e ∈ Z and all M ∈ Gln(C), f ∈ C[X1, . . . , Xn]d1
.

We call d2 the order of the convariant (resp. contravariant). The degree
of a covariant (resp. contravariant) is the degree of its coefficients viewed as
polynomials in the coefficients of f .

Some examples are as follows:

• An invariant of a quadratic form in n variables is given by the determinant
of its matrix. It is of degree n.

• More generally, the discriminant of a form of degree d in n variables is an
invariant of degree n(d− 1)n−1.

• A covariant of a form is given by its Hessian det
(

∂2f
∂xi∂xj

)
i,j

. It has degree
n and order n(deg(f)− 2).

Remarks

• Invariants are called invariants because they are invariant with respect to
the action of Sln(C).

• The sets of all invariants, covariants, or contravariants are rings.

• The ring of covariants (resp. contravariants) is a module over the ring of
invariants.

• By a theorem of Hilbert, the ring of all invariants is finitely generated.

3. Invariants for binary quartics

A classical way to write down invariants is the symbolic form. Nowadays,
this seems to be almost completely forgotten. We refer to [9] and [10] for a
detailed explanation and [12, Chap. VIII, Sec. 2] for a more recent treatment.
A brief summary is given in [6, App. B].

Write a general binary quartic in the form f(x, y) := ax4 + bx3y + cx2y2 +
dxy3 + ey4. In degrees 2 and 3, it has the invariants S2 := 96(12ae− 3bd + c2)
and T2 := 192(72ace− 27ad2 − 27b2e + 9bcd− 2c3).
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In symbolic notation, these invariants are given by (1 2)4 and (1 2)2(1 3)2(2 3)2.
Here, (i j) is an abbreviation for the differential operator

det

(
∂

∂xi

∂
∂xj

∂
∂yi

∂
∂yj

)
.

Applying the differential operator (12)4 to f(x1, y1)f(x2, y2) gives the invariant
S2. Writing T2 in this way, we get

(1 2)2(1 3)2(2 3)2f(x1, y1)f(x2, y2)f(x3, y3) .

It is a classical result that S2 and T2 generate the ring of all invariants of binary
quartics [3, Ex. 2.1.2].

4. The Clebsch transfer

The Clebsch transfer principle can be used to construct contravariants of
ternary quartics from invariants of binary quartics. For this, we denote by
(u i j) the differential operator

det

 u ∂
∂xi

∂
∂xj

v ∂
∂yi

∂
∂yj

w ∂
∂zi

∂
∂zj

 .

Then the contravariant S3(f) ∈ C[u, v, w] of the ternary quartic f(x, y, z) is
given by (u 1 2)4f(x1, y1, z1)f(x2, y2, z2). It is of degree 2 and order 4.

Analogously, the contravariant T3(f) (degree 3, order 6) is given by

(u 1 2)2(u 1 3)2(u 2 3)2f(x1, y1, z1)f(x2, y2, z2)f(x3, y3, z3) .

Interpretation

An interpretation of these contravariants is as follows. The zero set V (S3(f))
is a subset of (P2)∨. Recall that (P2)∨ is the space of lines in P2. As a line
` ⊂ P2 can be identified with P1, it leads to a binary quartic f |`. Now we get

` ∈ V (S3(f))⇐⇒ S2(f |`) = 0 .

I.e., the contravariant S3 describes all lines that lead to a binary quartic with
S2 equal to zero. Analogously for T .

Further, the discriminant of a binary quartic is given by S3
2 − 6T 2

2 . Thus,
S3
3 − 6T 2

3 = 0 gives us all the lines that lead to singular binary quartics. For a
smooth quartic, this is just the dual curve.
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Algorithmic aspects

One can compute a contravariant directly from its definition. In the case of
a ternary quartic, this performs well if one writes the differential operator in its
Horner representation. This means, we write (u 1 2) as

(w
∂

∂y2
− v

∂

∂z2
)

∂

∂x1
+ (u

∂

∂z2
− w

∂

∂x2
)
∂

∂y1
+ (v

∂

∂x2
− u

∂

∂y2
)
∂

∂z1
.

Further, we multiply out as late as possible. Thus, T3(f) becomes

(u 1 2)2(u 1 3)2f(x1, y1, z1)(u 2 3)2f(x2, y2, z2)f(x3, y3, z3) .

However, there is a second method to compute these contravariants. It starts
with a numerical version of the Clebsch transfer. For this, we denote by ϕn the
isomorphism

ϕn : Λn−1Kn → (Kn)∨,

v1 ∧ . . . ∧ vn−1 7→ (x 7→ det(x, v1, . . . , vn−1)) .

Then we get

T3(f)(u, v, w) = T2(f(a1x + b1y, a2x + b2y, a3x + b3y)) .

Here, the right hand side is the invariant T2 of the binary quartic, given by
restriction of f to the line spanned by a and b. This line is given via ϕ−13 by
a ∧ b = ϕ−13 (u, v, w).

Using this, we can numerically evaluate the contravariant. Doing this at
sufficiently many points in (P3)∨, one can reconstruct the contravariant by
interpolation.

In our implementation for ternary quartics, the interpolation method is
slightly faster. A large part of the running time is used for the computation of
ϕ−13 . When we switch to forms in more variables, the advantage of the interpo-
lation method becomes clearer.

One can easily speed up the interpolation method by storing the used values
of ϕ−13 in a table. Further, the reconstruction of the contravariant as a polyno-
mial from its numerical values is done by solving a linear system of equations.
As the points in (P3)∨ we work with are a priori known, the coefficient matrix
of the linear system is fixed. Thus, one could precompute the inverse of this
matrix to speed up the interpolation step.

5. Invariants of ternary quartics

A system of invariants for ternary quartics is given in [4], together with
unpublished work of T. Ohno [8]. Here, we will describe another system of
invariants, which can easily be evaluated. But before we can do this, we need
the action of contravariants on covariants.
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Covariant and contravariant operation

The polynomial ring C[X1, . . . , Xn] and the ring of differential operators
C[ ∂

∂U1
, . . . , ∂

∂Un
] are isomorphic. We fix the isomorphism D given by Xi 7→ ∂

∂Ui
.

Following [6, App. B], we denote D(f1)f2 by f1 ` f2, for f1 ∈ C[X1, . . . , Xn]
and f2 ∈ C[U1, . . . , Un].

Lemma

Let C be a contravariant and c be a covariant. In case the order of c is larger
than the order of C, we get a new covariant f 7→ C(f) ` c(f). In case the orders
coincide, this results in an invariant. In case the order of c is smaller than the
order of C, we get the contravariant f 7→ c(f) ` C(f).

A list of invariants

Producing invariants for a form f ∈ C[X1, X2, X3]4 is now somehow a ran-
dom process. One multiplies known covariants and applies contravariants to
covariants and vice versa. However, one can try to keep the order small such
that they will be represented by a small number of terms. Further, it might
happen that some expressions degenerate to zero. We ended up with the fol-
lowing:

C2,0,4 := 1
96S3(f) C3,0,6 := 1

192T3(f) c3,6 := det
(

∂2f(x1,x2,x3)
∂xi∂xj

)
C4,0,2 := f ` C3,0,6 c4,4 := C2,0,4 ` f2 c5,2 := C4,0,2 ` f
c7,4 := C2,0,4 ` (c4,4 · f) C7,0,2 := c5,2 ` C2,0,4 C8,0,4 := c5,2 ` C3,0,6

c11,2 := C8,0,4 ` c3,6 C13,0,2 := c5,2 ` C8,0,4 c14,2 := C7,0,2 ` c7,4
c17,2 := C13,0,2 ` c4,4 c20,2 := C13,0,2 ` c7,4

I3 := C2,0,4 ` f I6 := C2,0,4 ` c4,4 I9a := C4,0,2 ` c5,2
I9b := C2,0,4 ` c7,4 I12a := C8,0,4 ` c4,4 I12b := C7,0,2 ` c5,2
I15a := C8,0,4 ` c7,4 I15b := C4,0,2 ` c11,2 I18a := C7,0,2 ` c11,2
I18b := C13,0,2 ` c5,2 I21a := C7,0,2 ` c14,2 I21b := C4,0,2 ` c17,2
I27 := C7,0,2 ` c20,2

6. Completeness of the system of invariants

Following [4], a complete system of primary invariants is given by invariants
of degree 3, 6, 9, 12, 15, 18, 27. Further, Shioda [11] computed the Poincare
series of the ring of invariants as

∞∑
i=0

dim(Vi)t
i =

P (t)

(1− T 27) ·
∏6

i=1 (1− T 3i)

with

P (t) = 1 + T 9 + T 12 + T 15 + 2T 18 + 3T 21 + 2T 24 + 3T 27

+ 4T 30 + 3T 33 + 4T 36 + 4T 39 + 3T 42 + 4T 45 + 3T 48

+ 2T 51 + 3T 54 + 2T 57 + T 60 + T 63 + T 66 + T 75 .
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Here, Vi denotes the vector space of degree i invariants of ternary quartics. We
get dim(Vi) = 1, 1, 2, 4, 7, 11, 19, 29, 44, 67, 98, 139, 199, 275, 375, 509, 678,
890, 1165, 1501, 1916, 2431, 3054, 3802, 4713, 5791, 7068, 8587, 10364, 12434,
14861, 17660, 20886, 24611 for i = 0, 3, 6, 9, . . . , 99.

Further, using [3, Formula 3.5.1] one can read off the Poincare series that
the invariants of degree at most 75 generate the ring of invariants. The degree
bound [3, Corollary 4.7.7] for a generating system of invariants evaluates to 83
in this case.

Experiment

Using magma [2], one can compute lower bounds for the dimension of the
space of degree d invariants generated by the listed invariants. This is done as
follows:

(i) Choose a random list of quartics being longer than the expected dimension.

(ii) Compute the invariants listed above for each quartic.

(iii) Compute a spanning system (as a vector space) of all invariants of degree d
generated by the known ones. For example, choose all degree d monomials
in a rank 13 polynomial ring with degree weights 3, 6, 9, 9, 12, 12, 15, 15,
18, 18, 21, 21, and 27.

(iv) Compute a matrix M of values of invariants containing one row for each
quartic and one column for each vector space generator.

(v) Reduce this matrix M modulo p (e.g. p = 101).

(vi) Compute the rank of the matrix.

Remark

As we chose only a finite number of quartics and reduced the matrix M
modulo p, it is not clear that we get the exact dimension of the space of invariants
spanned. However, we still get a lower bound.

Result

As the lower bounds found coincide with the upper bound given by the coef-
ficients of the Poincare series, the listed invariants in fact generate all invariants
up to degree 83. At this place, the degree bound above shows that Shioda was
right. This was first discovered by T. Ohno [8].

7. Classical invariants

Knowing explicit generators of the ring of invariants, we can ask for a repre-
sentation of classical invariants in terms of these generators. A classical invariant
is an invariant that has a geometric interpretation. Most of them were described
in the 19th century. It is a somehow surprising fact that the degrees of all these
invariants were known, but explicit formulas were given only rarely.
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Four classical invariants

Here, we will focus on the following classical invariants:

(i) The catalecticant invariant is an invariant of degree 6. It vanishes iff the
quartic can be expressed as a sum of five 4th powers of linear forms. Such
quartics are called Clebsch quartics.

(ii) The discriminant is an invariant of degree 27. It vanishes iff the quartic
is singular.

(iii) The Lüroth invariant is an invariant of degree 54. It vanishes iff the quartic
can be written in the form l1l2l3l4+al1l2l3l5+bl1l2l4l5+cl1l3l4l5+dl2l3l4l5.
Here, the li are linear forms. Such quartics are called Lüroth quartics.

(iv) The Salmon invariant is an invariant of degree 60. It vanishes iff the
quartic has a flex bitangent.

The Lüroth invariant was recently constructed explicitly using several hours of
CPU time [1]. The general approach for such an explicit construction is similar
to our first experiment. The first step is to analyze the vector space of all degree
d invariants. We describe the construction by two algorithms.

Algorithm

Given a generating set of the ring of invariants and a degree d, this algorithm
computes a basis of the vector space of all degree d invariants.

(i) Generate all monomials of weighted degree d in the given generators.

(ii) Generate a sufficiently large list of randomly chosen quartics.

(iii) Compute the invariants of these quartics.

(iv) Build up the matrix M with one row per quartic and one column per
monomial as above.

(v) Compute the row echelon form of M modulo 101.

(vi) Check that the row-space has the dimension predicted by the Poincare
series. Otherwise, choose more quartics and redo the computation.

(vii) Select all the monomials listed in step i) that correspond to the leading
coefficients of the row echelon form of M . Return these monomials as a
vector space basis of all degree d invariants.

Using this as a subalgorithm we can construct the invariant explicitly as
follows.

Algorithm

Given the degree d of an invariant and its geometric interpretation, this
algorithm computes an expression of the invariant in terms of given generators.

(i) Compute a vector space basis B of all degree d invariants with the algo-
rithm above.
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(ii) Compute a list of special quartics with Q-coefficients. The invariant, we
search for, should vanish for all these quartics. In our cases, this means to
write down a list of random Clebsch quartics, or quartics being singular
in [1 : 0 : 0], or Lüroth quartics, or quartics meeting the line z = 0 only in
[1 : 0 : 0].

(iii) Evaluate the generators of the invariant ring for these quartics.
(iv) Compute the matrix M consisting of one row for each invariant in B and

one column for each special quartic.
(v) Compute the kernel of M . In the case it is not 1-dimensional, redo the

computation with more quartics.
(vi) Compute a generator v of the kernel.

(vii) Return I :=
∑#B

i=1 viBi as a representation of the special invariant.

Results

The algorithm gives us the expression 3I6 − 74I23 for the catalecticant in-
variant. All the other formulas are not suitable for printing as they involve
many terms and large coefficients. They are available on the author’s web page
http://www.staff.uni-bayreuth.de/∼bt270951/.

As the Salmon invariant is the one of the largest degree, its reconstruction
is the most complex one. The timing results are as follows.

(i) The computation of all invariants lasted 70 seconds.
(ii) The computation of the row echelon form of B (linear algebra over Z/101Z)

took 10 seconds.
(iii) The computation of the kernel vector v (linear algebra over Q) was done

in 58 seconds.

The computations for the other invariants were considerably faster.

Remark

Knowing the geometric interpretation of the catalecticant invariant, one can
improve the experiments. We describe this in detail for the check of the com-
pleteness of the system of invariants, as this experiment is the largest one in
terms of CPU and memory usage.

The first step is to replace the invariant I6 by the catalecticant. Further,
one chooses a certain proportion of the quartics as Clebsch quartics.

This results in a block-structure for the matrix M . The upper left block
consists of invariants of Clebsch quartics not involving the catalecticant invari-
ant. The upper right block is zero. The lower left block consists of invariants of
general quartics not involving the catalecticant. The lower right block contains
all invariants of general quartics that contain the catalecticant as a factor.

As the upper right block of M is zero, a lower bound for the rank is given
by the sum of the ranks of the upper left and the lower right blocks. This leads
to a check of the completeness of the ring of invariants up to degree 81 using
675 seconds of CPU time and 486 MB of memory. The largest inspected matrix
contained approx. 52.5 · 106 entries in Z/101Z. The computations were done
with magma 2.19 on one core of a 3 GHz Intel Core 2 X9650 processor.
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8. Comparision with other systems of invariants

The package Echidna [7] of David Kohel can compute the Dixmier-Ohno in-
variants of plane quartic curves. Similarly to the method above, these invariants
can easily be related to our system. However, the expressions become lengthly.
We use small letters to denote the Dixmier-Ohne invariants. The expressions
for the first six are

i3 =
1

6
I3 i6 = −37

36
I23 +

1

24
I6 i9 =

1

3456
I9a

j9 =
1295

1944
I33 −

325

5184
I3I6 +

1

31104
I9a +

5

3456
I9b

i12 =
1295

5184
I43 −

325

13824
I23I6 −

11

539136
I3I9a +

5

9216
I3I9b −

1

359424
I12a

j12 = +
1

22464
I12b −

205

404352
I3I9a +

5

269568
I12a +

11

269568
I12b .

The formulas for the other invariants are available online on the author’s web
page http://www.staff.uni-bayreuth.de/∼bt270951.
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