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Abstract

Using Szenes formula for multiple Bernoulli series, we explain how to compute
Witten series associated to classical Lie algebras. Particular instances of these
series compute volumes of moduli spaces of flat bundles over surfaces, and also
certain multiple zeta values.

Keywords: multiple Bernoulli series, moduli spaces of flat connections,
multiple zeta values

Introduction

Let V be a finite dimensional real vector space, and A a lattice in V. We
denote the dual of A by T.

We consider a finite sequence of vectors ® lying in A, and let I'ee (®) = {7 €
T| (¢,7) # 0, for all $ € } be the set of regular elements in I' relative to .

In this paper we compute

e(2’iﬂ"u,’y>

B(®,\)(v) = e
(@,A)(v) " [Lyca (2im0,7)

VE veg

(0.0.1)

a function on the torus V/A. This sum, if not absolutely convergent, has a
meaning as a generalized function. If ® generates V, then B(®, A) is piecewise
polynomial (see [12]).

For example, for V' = Re; @& Rey with standard lattice A = Zey P Zeo, if we
choose ® = [ey, e1,e2,e1 + €2,€1 — ea], then

/

B(®,A)(vier + vaer) = Z

ni,n2

621'71'(1)1 ni+vans)

(2i7rn1)2(2i7m2)(2i7r(n1 + ’17,2))(27/7'1'(’/“ — nz)) ’
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where the summation E/ means that we sum only over the integers nqy and no
such that nina(ny + n2)(ny —na) # 0. The expression for B(P, A)(vier + vaea)
as a piecewise polynomial function of v; and vy (of degree 5) is given in Section
2, Equation (2.6.2).

We call B(®, A) the multiple Bernoulli series associated to ® and A. Multiple
Bernoulli series have been extensively studied by A. Szenes ([12],[13]). They are
natural generalizations of Bernoulli series: for V = Rw, A = Zw and &) =

[w,w,...,w], where w is repeated k times with k& > 0, the function
eQiTrnt
B(®y, A)(tw) = P
( k> )( OJ) Z (Qiﬁn)k

n€Z, n#0

is equal to —;B(k, {t}) where B(k,t) denotes the k" Bernoulli polynomial in
variable ¢, and {t} =t — [t] is the fractional part of ¢. If k = 2g and t = 0, due
to the symmetry n — —n,

B(20: )(0) = 27555:C(20).

From the residue theorem in one variable, for k > 0,
2imnt 1

e 1
— =R (- zt .
nezznséo (2imn)* eSZ_O(Zk - ez)

Szenes multidimensional residue formula (cf. Theorem 1.27) is the generalization
of this formula to higher dimensions, and it is the tool that we use for computing
B(®,A)(v) as a piecewise polynomial function.

A particular but crucial instance of multiple Bernoulli series is when A is the
coroot lattice of a compact connected simple Lie group G, and ® is comprised
of positive coroots of G. The series B(®24_2,A), where the argument ®o, o
refers to taking elements of ® with multiplicity 2g — 2, appeared in the work of
E. Witten ([16], §3), where Witten shows that its value at v = 0 (up to a scalar
depending on G and g) is the symplectic volume of the moduli space of flat
G-connections on a Riemann surface of genus g. Similarly, for a collection of
regular elements v = {vy,...,vs} of the Cartan Lie algebra of G, certain linear
combinations of B(®og_24s,A) at some particular values (depending on v) is
the symplectic volume of the moduli space of flat G-connections on a Riemann
surface of genus g with s boundary components, around which the holonomy is
determined by v. Then, its dependence on v is piecewise polynomial.

Multiple Bernoulli series have also been studied by P.E. Gunnells and R. Sczech
([5]) in view of applications to zeta functions of real number fields. Explicit com-
putations of volumes of moduli spaces of flat bundles on Riemann surfaces are
also obtained in [5]. Yet, the techniques they use is a generalization of the
continued fraction algorithm and it is different from ours.

Y. Komori, K. Matsumoto and H. Tsumura ([6],[7],[8],[9]) studied the re-
striction of the series (0.0.1), by summing it over the cone of dominant regular



weights of a semi-simple Lie group G, and defined a function ((s, v, G) (cf. Sec-
tion 5.2). They also obtained relations between these functions over Q. When
A is the coroot lattice of a compact connected simple Lie group G and the se-
quence P is the set of its positive coroots with equal even multiplicity for long
roots and (possibly different) equal even multiplicity for short roots, due to the
Weyl group symmetry, the summation B(®,A)(0) over the full (regular) weight
lattice is just (up to multiplication by an appropriate power of (27)) Komori-
Matsumoto-Tsumura zeta function ((s,0,G). Thus, the value of ((s,0,G) (up
to a certain power of (27)) is a rational number which can be computed ex-
plicitly, we give examples of such computations. As it is observed in [6], some
instances of ((s, v, G) also compute certain multiple zeta values. In the last part

of the article we give various such computations of multiple zeta values using
B(®,A).

Here is the outline of individual sections.

In Section 1, we recall a formula due to A. Szenes, which allows an efficient
computation of B(®, A).

In Section 2, we give an outline of an algorithm that efficiently computes
the needed ingredients of this formula for classical root systems. We also give
several simple examples.

In Section 3, we show how this applies to the symplectic volume of the moduli
space of flat G-connections on a Riemann surface of genus g with s boundary
components. We obtain an expression for the symplectic volume by taking the
limit of the Verlinde formula. We then show that our formula thus obtained
coincides with that of Witten (including the constants) given in terms of the
Riemannian volumes of G and T'. We also give examples of these functions.

In Sections 4 and 5, we give several examples and tables of Witten volumes,
which include some examples from [6], [7], [8] and [9]. We give an idea of
computational limitation of our algorithm (written as a simple Maple program)
in terms of the rank of the group G and the number of elements in ®. Following
Komori-Matsumoto-Tsumura, we also give some examples of rational multiple
zeta values. To compute more examples, our Maple program is available on the
webpage of the last author.

Finally, in the appendix, for completeness, we include a slightly modified
proof of Szenes formula.
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1. Szenes formula for multiple Bernoulli series

1.1. Functions on the complement of hyperplanes

In this subsection U is an r-dimensional complex vector space. We denote
its dual by V. If ¢ € V, we denote by Hy, = {u € U; (¢, u) = 0} the hyperplane
in U determined by ¢.

We recall briefly some structure theorems for the ring of rational functions
that are regular on the complement of a union of hyperplanes [4].

Let H = {Hy,...,Hn} be a set of hyperplanes in U. Then, we may choose
@1 € V such that H = Hy, ; the element ¢, is called an equation of Hy,. Clearly,
an equation ¢y is not unique, it is determined up to a non-zero scalar multiple.
Consider Uy := {u € U; (¢, u) # 0 forallk }, an open subset of U; an element
of Uy will be called regular.

We denote by S(V') the symmetric algebra of V' and identify it with the ring
of polynomial functions on U. Let Ry denote the ring of rational functions on
U that are regular on Uy, that is, the ring generated by S(V) together with
inverses of the linear forms ¢; defining H.

The ring D(U) of differential operators on U with polynomial coefficients
acts on Ry . In particular, U operates on Ry by differentiation. We denote by
O(U)Ry the subspace of Ry, obtained by differentiation.

In the particular case that V is one dimensional and H = {0}, the ring Ry
is the ring of Laurent polynomials C[z,z7!], and the function z¢, for i # —1, is
obtained as a derivative d%i_%lzi“. Thus Ry = LRy & Cz~L.

If f=)", a,z" is an element of C[z, 2~ !], we denote by Res,— f the coeffi-
cient a_; of z7! in the expression of f. The linear form Res,_q is characterized

by the fact that it vanishes on d%RH and takes the value a_; on Cz~!.

By analogy to the one dimensional case demonstrated above, a linear func-
tional on R4 vanishing on 9(U)R« will be called a ‘residue’.

Let us thus analyze the space Ry modulo O(U)Ry.

Consider a set ®¢7 := {¢1, ¢2,...,0n} of equations for H. A subset o of
®<? will be called a basis if the elements ¢ in o form a basis of V. We denote
by B (@) the set of such subsets o. A subset v of ®°? will be called generating
if the elements ¢y, in v generate the vector space V.

Definition 1.1. Let o := {1, aq,...,a,} € B(P). The element
1
fo(2) = 77—
[Tz o (2)

of Ry s called a ‘simple fraction’. We denote by Sy the subspace of Ry gen-
erated by the elements fo, 0 € B(PY).

Let v = [, . . ., ag] be a sequence of k elements of ®°? and n = [ny, na, ..., ng)
be a sequence of positive integers. We define
1
9(1/, n) = W
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We denote by Gy the subspace of Ry, generated by the elements (v, n) where
v is generating.

As the notation suggests, the spaces Ry, Sy and Gy depend only on H.
The term simple fraction comes from the fact that if o = {¢1,¢2,...,¢,} is a
basis, then we can choose coordinates z; on U so that ¢;(z) = z;, so that for
this system of coordinates f,(z) = ﬁ

We recall the following ‘partial fraction’ decomposition result from [4].

Lemma 1.2. Let v be a subset of ®¢¢ generating a t dimensional subspace of
V. Then 6(v,n) may be written as a linear combination of elements 6(o, m) =

ﬁ where o := {ai,, ..., 04} is a subset of v consisting of t independent
i1 it
elements and m = {mq,...,m} a sequence of positive integers.
1 1 1
Example 1.3. =

2:12'2(2'1 +Zg) Zl(Zl +ZQ)2 22(21 +22)2.
Theorem 1.4. (Brion-Vergne [4])
Ry = 6(U)RH D Sy .

The projector R : Ry — Sy will be called the total residue. In view of this
theorem, a residue is just a linear form on Sy .

In the case that H is the set of hyperplanes with equations the positive
coroots of a simple compact Lie group G, the dimension of Sy is given by the
product of exponents of G [11]. In Section 2, we will give an explicit basis for
Sy for simple Lie algebras of type A, B and C (which defines the same set of
hyperplanes as B) with dual basis consisting of iterated residues.

1.2. Szenes polynomial

In this section and for the rest of the article, V' will denote a real vector
space of dimension 7.

Let U be the dual vector space of V. Let A be a lattice in V with dual
lattice I in U.

Let H := {Hy,Hs,...,Hy} be a real arrangement of hyperplanes in U.
We say that A and H are compatible if the hyperplanes in ‘H are rational with
respect to A, that is, they can be defined by equations ¢ € A. If A’ is another
lattice commensurable with A, then A’ and H are also compatible.

Thus we now consider a lattice A and a real arrangement of hyperplanes
‘H ={H,,Hs,...,Hy} in U rational with respect to A.

We choose ®°? = {¢1, d2,..., 0N}, a set of defining equations for H, with
each ¢; in A. We sometimes refer to H only via its set of equations ®°? and
write H = U{¢ = 0}.

We denote the complex arrangement defined by U{¢y = 0} in Ug with the
same letter H, and denote by Uy = {[], ¢ # 0} the corresponding open subset
of Uc.
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Figure 1: Topes for Example 1.5 Figure 2: Topes for Example 1.6

An admissible hyperplane W in V (for the system #) is an hyperplane gen-
erated by (r — 1) linearly independent elements ¢ of ®¢?. Such an hyperplane
will also be called an (admissible) wall. An admissible affine wall is a translate
of a wall by an element of A.

An element v € V is called regular for (#,A) if v is not on any affine wall
(we will simply say that v is regular). The meaning of the word regular is thus
different for elements v € V (v is not on any affine wall) and v € Uc (u is
such that [], (¢r,u) # 0). However, it will be clear what regular means in the
context.

A tope T is a connected component of the complement of all affine hyper-
planes. Thus a tope 7 is a connected open subset of V' consisting of regular
elements. We denote the set of topes by T(#,A). As the notation indicates,
T(H,A) does not depend on the choice of equations for H.

Example 1.5. Let V = Re; @ Rey and A = Zey & Zes. Let U be its dual with
basis {61,62}. We express z € Uc as z = z1e! + z0¢2, and consider the set of
hyperplanes H = {{z; = 0}, {22 = 0}, {21 + 22 = 0}} with the set of equations
D1 = {ey,eq,e1 + e2}. Figure 1 depicts topes associated to this pair.

Example 1.6. With V and A as above, we now consider the set of hyperplanes
H = {{z1 =0}, {22 =0}, {z1 + 22 = 0}, {z1 — 22 = 0} } with the set of equations
D = {ey,eq,e1 + e2,e1 — ea}. Figure 2 depicts topes associated to this pair.

We denote by V;.cq(H, A) (or simply V,.c4) the set of (#H, A) regular elements
of V. It is an open subset of V' which is the disjoint union of all topes.

A locally constant function on V., is a function on V;.., which is constant
on each tope. A piecewise polynomial function on V,., is a function on V¢4
which is given by a polynomial expression on each tope.

If t € R, we denote by [t] the integral part of ¢, and by {t} = t — [t] the
fractional part of ¢. If v € I vanishes on an admissible hyperplane W, and c is a
constant, then the function v — {(v,v) + ¢} is piecewise polynomial (piecewise
linear) and is periodic with respect to A. Szenes residue formula provides an
algorithm to describe Bernoulli series in terms of these basic functions.



Definition 1.7. Let My be the space of functions h/Q where Q is a product
of linear forms belonging to Y, and h a holomorphic function defined in a
neighborhood of 0 in Ug.

We define the space 7@,7.[ as the space of functions iL/Q where h = Z;’;O P
18 a formal power series and Q) is a product of linear forms belonging to ®<1.

Taking the Taylor series h of h at 0 defines an injective map from My to Ry.
The projector R from Ry to Sy extends to 7@7.[ Indeed R vanishes outside
the homogeneous components of degree —r of the graded space Ry. Thus if
h/@ is an element in My, with @ a product of N elements of ¢4, we take the

Taylor series [h]|n_, of h up to order N —r, and define R(%) = R([h]%) For

example, the equality

zt zt

e 1 e

P e

)

identifies the function —$— to an element of M3 with H = {0}. Note that each
homogeneous term of the Taylor series expansion

ZB kl’

k=0

Z

where B(k,t) is the k' Bernoulli polynomial in ¢, is thus a polynomial in ¢.
Let f € Ry, z € Uy and y € I'. Then if z is small, 2imy — 2 is still a regular
element of Uc. Now consider the series

S(f,z,v) = Z f(2imy — (v,2imy)

yel’

In the case that f above decreases sufficiently quickly at infinity, the series
S(f,z,v) is absolutely convergent and defines a continuous function of v. In
general, as f € Ry is of at most polynomial growth, nyer f(2imy — z)efv:2imn
is the Fourier series of a generalized function on V/A.

Multiplying S(f, z,v) by the exponential e~¢**) we introduce the following
generalized function.

Definition 1.8. Let f € Ry, z € Uy and small. We define the generalized
function AM(f)(z,v) of v by

v) = Z f(imy — z)elv2imr=2),

yel’

The meaning of A*(f) is clear : average the function z — f(—z)e={"*) over
2i7L in order to obtain a function on the complex torus Ug/2inT. We consider
AM(f)(2z,v) as a generalized function of v € V with coefficients meromorphic
functions of z on Ug/2inT". In fact, as we shall see in Proposition 1.11, when f
is in Sy, the convergence of the series > f(2imy — 2)ef?27) holds in the



sense of the Fourier series of an L2- periodic function of v € V/A, and

v e (02 Z f(2imy — z)e“”mm} = AA(f)(zm)
yel

is a locally constant function of v € V,.., with values in M.
Note the covariance relation. For A € A,

AN (2,0 + X)) = e DD AN (F) (2, 0). (1.8.1)
It is easy to compare A*(f)(z,v) when we change the lattice A.

Lemma 1.9. Let f € Ry. If A1 C A2, then

AN (N(z0) = [N/ATTE ST AN () (2 v+ ), (1.9.1)

AEAZ/AL

Proof. Denote the dual of A* by I'*. Then,

ANz o+ 0) = D f(2imy — z)elvtA2mI=E)

yer?
and the sum over A € A?/A' of M2 is zero except when v € I'2. O

Example 1.10. Let V = R, A = Z, z € C\ {0} and small, and f(z) =
Then,

W=

eU(QZTm—z) e2imnv

A Z,v) = = (9% — )
A (f)( ) ) T;Z (inn,;j) ng (QiWn*Z)

This series is not absolutely convergent, but the oscillatory factor 2™ insures

the convergence in the distributional sense as a function of v. The L?-expansion
(v-[oDz .
€
is

of the periodic function v —

1—e?

Z </1 Me—QiﬂnvdU) e2i7T"U — Z (/1 Mdv) 627;7”“}

o l—e? o 1-—e¢
nez nez

(z=2imn) _ 1 . 1 ;
B e 2imnu _ T pimnw
Thus [v]
AA(f)(Z,v) _ 16 ) (1.10.1)
—e*

We see in this one dimensional example that A(f)(z,v) is a locally constant
function of v. In general, we have the following proposition.

Proposition 1.11. If f € Sy, the function v — A*(f)(z,v) is a locally con-
stant function on Vieq, with values in My.



We prove the above proposition by computing A*(f)(z,v) explicitly for a
simple fraction f = f,. Then the result will follow for any f € Sy.

Recall that the set of equations ®°7 is a subset of A. Let 0 = {aq, g, ..., 0}
be an element of B(P°Y), with oy belonging to A. Let Q, := &},_,[0,1)ay be
the semi-open parallelepiped spanned by o. For a regular element v in V, we
define T'(v, o) to be the set of elements A € A such that v + A € Q,. This set
depends only on the tope 7 where v belongs, hence we denote it by T'(7, o).

Let A, be the sublattice of A generated by the elements in the basis o. Then
the set T'(, o) contains exactly A/A, elements.

Proposition 1.12. Ifv € 7 and 0 = {aq, g, ..., a.} € B(D?),

)

AN = i 2 ey

/\GT

Proof. If A = A,, the formula reduces to the one dimensional case. Otherwise,
we use Lemma 1.9 and the covariance relation (1.8.1). O

Thus the dependence of A*(f,)(z,v) on v is only via the tope 7 where it
belongs. Therefore, for any f € Sy, the function A*(f)(z,v) is locally constant
on V,e4. Hence the claim in Proposition 1.11.

Example 1.13. We return to Example 1.5. To describe A*(f)(z,v) on V.,
it suffices to give its expression on topes 71 and 75 (see Figure 1). This is true
since any element of V,.., can be translated to 71 or 7 by an element of A, and
then one uses the covariance relation (1.8.1).

We choose o = {ey, e1+ea} as a basis of @9, and write z = z1e!+29¢2. Then
fo(z) = m isin Sy. If v € 71, we have AA(fg)(z v) = WM,

while if v € T2, then AA(fO-)(Z, ’U) = m

For v € Vg, denote by Z(v) : Sy — My the map

(Z%(0)£)(2) = AMNf)(z,v).

This operator is locally constant. We denote its value on 7 by Z*(7). Hence
(ZM1)f)(2) = AM(f)(2,v) for any choice of v € T.

We now define a piecewise polynomial function of v associated to a function
g(2) in Ry. Ifv € V and g € Ry, then g,(2) := g(2)e!*?) is a function in My
depending on v. Now suppose v € V.4, and consider the map Sy, — My, which
associates to f € Sy the function g(z)e'*¥)(Z*(v)f)(z). We project back this
function on Sy using the projector R. Thus the map

1) = R (g(2)e=) (22 ) 1)(2)) (1.13.1)

is a map from Sy to Sy depending on v. As Sy is finite dimensional, we can
take the trace of this operator, and thus obtain a function of v € V,..y. Let us
record this definition.



Definition 1.14. Let g € Ry. Define the function P(H, A, g) on Vieg(H,A)

by
P(H,A, g)(v) :=Trs, (Rg, Z"(v)).

Let us see that P(H, , g)(v) is a polynomial function of v on each tope 7.
Indeed, to compute P(H, A )( ) using (1.13.1), we have to compute the total
residue of functions g(z)ef**? AM(f;)(z,v) with f; varying over a basis of Sy. If
v € 7, then AM(f;)(z,v) = Z(7 ) ( ) is constant in v. So when v stays in a

tope 7, the dependence of g(z)e(*" AN(f;)(z,v) = g(2)e*¥) (Z2(7)fi)(2) on v
is via e< v}, and the map R involves only the Taylor series of this function up to
some order. Thus we have associated to g € Ry (and A) a piecewise polynomial
function P(H, A, g) on Vieg.

It is easy to compare piecewise polynomial functions P(H, A, g) associated
to different lattices: Observe that if A C A2, then V,eq(H,A?) C Vieg(H, A1).
Then, using Lemma 1.9, we have

P(H, A% g)(v) = [A*/A[7H " P(H, AL g) (v +N). (1.14.1)
AEA2Z/AT
Our next aim is to compute the piecewise polynomial function P(H, A, g)
using residues. We need more definitions.

An ordered basis of ®°7 is a sequence [y, @, .. ., a.] of elements of $°? such
that the underlying set is in B(®°?). We denote the set of ordered bases of ®¢¢

by 9B (@°9).
Let & = (a1, 9,... 0] € %(fl)eq). Then, to this data, one associates an

iterated residue functional Res” on Ry as follows. For z € Ug, let z; = (2, o).
Then a function f in R4 can be expressed as a function f(z1,z22,...,2.). We
define

Res?(f) = R6821=0(Reszz=0 e (Reszr=0 f(zla 225y ZT‘)) e )

Clearly Res?( fo) = 1. Moreover, the functional Res® factors through the
canonical projection R : Ry — Sy, that is, ResF> = Res7 R.

Definition 1.15. A diagonal subset of %(@eq) is a subset D of %(@eq) such
that the set of simple fractions fo, 7 e B, forms a basis of Sy :

Sn=055Cl
and the dual basis to the basis {fg,? € B of Sy is the set of linear forms
eb?, that 1s, Res?(fg) =47, for 7T e

A total order on ®¢¢ allows us to construct the set of Orlik-Solomon bases
(see [4]), which provides diagonal basis of Sy. However we will also use some
other diagonal subsets.

If B : Sy — My is an operator, the trace of the operator A := RB is thus

Tr(A):= Y Res® Bf,.
FeD
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Definition 1.16. Let g € Ry, T a connected component of Vieq, and v € 7.
We denote by P(H, A, g,7)(v) the polynomial function on V' such that

P(H, A, g)(v) = P(H,A, g,7)(v).

We may give a more explicit formula for the polynomial P(#, A, g,7)(v)
using a diagonal subset D.

ﬁ
Proposition 1.17. Let g € My and 7 € T(H,A) be a tope. Let D be a
diagonal subset of E(fbeq). Then

P(H A g.7)(0) = 37 Res” (e 9(:)2°(7)(fo)(2)).
D

Furthermore Z*(7)(f,)(z) is given explicitly by Proposition 1.12. Thus, in
principle, the above formula allows us to compute P(H, A, g).

It is important to remark that the determination of a diagonal subset B
depends essentially only on the system of hyperplanes H and not on the choice of
®°?. The difficulties in writing an algorithm for P(#, A, g) lies in the description
of a diagonal subset B, and also for each o € D, in the computation of A*(f,).
The difficulty of this last computation depends on the lattice A.

Definition 1.18. Let @9 C A. A basis 0 € B(D?) is called unimodular with
respect to A if Ao = A . A set ®°1 is called unimodular, if any basis o € B(Pe?)
is unimodular.

Let 0 = {a1,a2,...,a,} be abasis. For 1 < ¢ < r, the linear form v — ¢7 (v)
is the coefficient of v with respect to ;. Now, consider the function {t} = t—[t];
on each open interval 7 =]n,n + 1] it coincides with the linear function t
(t—n). We express v =Y. _, ¢7(v)a;, thenv—3""_ [¢?(v)]a; = >0 {7 (v) }eu
is in Q4. Thus, if ¢ is a unimodular basis, the set T'(7, o) contains exactly the
element A = —>""_ [¢?(v)]e; (which depends only on the tope 7 where v lies).

Corollary 1.19. Let o be a unimodular basis in B(®%). Let v € 7, and
A=—=>"_,[c7(v)]a;. Then
N2

H;,‘Azl(]- _ e<az‘,z>) .

It may happen that even when the system ®°? is not unimodular for A, we

ANfo)(z,0) =

can choose D to consist of unimodular bases. In particular, using Proposition
1.17, we can give an explicit algorithm for computing the piecewise polynomial
function P(H, A, g) for classical root systems in the form of a ‘step polynomial’.
Let us define what this means.

Definition 1.20. Let D be a subset of g(q)eq). We denote by Step(B) the al-
gebra of functions on' V' generated by the piecewise linear functions v — {cJ (v)}
with o running over D and 1 < i < r. An element of the algebra Step(D) is

called a step polynomial (associated to D ).

11



It is clear that a step polynomial is a periodic function on V', which is
expressed by a polynomial formula on each tope.

Proposition 1.21. Suppose B is a diagonal subset of g(@eq) consisting of
unimodular basis (with respect to A). Then, for g € Gy, the piecewise polynomial

function P(H, A, g) belongs to the algebra Step(D).

Proof. This is clear, as we have the formula

1
[Tim (1 = elon=)’

P(H, A, g)(v) = Y Res? g(z)eZim{el 0} an2)
FeB

(1.21.1)

and the dependence on v is through the Taylor series expansion (in 2) of
e2i=ilel (WH@i2) yp to some order. O

1.3. Multiple Bernoulli series

We return to our main object of study: the multiple Bernoulli series.

Let V, A and H be as before. We denote by I' C U the dual lattice to A,
and by I'yeg(H) the set TN Uy. If v € I'reg(H), a function g in Ry, is defined
on 2imry.

Definition 1.22. If g € Ry, the generalized function B(H, A, g)(v) on V is
defined by
B(H, A, g)(v) = Z g(2imy)e2 ™),
VET reg (H)

The above series converges in the space of generalized functions on V.

We state some obvious properties of B(H, A, g), with which we can compare
it over commensurable lattices.

Lemma 1.23. If A' C A%, then

B(H, A%, g)(v) = [A2/A'[71 " B(H, A, g)(v+A). (1.23.1)
AEAZ/AL

If we dilate a lattice A by ¢, and if g is homogeneous of degree h, we clearly

have v

14
Definition 1.24. A generalized function b on V is called piecewise polynomial
relative to H and A if it is locally L', and if, for any 7 in T (H, A), there exists
a polynomial function b™ on V' such that the restriction of b to T coincides with
the restriction of the polynomial b™ to T.

B(H, tA, g)(v) = "B(H, A, g)(=). (1.23.2)

As an L'-function is entirely determined by its restriction to Vieg, we will
not distinguish between piecewise polynomial generalized functions on V' and
piecewise polynomial functions on V.., as defined in the preceding section. One
should be careful that, the restriction of a piecewise polynomial generalized

12



AN NEANERN
TNON N N NN

Figure 3: Graph of B({0},Z,1/z)(v) = % —{v}

function to any tope is polynomial, however, the converse is not true. For
example, the § function of the lattice A restricts to 0 on any tope, but is not a
piecewise polynomial generalized function, as it is not locally L*.

Any function f in Ry is of the form pg, with g € G and p a polynomial.
Moreover, the function v — B(H,A,pg)(v) is obtained from B(H, A, g)(v) by
differentiation (in the distribution sense). Thus, the computation of B(H, A, f)
for f in Ry can be reduced to that of B(H,A,g) for g in Gy;. The following
proposition follows from calculations in dimension one, Lemma 1.2 and formulae
of Lemma 1.23.

Proposition 1.25. If f € Ry, the restriction of B(H,A, f) to any tope T is
given by a polynomial function.

Furthermore, if f € Gy, the generalized function B(H,A, f) is a piecewise
polynomial generalized function.

Let us emphasize on the subtle difference between the conditions f € Ry
and f € Gy.

Consider f = 1 in the one dimensional space Ug and H = {0}. The function
fis not in Gy. For v € V, BH,A, f)(v) = 3, o™ = =143 ., ™,
which, on any tope, is the constant function equal to —1. However, it has some
singular part dz, and it is not locally L'. In contrast, if f = %, the generalized

function B(H, A, f)(v) = 3_,, 40 922;% is locally L' and equal to the piecewise
polynomial function —B(1, {v}) = 1/2 — {v} (see Figure 3).

Definition 1.26. Let f € Ry. Given a tope 7 in T(H,A), we denote by
B(H, A, f,7) the polynomial function on V which coincides with B(H, A, f) on
the tope T.

Recall the piecewise polynomial function P(H, A, f) on Vieq(H, A) as given
in Definition 1.14.

Theorem 1.27. (Szenes) Let f € Ry. On Vieg(H, A), we have

B(H,A, f) = P(H,A, f).

13



For completeness, we give a proof of this theorem in the Appendix.

Our Maple program computes, given data H, A, f, where H is the hyper-
plane arrangement associated to a classical root system, a piecewise polynomial
function on V in terms of step polynomials. Naturally, we can also evaluate this
function at any point v € V,.¢,.

We return to the definition of multiple Bernoulli series as given in the in-
troduction: V is a vector space with a lattice A, and ® a list of elements in A.
Associated to this data, we defined,

6<2i7rv7'7>

B(®,A)(v) = Myeo 2i70,7)

VE reg (P)

where I is the dual of A, and T'yeg(®) = {7y € T'; (¢,7) # 0 for all ¢ € O} are its
regular elements.
Consider H = Ugea{¢ = 0} (some elements of the list & might define the

same hyperplane) and g(z) = 1/[]cq (¢, 2), then
B(®,A)(v) = B(H, A, g)(v).

We will also call the functions B(H, A, ¢)(v) multiple Bernoulli series.

2. Classical root systems

Let G be a simple, connected, simply connected, compact Lie group of rank
r with maximal torus 7. We denote the Lie algebra of T" and G by t and g
respectively. Then the complexification § := t¢ is a Cartan subalgebra of g¢. Let
R(gc,h) C b* be the set of roots; we denote the root lattice by @ and its dual, the
coweight lattice, by P. For a € R, H,, denotes the associated coroot; the coroot
lattice is denoted by Q. The weight lattice is P = {\ € h*; \(H,,) € Z, Yo € R};
a reqular weight A € P9 is such that A(H,) # 0 for all H,. We denote by
br := ), RH, the real span of coroots.

In this section we have V = b, and its dual by is denoted by U as before.
We follow the notation of Bourbaki for root data.

2.1. Diagonal subsets

To compute multiple Bernoulli series associated to classical root systems
we need to construct explicit diagonal bases for the corresponding Sz. Such
bases can be constructed by an algorithmic procedure, based on Orlik-Solomon

construction [10]. However in some cases one can describe a diagonal subset

of 5 (®°?) whose associated simple fractions form a basis for Sy in a direct way.
We now demonstrate this.

14



2.1.1. The system of type A,

Let n = r + 1. We consider R™ with standard basis {e;}; denote the dual
basis by {e’}. Let A, :=[(e; —e;); 1 <i < j < n] be the root system of type A
and rank r, and V = {v = Y1 | ve’; Y1 v; = 0}.

Let z = > i, z'; be in U (hence > 7, z* = 0) and let H be the system
of hyperplanes in Uc given by HA = Ut<i<j<n{z® — 27 = 0}. We take the set
Pe1(A,) = {e' —e/;1 < i < j <n} of positive coroots as equations of HZ.

One way to find a diagonal basis of Sy, is as follows.

Let ¥ = [e! —e2,e2 —€?,...,e" — "] be the set of simple coroots. For a
permutation w, we denote by @, = [¢¥() — e+ i =1 . 7]. Then o,
is an ordered basis associated to w, and the corresponding simple fraction is

1

fuw(z) == H::1( w(i) — Zuw(i+1))’

Let W, be the subgroup of the Weyl group ¥, 1 of permutations of {e!, e?, ... e ™1}
leaving the last element e" ™1 = e fixed. Recall the following result (see for ex-
ample Baldoni-Vergne [2] for a proof).

Proposition 2.1. The set BW consisting of ordered bases T forw e W, is
a diagonal subset of g(@eq(Ar)),

We use the above basis in our Maple program. We now give another inter-
esting diagonal subset.

Consider a sequence o = [2, a3, ..., ap] where a; = e — e/ with j < i.
That is, as = e2 —e!, ag = e3 —e? or e —e!, ay = e* — €3, or e — €2, or
et — ¢!, ete. Clearly, & is in g(q)eq(Ar)). We call such & a flag basis; there

are 1! such sequences 7.

Lemma 2.2. The set B(A,.) consisting of flag bases is a diagonal subset of
% (0(A,)).

We only need to prove that if o and 7 are two flag bases, then Res® fr=0
unless o = 7. But this is evident.

2.1.2. Systems of type B, or C,

We consider V = R" with standard basis {e'}. Let B, = [+e;, £(e;£e;), 1 <
i <r, 1<1i<j<r]be the root system of type B and rank r.

Let C, = [£2e;,£(e; £ €;),1 <i <r, 1 <i<j<r| be the root system of
type C and rank r.

As roots of the systems of type B and C are proportional, the system of
hyperplanes in U = bj defined by coroots of B and C are the same, and we
denote that system (and the corresponding complex arrangement) by HZC.
More precisely, let z = Y7, z%; in Ug, then the system of hyperplanes HZ¢
in Ug is given by HFC = U1§i<]—§r{zi +2 = 0} U Ulgigr{zi = 0}

We take the set ®°¢(BC,) = Uj<icj<r{e’ £ e/ = 0} UUj<i<,{e' = 0} as
equations of HBC.

We now define a flag basis & of ®°4(BC,). This is a basis of the form
T = [a1, 0, ...,a,] of r elements of ®¢¢(BC,) so that o = €, or e — e/ or
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e + el with j <i. Thatis, oy =e', ap =e? ore? —el', or e +e!, a3 =e? or
e3—e? ore3+e?, or €3 —el, or e3+el, ete. Clearly, there are 1-3-5---(2r —1)

such sequences 7.

Lemma 2.3. The set B(BC’T) consisting of flag bases is a diagonal subset of
% (0°1(BC,)).

Proof. We first prove, by induction on r, that simple fractions f;, associated to
a flag basis b generate Syzc. We use the identities

1 1 1 1 1 1

(xr — i) (xr +25) (T +24) 220 + (zr — x3) 22,

T (@r +21)  (@r @) T xexi T (T — i) (T — i) T

11 1 1 . 11 1 1 1 1 11

;r Zj ’

to reduce to the case where a simple fraction f;, contains a linear form of type
e",ore" 4+ e’ or e — ' in the denominator, but not any two at the same time.
Then, by induction on r, we see that the simple fractions f; associated to flag

basis b generates the space Sy zc. The dual property on the elements of (BC,)
is evident. O

Remark 2.4. Although the system ®°4(BC,.) is not unimodular for the lattice

; —
AN = &Ze", we see that any 7 in the set D(BC,) above is unimodular, so that
the computation of ZM1)(fs) is easy.

2.1.8. The system of type D,

We consider V' = R" with standard basis {e’}. Let D, = [£(e; £ ¢e;); 1 <
i < j <] be the root system of type D and rank r. Let z = ., z%¢; in Uc.
We consider the system of hyperplanes in Ug

HTD = U1§i<j§7«{2i +27 = 0}.

The dimension of Syp is known to be 1-3-5---(2r — 3)(r — 1). However, we
did not find a nice diagonal basis for S;p. We proceed as follows: The set Uy, p

of regular elements for HP contains Uy se. Indeed, for any z in Uyp, we have
2P+ 29 £ 0, but 2* may equal zero. We define the set

U;w::{zk:&zi:I:zj#Oforl§i<j§randzi7é0for1gigr,i#k}.

Then, the following disjoint decomposition Uy p = Uysc |JU}_, Uk, holds. The
set Uy, is clearly isomorphic to the set UHB_Cl in rank r —1 via the map i which
inserts a zero coordinate in position k, and hence,

Upp = Uype | Urziin(Uyse). (2.4.1)

The above decomposition allows us to reduce calculations in systems of type D
to those of systems of type B or C.
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2.2. Calculations of multiple Bernoulli series for type A

We use the same notation as in Section 2.1.1.

Let @4 C U be the root lattice generated by AT7 and P4 C U be the weight
lattice. Then P4 is generated by Q4 and e; — r+1 (e1+e2+---+e41). The
cardinality of Pa/Qa is r + 1.

Let I" be a lattice such that Q4 C I' C P4. We denote by I'yeq =1'N U’HA
the set of regular elements in I'. Let A C V be the dual lattice to I', and let
S = [sa] be a list of exponents. Define

1
Ha>0 <HO" Z>Sa ’

where the set {H,,a > 0} is the set of positive coroots ®°(A,). If v € V,

93 (2) =

(2im(v,7)

B A aD0) = D [ Ginta

'YEFTeg

If we use the diagonal basis BW for ®¢1(A,.) as defined in Proposition 2.1,
then it consists of elements [¢¥(1) —e®(2) . (") — 1] where w is an element
of W,.. Thus if we expressv = >_._, v;(e"—e" 1), the algebra Step(BW) consists
of functions {) _; v;} where I runs over subsets of {1,2,...,7}.

We now discuss two simple cases, where I is either the weight lattice Py, or
the root lattice Q4.

2.2.1. Bernoulli series for the weight lattice

The dual of the weight lattice Py is the coroot lattice Q 4 generated by simple
coroots H,, and the system ®°?(A,) of equations (the positive coroots) is uni-
modular with respect to Q4. Thus B(H2, Q,92)(v) is a piecewise polynomial
function of degree ) s, and lies in the algebra Step(Dw ).

Our program then gives B(H2,Q4,92)(v) as a polynomial expression in
{>>; vi}. It also computes numerically the value of this function at any point v.

Example 2.5. Consider the root system of type A;. For s = [1,1,1],
627,'71'777,1)172717rnv3

(2imm) (2imn)(2im(m + n))’

BOE, On g = 3
m,ne”’
mn(m+n)#0

(2.5.1)

where v = vie! + v9e? + vge® with v + vy + v3 = 0. Denotlng the fractional
part of t with {t} € [0,1[, we obtain that P(vi,vs,v3) := B(H5, Qa,g2)(v) is
equal to

%({112}—{111})({Ul}2—3{U1+v2}{vl}+{Uz}{vl}+3{vl+v2}—1—3{vl+v2}{v2}+{v2}2)-

(2.5.2)
We remark that the series (2.5.1) is not absolutely convergent, but the sum has
a meaning and is a piecewise polynomial function.
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Let us give some numerical examples. 3
Consider Ay with s = [10,10,10], v; = vy = 0. Then, B(H3', Q 4, g2)(0) is

/

1 27739097

; (2imm) 10 (2imn) 10 (2im(m + n))10  4174671932121099276691439616000000

Consider A4. We list the exponents with respect to the following order on the
roots [e] —ez,e1—€3,e1—€4, €1 —€5, €2 —€3, 62— €4, €2 —€5, €3 — €4, €3 — €5, €4 —€5].
For s = [6,6,6,6,4,2,2,2,2,2] and v = [0,0,0,0, 0],

1

BH5, Qa,98)(0) = WX

!

1
2 m§mim3m3(mi + mz)%(m1 + ma + m3)®(m1 + ma + m3 + ma)8(ma + m3)2(ma + ms + ma)?(msz + ma)?
B 66581757
~2081416538897698301902069565296214016000000000°
while for s = [4,4,4,4,4,4,4,4,4,4] and v = [0,0,0,0, 0], we obtain

. 3998447009863
"~ 19318834119102098604968210835862034086625280000000000

B(Hi',Qa,9:)(0)

2.2.2. Bernoulli series for the root lattice

Let £ = Y27_ (¢! —e"™). Then a system of representatives for Pa/Qa

consists of the elements {\; = %15 0 < j <r}. Using Formula (1.23.1),

T

A P A _ 1 A A A
B(H’r‘ ’PA7gs )(U) - m;B(HT 3QA7gs )(U+>\J)

Hence, we obtain an expression for B(Hf,PA, g) in terms of the functions
{(>>;vi) +¢/(r+ 1)} where c are integers between 0 and 7.

Example 2.6. With the notation of Example 2.5, we now compute B(H3', Pa, g2*)(v)
for v = vie! + vae? + v3ed with vy + ve + v3 = 0. We express v = vy (el — e?) —
v3(e? — e3). For exponents s = [1,1,1],

2imtm(vy —va)+2imn(ve —v3)

B(HE Pa. o) (v) = 2 (2im(2m — n))(2im(2n — m))(2im(m + n))

m,ne’
(2m—n)(2n—m)(m+n)#0

3 3 3 3 3 3 3

where P is the piecewise polynomial function given in Equation (2.5.2).

1 1 2 2 2 4
=3 (P(Ul,UQ,Us)-i-P(m + -2+ -,v3— =)+ Plur+ =,v2+ =, v3 — 7)>,
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2.8. Calculation of multiple Bernoulli series for types B and C

We use the same notation as in Section 2.1.2.

We now consider HEY = Uj<;<, {2z = 0} UUi<icj<,{2" £27 = 0}, a system
of hyperplanes in Uc.

Let A be a lattice commensurable with @Ze?, with dual lattice I'. Denote
simply by I'yeg = Dieg(HEC). If g € Ryze,

BMHEY A g)(v) = > g(2imy)e” . (2.6.1)

V€T reg

2.8.1. Root system C,
Let Pc be the weight lattice of the root system C,.. We thus have the coroot
lattice Qo = BI_,Ze". Let s = [s4] be a list of exponents and let

1
[Taso (Hay2)™

Here {H,, «a > 0} are positive coroots of the system C.., which are explicitly
{el,1 <i<r(ef+ed),1 <i<j<r} Clearly, the function g belongs to
RH{BC Ifve V,

g5 (2) =

eQiﬂ'<U7'Y>

a0 (2im(Ha, 7))

B(IH7"BCVQ07QSC)(U): Z H

YE(PC)reg

The function B(HEC, Qc, g&) is a piecewise polynomial function on V of degree
> o Sa- We use the diagonal basis constructed in Section 2.1.2 to compute it.
Let us now compute the example given in the introduction, which corre-
sponds to Cy with exponents s = [2,1,1,1] ordered in accordance with the
order [2e1,2ez, €1 + €2, e1 — ea] of positive roots (so that [el, e? el + €2, el — 2]
is the corresponding order in positive coroots). Express v = vie! + v9e?, then

/

BC ), oCY\(p) = e .
B(Hy™, Qe 95)(v) T;l (2imrm)?(2imn)(2im(m 4 n))(2in(m — n))

2immui+2iTnus

This piecewise polynomial function Q(v1,vs) := B(HFC Qc¢, g§)(v) is given by
1
160
RTINS 2 ) - L 1 2 1 s 1, 14
+24{U1} 48{112+U1} {va2} 960 {U2+U1}+96{U2+U1} 96{U2+U1} 48{1)1}

1 1 1 g 1 3 5 4
192 960{ ve + 1} + 96{ vz + v1} 32{ va + v}’ + 192{ v2 + 1}
1 1

1 2 1 3 4 1 5 3
+ g lot {oa} = oo} {va} + o7 {ui} {02}+ﬁ{vz+’v1} + g {—v2 + o} {va}

1 2 ]. ]- 4
Qv1,v2) = ———{-v2 + 11}’ — ZS{UI} + ﬁ{’vz +v1} {va} — ZS{UQ +v1}" {v2}

{v2 + U1}4 +

1 . 1 )
- @{_“2 +vi} {v2} — E{_UQ + v} {va2}. (2.6.2)
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Let us demonstrate what happens on a tope. Figure 2 depicts topes asso-
ciated to the pair ®°¢(BCy) = {e!,e? el + €% el — €%} and A = Ze' @ Ze?.
For example, on 72 = {v1 > 0, v2 > 0, v1 > wvg, v1 + v2 < 1}, the piecewise
polynomial function B(HFC, Qc, 9§ )(v) coincides with the polynomial

1 1 1 1
Qr, (v1,02) :g(*@vz + 5”1202 —v1vg + 6022 — v1ve? + v1ve® + vy 2wa?
1 1 1 7
— 61}23 + 6’024 + 51}14’[}2 - U12’U23 - %Ugg)) (263)

We give some more numerical examples with different exponents. For ex-
ample, we may compute with exponents s = [s1, 2, $3, $4] corresponding to the
order [2e1,2e3, €1 + €2, €1 — es] of roots, and v = [v1,vg]. Then,

! eQi‘/rmv1+2i7rnv2

mzm (2imm)s1(2imn)s2 (2im(m + n))*3 (2im(m — n))s4

B(HQBch07gsc)(’Ulel + 'U2€2) =

810650239 1
510650239 _ if s=[22,1,1] and v=[1/5,1/19]
= 1323165398&%%98438854761301636459941 - s ’
{ 1529174429579197250943325345977126782238720 Zf 52[2’374’5] and V:[1/7’ 1/17]

2.3.2. Root system B,
Let I' = Pg be the weight lattice of the root system B,., with its dual the
coroot lattice Qp. Let s = [s,] be a list of exponents. We define,

1
Ha>0 <Ha7 Z>Sa ’

where {H,, o > 0} are positive coroots of the system B,. If v € V,

g5 (2) =

621'71'(1),7}
a>0(207m(Ha, 7))

BHEC, Qp,gP)w) = Y i

'YE(PB)reg

Clearly, as long coroots of B are twice the short coroots of C, and short
1

3 982¢y T F82e,
Then 2Q¢ is a sublattice of Qg of index 2"~ !, and a set of representatives is
given, for example, by

coroots of B are long coroots of C, we have g = ¢;¢¢ where ¢; =

Fi={0,e" +e?+ - +e™ 1<iy <ip < <iy, k=24, 1<j<[r/2]}.

We then use comparison Formulae (1.23.1) and (1.23.2). Since g$ is homoge-
neous of degree — )"  s,, we obtain

B(HEC,QB,QSB)(U) = T%CZ (ZB(chvQCagsc)(v_F)\))

2
AeF

where ¢y = 22-1<i<i<r Sei—e; FSeite; particular, if s = [m,...,m], then ¢y =
2r(r—1)m
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For example, for By, we compute for v = vie! + v9e? and exponents s =
[2,1,1,1] ordered with respect to the order [e; — ea, e, €1 + €2, 1] of roots,

! e2im((m1+1/2ma)vi+1/2mavs)

(2im)°B(HF, Qp,92)(v) = > —

| iy (2mq 4+ ma) (ma + mq)

mi,m

where the symbol 3’ means we sum over the integers my, mo with (2my 4+ ms) (mg + m1) mam; #
0. We obtain

v +1 1)2+1)
2 72

. v v
B, Qma?)(0) =2 (@5 ) + &
where Q = B(HZC,Qc, ¢€) is given in Equation (2.6.2).
In particular, for u = [1/15,1/30] we obtain

. —276037

B(1EC B _ .

For B3, we compute for v = vie! +vge? +vzed and s = [1,1,1,1,1,1,1,1,1] :
(2im)° B(H5', @B, 92 ) (v) =

’ e2im((my+mo+1/2mg)vi+(mo+1/2mg)vo+1/2mgvg

mq ,%,mg’ (2my + 2mg + m3g) (2mg + mg) mgmy (m1 + 2mg + m3) (my1 + ma) (my + mg + m3) mo (mg + m3g) ’
We obtain
BC A B —
B<H3 aQBags )(U) -

v +1 vy U3+1) 5(1)71 va + 1 U3+1)
2 727 2 27 2 7 2

4 V1 V2 U3 vi+1 vo+1 w3
2 (53, 2 s L

+5(

where S = B(HZC, Qc,gsc) is a piecewise polynomial that is too long to be
included here.

2.4. Calculation of multiple Bernoulli series for type D

We follow the same notation as in Section 2.1.3. '

Recall the system of hyperplanes HP = U; ;{z' + 2/ = 0,1 <i < j <r}
Let s = [s4] be a list of exponents; the ordering of elements in the list s is taken

to match the following ordering [e; — ea,e1 — €3,...,€1 — €,,e2 —€3,...,€1 +
€9,...,er—1 + €] of positive roots of the system D,. We define
1
g2 (2) =

Ha>0 <Ho‘7 Z>Sa ’

where {H,, a > 0} are positive coroots of D...

We embed the list of roots of D, in to the list of roots of B, by writing the
short roots e; of B, at the very end of the list. We denote by S = [s4,0,...,0]
the list obtained from s by adjoining r zeros to its end. Then, by construction,
we have gP(2) = g5 (2).

We now associate to the list s a list of exponents s; for the system B,_;.
In s we eliminate the position corresponding to the roots e; + e; for i < k, and
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er £ e; for ¢ > k. Then we assign the value S¢,ye, + Se;—e, t0 the exponent
corresponding to root e; of B,._1 for i < k , similarly we assign the value
Sep+e; + Se,—e; to the exponent corresponding to the root e; of B,_; for i > k.

We also let ix(v) to be the vector with » — 1 coordinates obtained from
v=>_, vie" by putting vy = 0. §

Let I' = Pp be the weight lattice of D and QJp the dual lattice generated
by the coroots. Since Pp is the weight lattice of the simply connected group
Spin(2r), v = >.i_;7'e; isin Pp if v* £ 47 € Z and Pp = Pp. Consider
the intersection of Pp with the hyperplane z* = 0. Then, we see that this
intersection is isomorphic to the weight lattice of a system C,_qj of type C,
rank r—1, embedded in C of rank r with simple roots {e; —es,ea—es, ..., ep_1—
€k+1,€k+1 — €k42y-- er}.

Using the decomposition (2.4.1), we decompose the set of regular elements
of the lattice Pp as a disjoint union of the set of regular elements of the lattice
Pg and the set of regular elements of the lattice Po of rank r — 1. In particular,
if v € (Pp)reg and y; = 0, then

1
D »
s (7) = = CkGs,, (Zk(’}/))
IT  (i—w)e= (i + )
¥i£7;#0, 7 =0
with ¢, = (—1)Z§:k+1 Ser—<j In particular, if s = [m,...,m], then ¢, = (_1)(T_k)m.

Thus, we can compute multiple Bernoulli series for the system of type D, by
using computations for types B, and C,._; with appropriate exponents. More
explicitly,

2im(v,y)

B(HE,Qp,gP)(v) = &
(H,”.@p, g5 )(v) 76(%;) [Toso(2im(Hy, )5

=B(H7, Q. 98)(v) + ) exBHG. Qc, . 1 95,) ik (v)).
k=1

3. Witten formula for volumes of moduli spaces of flat connections
on surfaces

As in Section 2, let G be a simple, connected, simply connected, compact
Lie group of rank r with maximal torus T. For ¢1,92 € G, we denote by
[91,92] = 919297 *g5* the commutator of g; and gp. Let ¥ be a compact con-
nected oriented surface of genus g and let p := U;{p;} be a set of s points
on X. Let C := (C;) be a set of s conjugacy classes in G. We consider the
representation variety

g s
M(G,g,5,C) := {(a,c) € G* x C; H[azzel,azi] = H ¢}/G.
i=1 j=1
If the adjoint orbits C; are generic, M(G, g, s,C) is an orbifold of real dimension
(29—2)dim G+sdim G/T. It parameterizes the set of flat G-valued connections

22



on X — p, with holonomy around p; belonging to the conjugacy class C; mod-
ulo gauge equivalence. As shown by Atiyah-Bott [1], once a G-invariant inner
product on g is chosen, the manifold M(G, g, s,C) carries a natural symplectic
form, and thus a natural volume form. E. Witten gave a formula for the volume
of M(G,g,s,C) that we recall.

Let R be a choice of positive roots; denote the highest root of R by 6. Let
by := {h € br; a(h) > 0 for all @ € R} be the positive chamber (closed) in
br, and A := {h € by; 6(h) < 1} be the fundamental alcove. An element of 2
is said to be regular if it lies strictly inside the alcove. Let W = W(gc,h) be
the Weyl group (identified with Ng(T')/T).

We now give the Witten formula.

Let a = {a1,a2,...,as} be a set of regular elements in A C hy. Let C; be
the adjoint orbit of exp(a;); we denote the collection of orbits C; by C. Consider
the function on h* given by

Nah) = D e(w)elwasd.
j=lweWw
Let ® = ®(G) be the list of positive coroots H,. Define

Na(2im)
i, co(2in(Ha, )22

W(@(G), Pg.s)(a) = 3.

YEPTes

The above expression is always meaningful as a generalized function of the
parameters a;. If s = 0, this formula has to be understood as

1
[, co(2im(Ha,v))?972

W(®(G),Pg)= >

yEPTeg

which is meaningful if g > 2.
Interchanging the sum and the product, Na(A) may be expressed as

Na()\) = Z ﬁ €(w]‘)62§:1 (wjaz,\) .

(w1,wa,...,ws)EWS j=1

Hence the function W(®(G), P, g, s)(a) can be expressed as a sum over W* with
signs of Bernoulli series B(@gg_2+s,Q)(Zj wj;a;). Here, as before, ®og_o.
means that each coroot in ® is taken with multiplicity 29 — 2 + s. As is
well known, the series W (®(G), P, g, s)(a) computes the symplectic volume of
M(G, g,s,C) up to a scalar factor, which we will give in the next section.

Let us now recall the normalization of the volume as the limit of the Verlinde
formula. To demonstrate this we need some more notation.

Let (| ) denote the G-invariant symmetric form on g¢ normalized such that
(Hp|Hp) = 2. We will use the same notation for the restricted form on b, and
the induced form on h*. We call ( | ) the basic invariant form. It is positive
definite on hgr, and negative definite on t.
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Let h:= p(Hy) + 1 be the dual Coxeter number, where p is the half sum of
positive roots. Let Qiong C @ be the lattice spanned by long roots. The basic
invariant form identifies hr and hr*; under this isomorphism the coroot lattice
Q is identified to Qiong- Let g be the index of Qjong in @, and let f be the index
of @ in P. The center of G is denoted by Z = Z(G).

For a positive integer ¢, define the set

Ppi={pe€ PNhi;u(Hy) <t}

An element of Py is said to be a weight of level £. We denote by P, the subset of
P, consisting of elements p satisfying pu(Hy) < £ and p(H,) > 0 for any simple
root . By definition of A, there is a bijection between sets P, and Pz/ via
n= @+ p.

Consider the maximal torus T of G with Lie algebra t. If t = exp X € T,
with X € t, and « is a root (which takes imaginary values on t), we denote by
e*(t) = el®X). Let A(t) = [[,cr(e®(t) —1). An element ¢ of T is said to be
regular if A(¢) # 0. Denote by Ty the subgroup of elements ¢ of T' such that
e*(t) is £ + h root of unity for each long root a. We denote the set of regular
elements in Ty by T,.

We now give the Verlinde formula.

Consider a set A = {A\,A2,...,A\;} with A\; € Pp,. Then to this collec-
tion )\, the group G, and a nonnegative integer g, is associated a vector space
V(G,g,s,A,¢) (see [15]), called the space of conformal blocks, whose dimension
is given by the Verlinde formula V (G, A, g, ¢):

+h

_ (o Xvy(t)
V(GA0ut) = (fa) Ry Y JHA
teTI® /W

Above r is the rank of G, V(A) = V), ® V), ® - -- ® V), where V), denotes the

simple g module with highest weight A;, and xv, denotes the character of Vj.

By Weyl character formula yy, = J(e**?)/J(e?) where J(e¥) = Z e(w)e™™.
weW

We remark that if > 7, A; is not in the root lattice, then V(G, A, g,¢) is
zZero.

Under the isomorphism given by the basic invariant form, an element a
lying in 20 C b4 defines an element & of h%. We now consider a collection
{a1,a2,...,as} of rational elements in 2, that is, each a; lies in the dense
subset AN (Q ® Q) C A. We may choose ¢ large enough so that each Aj = la;
is a weight; which then lies in P;,. We furthermore choose ¢ so that Zj‘=1 Aj
is in the root lattice and consider the space of conformal blocks V(G, g, s, A, £)
associated to this collection A = {A1, Aa,..., A\;}. We can dilate simultaneously
the weights A; and the level £ by a factor k. Then, the function

ke — dim(V(G, g, 5, [kA1, kX, -+ ks, kL))

is a quasi-polynomial in k of degree m = dim(G)(g — 1) + s|R™|, the complex
dimension of the moduli space M(G, g, s,C). The volume computes the highest
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term of this quasi-polynomial. More precisely,

vol(M(G, g,s,C)) = klim (Lk)~™dim(V(G, g, s, [kbay, . . ., klag], kC).
—00

Proposition 3.1. Let a = {a1,--- ,as} be a collection of reqular rational ele-
ments in A. Let vol(G, g)(a) denote the symplectic volume of the moduli space
M(G,g,s,C). Then,

Z ot
vol(G.g)(a) = (fa)" e~ (1) YO (@(G), g, ) (a),
where p is the number of short positive roots of G, and e = 2 for any simple
Lie group except for Go, where eg = 3.

We recall that for simply laced groups p = 0 since all roots are considered
as long.

Proof. Choose ¢ so that each A\; := fa; lies in P, and 25:1 Aj is a root. Then,

VOI(Gv g) (a) = kli)ngo @V(Gv kAa 9, kg)a

where m = dim(G)(g — 1) + s|R™| is the dimension of M(G, g, s,C) and

- F (g Xv (k) ()
V(G kX, g kt) = (Fa)' (kR 07D 37 SR
tETLSE /W

An element 1 € P, determines a unique regular element h, € 2, the image
of ‘Zi}f under the identification given by the basic invariant form. Denote the
image of h,, under the exponential map by t, € Tc. The set {t, : p € P;} form
a set of representatives for 7,°® /. Using also the bijection between sets Py

/ .
and P£+iz given by pu— u+ p,

— ap ke 4 Ry X (t)
V(G kA, g, kb)) = (fq)?~ (kl+h) 3 NV
p+peP!

o [T, T 0)(,)
2 et AT

= (fg)o " (ke + h)ro= VW~

. ’
wtpEW-PL, 5

_ (f‘I)gil (kﬁ + h)r(g—l)(_l)mﬂ(g,l) Z H;:1 J(ek’\j+p)(tu)

P 2g—2+s
i p+pEW P, (J(e)(tn))

The second line above follows from the fact that both xy(x)(¢) and A(t) are
W-invariant. The third line follows from the second by the identity

At) = () () T(e?)(t) = (=) (T (e”) (1), (3.1.1)

We now analyze V (G, k), g, kl) as k gets large.
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The expression [];_, J(e"+#)(t,) in the summand is equal to

j=lwew j=lwew
Now as k gets large, the expression exp (2i7r (u + p\%j;p))) approaches to
exp(2im(p + plwa,)). Observe also that the set W - PIQEJFE approaches P*g.

Denote an element p + p of this limiting set by 7. Hence, H;Zl J(ekritry(t,)
approaches [[7_, Z e(w)el2mrwes) — N, (2ir7y).

weWw
Now we analyze the denominator of the summand,
1 B 1 B 1
J(eP)(ty)  Tlaso(e*/2(ty) —e/2(ty)) [Toso2i Sin(ﬂ%)

This expression explodes at each central vertex and the contribution from each,

o\ Rt
as k gets large, is %. Also observe that, for z € Z(G) both T,

and A(t) is invariant under ¢ — ¢z. Moreover, since Y ;_; \; is in the root
lattice by construction, xy (x)(t) is also invariant. Therefore, we may add all
these equal contributions from central vertices. (see also Remark 5.8. [14]).
Hence, we get that the expression

H§=1 J(ekAjer)(tu)
2 Ul

’
ptpEW Py

approaches

Na(2im7)

aso(2im(aly))?o-2ts’

|Z(G)|(kt + )T 12o=2s) 3™ X

yePreg

By virtue of the normalization in the basic invariant form, if « is a long
root we have (H,,v) = (a]y); otherwise (H,,7) = eg(a|y). Using also that the
dimension of G is r + 2|R*|, and that |RT| = |®(G)|, we obtain

. 1
klglolo WV(GJ@,Q’ kl)
1Z(G)|

= (fq)g*W<—1>"I’<G>‘<g*1>é;§2-"‘2+s>vv<<1><c:>, P,g,s)(a)

as claimed. O

Remark 3.2. In the case of one marking, the Verlinde formula reduces to

6)‘
V(G,A,g,0) = (fg)? (¢ + Ry o=D 3 D(t)A((tt))
teT,”
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where D(t) = [],so(1 —e™(1)).
Following the same line of arguments as in the proof of Proposition 3.1 we
get that for s = 1 with A = fa lying in the root lattice,

6<a’2i777>

vol(G, g)(a) = (fq)9~! 712290 (_1)(g=D)]2| : .
(G,9)(a) = (f9)* M 2]~V (-1) ZPZ T o @i (Hory

(3.2.1)
That s,

vol(G, g)(a) = (fg)9 1| Z[el? ™1 (~1) 0= VI2IB(y 1, Q) (a).

3.1. Volume of the moduli space as a function of the volume of T and G

Let us recall the formula for the symplectic volume of the moduli space
M(G, g,s,C) for a set of s regular conjugacy classes C = (C;) in G as given by
E. Witten ([16] equation 4.1.14),

Vol(M(G, g, 5,C)) = ggj}l vol(G)*2vol(G/T)" Y

AepP+t

[T5—1 [xvi (Ci)V/A(C))]
dim V29~ 2F5
(3.2.2)
where 2m is the real dimension of M(G,g,s,C), and PT = P Nb% is the
set of dominant weights parametrizing irreducible representations of G. Above
vol(G), vol(G/T) are Riemannian volumes of G and G/T which we now express
following Bourbaki (Ch. IX, pages 396-411):

Choose a g-invariant scalar product on g. This determines a Lebesgue mea-
sure p on g, via identification of g with R™ by an orthonormal basis. Similarly
let 7 be the Lesbegue measure on t corresponding to the restriction of the scalar
product on t. We can construct from g and 7 Haar measures ug and pur on G
and T respectively.

Since we aim to compare the volume formula in Proposition 3.1 with that
of Witten in Equation (3.2.2), we choose the normalized Killing form as the g-
invariant scalar product in the above construction, as this was our choice in the
previous section. Then, for this choice, with respect to ug and pp constructed
as above, we get that

1 w _ (2m)E]
Mootalp D=l

Observe that from formula (3.1.1), A(t) takes positive values on a regular
element ¢. Then, for C; the adjoint orbit of exp(a,), we may write

Z 5(w)62i7r<w(/\+p)’aj>
weWw

T /AE)

vol(G) = (fq)'/2(2m) P11

XVa (CJ) -

27



Let d(v) = H EZ’ f i; it computes the dimension of the irreducible repre-
a>0 Ha

sentation V,_,. Then we have

Z Hj L X (CHVA(C) B Z H] 1 Na, (2im(A + p))
xeP+ dim V29~ 2+5 =, isIR*Iq )\_|_p)2g 2+4s

Observe that the summand above is invariant under the Weyl group (both
the numerator and the denominator are anti-invariant by factor (sign(w))® for
a Weyl group element w). Using this invariance, we get

Z szlex(cﬁ A(Cj)_ 1 Z Hj‘:lNa;‘(%ﬂ"y)

. — - . + 2g—2+s
dim V297 %+* Wl 4., @Rt

AepP+

Inserting the expressions for the volume of G and G/T into Equation (3.2.2),
all (27) factors cancel, and combining the terms we get

g—1 (Ha>0 {(p, Ha>)29_2+3
(Iaso(alp))?o—2ts

2]

vol(M(G,g,5,0)) = [ (fa) (1)@ VIE W (@(Q), P, g)(a)

2]

= g0 eIV (R(G), Pg) a),

which is precisely the formula that we obtained in Proposition 3.1.

4. Various examples of volume calculations

Example 4.1. We now compute the volume of the moduli space of SU(3) bun-
dles on a Riemann surface of genus one.
Simple roots are a; = €1 — ea, as = es — e3, and fundamental weights are

261*%, wo = % The positive coroots are

®(SUB)) ={Hs, =" —€*, Hy, =€* — > Hyy 40, =" —€°}

w1 =

and P = Zwy, & Zws. Let v = njwi + nows. Then v € P™ if and only
if ny # 0, ng # 0 and ny + ng # 0. Now consider a = a1Hy, + asHy, =
ai(el —e®) + (az —ap)(e? — €®) € hg. Suppose that a is a regular element in 2,
in other words, 2a; — as > 0, 2as — a; > 0 (in particular a; > 0 and ag > 0)
and 9(a1Ha1 + agHa2) =a1+ay <1.

We compute the volume using Formula (3.2.1). Wehaves=1,p=0, ¢ =1,
f=3and |Z(SU(3))| = 3; hence, for g = 1, 2°9=D(fq)9=1Z(G)| = 3. Then,

62i7r(n1a1 +noaz)

3 > . . .
11 0.3 20 s 4 a0 (2imny)(2imng) (2im(ny + ng))

vol(SU(3), 1)(a)

_ —%(1+a1—2a2)(a1—1+a2)(2a1—a2) a1 < as
—1/2(&1 — 2a2)(a1 — 14 ag)(2a1 —1- ag) ay > as
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Example 4.2. With the notation of Example 4.1, we make similar computa-
tions for SU(3) when genus g = 2.
In this case, s =1, p=0,¢ =1, f =3, |Z(SU(3))| = 3, hence, for g = 2,
259D (fq)9=1Z(G)|(—1)9~VI®l = —32, Then,
e2i7‘r(n1a1+n2a2)

vol(SU(3),2)(a) = -9 - - -
(SU(3).2)(a) n1¢0,n2§n1+n27ﬁ0 (2i7n1)3(2imn2)3(2im(n1 + n2))3

B 1/40320(0,2 — 20,1)(&2 -1+ al)(—l + 2a0 — a1)P1 a1 < az
- 1/40320(&2 +1-— 2&1)(2(12 — al)(az -1+ a1)P2 a; > as

where the polynomials P, and P» above are too long to be included in here.

Example 4.3. We now compute the volume of the moduli space of Spin(5)
bundles on a Riemann surface of genus g = 1 with one marking.

Positive roots are {a1 + ag = €1, a2 = €3,0 = 1 + €2, 1 = €1 — e}, with
associated coroots He, = 2e!, H,, = 2€%, He, ¢, = €' — €2, He 1o, = €' + €2,

Let a = a1 Hy, + a2H,, be a regular element in 2; in other words, a; > aq,
2a9 > a1, 2a2 < 1. We can express a as a = tie! + toe? (with t; = a; and
ty = 2a9 — a1), t1 and to satisfy €1 > ta,t0 > 0,t1 + t2 < 1. We calculate
the volume for By and genus g = 1 employing the Formula (3.2.1). In this
case, s = 1, p = 2, ¢ = 2, f = 2, |Z(Spin(5))| = 2. Hence, for g = 1,
25(20-1)( £4)0-1| Z(Spin(5))| (—1)(9~ D1 = 8. We get,

vol(By, g = 1)(a) = %tg(tl )t — 1+ t)(tr — ta)
= (2as — a1)(a1 — 1)(—1 4 2a2)(a; — az).

Example 4.4. With the notation of Example 4.3, we compute the volume of
the moduli space of Spin(5) bundles on a Riemann surface of genus one and two
markings.

Let a = {aj,a2}, where a; and as are regular elements in 2. Write a; =
tret +tae? and ag = ure! +uze?. Then the function vol(Bg,1)(a) is a piecewise
polynomial function of ¢y, t9, u1, us. For example, choose v; = %e + %62, Vg =
%el + %eQ and consider 7(v) C 2 x 2, the open set determined by the condition
that a3 +w(az) is in the same tope as v1 +w(vy) for each element w in the Weyl
group of By. Then for a € 7(v), we have

vol(B2,1)(a) = 4W(®(B2), P, 1,2)(a)

1 1 1 1 1 1
= —woui® + gtzuzt1u13 — étzu23t1u1 + 6U23U1t22 — 6U2t22u13 — —uptusty”

60 12
1 1 1 1 1
+ —ugte®ui® — —uatiun + —toust:Pur® — Stougt:iPur® + =

1
3, 2 2 3
12 60 12 4 P2tz BiuL gl uztit

1 1 1 1 1 1
— 6t22u23tlul + @u2t1u15 - Et23u2tlu13 + Et23u23t1ul - Et2u23t13ul + @U25U1~

5. More examples

In this section we compute some instances of volumes of moduli spaces of
flat G-connections for classical simple Lie groups G using the formula given in
Proposition 3.1. We remark that in this case eg is always 2.
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Table 1: Value tables

[Gtype | ¢ [ f [ » TJIZ@GI] W ]
A, 1 r+1 0 r+1 | (r+1)!
B, 2 2 r 2 2]
C, 2r—1 2 r(r—1) 2 277!
D, 1 4 0 4 271y

We will denote by ¢y the factor
Cvol 1= 279729 (£)9 71 Z(G)|(—1) IR D =

For convenience, we list values of the parameters in ¢y for each type of classical
simple Lie group in Table 1.

5.1. Tables of volumes of moduli spaces

In the case of no marking (s = 0) we denote the volume simply by vol(G, g).
We list some values of vol(G, g) for classical simple Lie groups in Tables 2 and
3. We also list some values of the factor ¢y, that we need in Section 5.2 to
compare our computations with other numerical results in literature.

Computations are very quick for rank less or equal to 4 (and relatively small
genus). Beyond rank 5, computations cannot be made within a time limit of
half-hour with our method.

Here are some explicit running times regarding the volume tables:

Type A, rank 4 and genus 4 running time less then 1 sec.

Type A, rank 5 and genus 2 running time less then 1 sec.

Type B, rank 4 and genus 3 running time less then 1 sec.

Type B, rank 5 and genus 3 running time 5 hours.

Type C and rank 4 and genus 4 running time less then 1 sec.

Type C, rank 5 and genus 2 less then 1 sec.

Type D rank 5 and genus 2 running time 2 sec.

Type D, rank 4 and genus 4 running time half an hour.

All experiments were done with Maple 15 on a MacPro with a Quad-Core
intel Xeon machine running at 2.93GHz.
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5.2. Comparison results

In this section we compare some of our computations of vol(G, ¢g) with that
of Komori-Matsumoto-Tsumura ([6],[7],[8],[9]). The setting is as follows.

Consider a simple, connected, compact Lie group G of rank r. Here we do
not assume that G is simply-connected. Let L be the weight lattice of G. Let
P be the weight lattice of the simply connected group covering G and let @ be
its root lattice. Then, Q C L C P. We denote, as before, by P* the monoid of
dominant weights. Let Lt = L N PT.

Let s = [s,] be a sequence of real variables indexed by positive roots RT.
For v € hr, Komori-Matsumoto-Tsumura introduced

((s,v,G) = Z e2im (v H ﬁ

yEp+Lt a€ERt

If G is simply connected, then L = P, and we may denote (s, v, G) by {(s,v, g),
or for the Lie algebra g of type X, by ((s,v, X,) as in [§].

Example 5.1. Consider the simply connected group G = SU(4); its positive
roots are [e] — eg, €3 — €3,€3 — €4,€1 — €3,€9 — €4, €1 — €4].

The monoid of dominant weights is freely generated by fundamental weights
wi,ws and ws that are dual to simple coroots e' — €2, €2 — e and e — e
respectively. Then, if we order the exponents s = [s;] with respect to the order

of the roots as given above,
((s,v,5U(4)) = ((s,v, As)

2im(v,mjwi +mows+maws)

mi1=1mo=1mg=1

The series ((s, v, G) converges when the exponents s, are sufficiently large.
Let S =3 s,. Suppose s, are the same for all short roots, respectively for all
long roots, and both are equal to positive even integers (that are not necessarily
the same positive even integers). Then (27)~5((s,0,G) is rational. Indeed,
using the invariance of the sum under the Weyl group W, (2r)~9((s,0, Q) is
proportional to a Bernoulli series (with repetition of coroots in ® matching the
exponent data) which is obtained by summing over all the regular elements of
the full lattice L. More precisely,

(s 0,G) 1,8 1
REGRP P ey A

where the series on the right hand side is a multiple Bernoulli series which has
(in the case that it converges absolutely) rational value.

If all s, are equal to an even integer 2k, we denote the sequence s = [s4]
by sor. Then, for exponents so, and G simply connected, we may compute
¢(s2k, 0, G) using the Witten volume formula for g = k + 1,

((526,0,G) = [W[71(2m) IR I (1 WR“W( ®(G), L,k +1)(0)
= (W 2m) PR )R L o1G k1) 0).

Cyol

(5.1.2)
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Thus we can use the values of the volume listed in the tables of the previous sec-
tion to compute some instances of the series ((sax, 0, G). We now demonstrate
some computations of {(szx, 0, G).

5.2.1. Examples of type A,
Let n = r + 1. We consider the simply connected group G = SU(n). If we
write N = |[RT| = %, then

(s, 0, 4,) = (—1)kN(27r)2kNl'ivol(SU(n), k+1)(0),

N: Cyol
k1 o=l
where ¢yo) = n"TH(—1)"" 2
n = 3,4,5,6 using Table 2.
For instance, if n = 3 (that is » = 2), and k = 1, then we have N = 3,
vol(SU(3),2)(0) = 55155 and cvol = —3/2, and we obtain

1
e Thus we obtain the values of {(sax,0, A,.) for

1 1 s 1
=T
9(—1)3 % 20160 2835

1
(52,0, 42) = (2m)°(~1)*5;

as in [9] equation (7.11).
We give one other example whose parameters are not contained in the tables.
Consider n =4, k =5. Then, N =6 and

((s2r, 0, A3) = (2m) %%
1393614066290742513412310095846
58203152419058513584890890509712229288124323632762771449711578369140625

5.2.2. Examples of type B,., C,. and D,
For root systems of type B, and C,., the number of positive roots is N = 2.
For example, for B, when all s, = 2k,

1 .
((s2x,0,B;) = @(QW)QkN(—l)kNB(HFCaQB,QSB%)(O)-
Explicitly for Cy, positive roots are [e; — eq, 2e3,2e1, e1 + e3]. We order the
exponents with respect to the order given in the list of positive roots. Then,

oo o0

1
C([Sla 52,53, 84]7 0; 02) =

msins2(m + n)ss(m + 2n)sa’

=1n=1
In the particular case of sp = [2,2,2,2], using Table 3,

g1 1 1
- _ ”
16 604800 302400 =

(52,0, C) = (1" (2m)

which is the equation (7.23) of [9)].
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We also give an example of D, with all exponents equal to 6 (that is k = 3
and s¢ = [6,6,6,6,6,6,6,6,6,6,6,6] ).

C(SG7 0, D4) = 71‘72><
5372550944533148798111597103943896132463
21770524158223250767856810653451043131130341521323218291199402843808716814637083000000000000000000

It is also possible to compute ((s,0,G) when the exponents in the list s =
[s1, 82, 83, s4] are distinct positive even integers for short and long roots. We
conclude with one example of this kind.

Consider the list of exponents [2, 4,4, 2] corresponding to the list of positive
roots [e; — ea, 2es,2e1, €1 + €3] of Cy. Then,

53
2,4,4,2],0,Cs) ¥ SST0801000°
¢([2, 2) Z Z m2ni(m + n) (m+2n) ~ T 6310804000

m=1n=1

which coincides with equation (4.30) of [9].

5.3. Some multiple zeta values

Let k£ be a positive integer. Consider the multiple zeta series

(2K, 2k, . ..

||P18

Z: 21m%k(m1+m2)2km(m1+m2+"'+mr)2k'

Following [6], we want to demonstrate how the above series can be computed
using the Bernoulli series B(HEC, Qc, g )(0) for the root system of type C.,
where the exponents s = [s,] are taken to be 0 for long positive roots, and 2k
for short positive roots. Using the invariance of the sum under the Weyl group,
which is of order 2"r! for C,,

1
a>0(2im(Ha, 7))

B!, Qo,g0)0) =2 Y

YE(PH Yreg

A dominant integral regular weight v € (Pg)reg is of the formy = Y., mw;
with m; > 1 (where w; denote fundamental weights). Recall that the root system
of type C, admits r long roots {2¢;}1<i<,, with corresponding (short) coroots
{Hse, = €' }1<i<y. If we express Ha., = €' = (e —e't1)+ (e' T —eit2) 4. .. ter,
then (Hae,,y) = m; +miy1 + -+ -+ m,. Thus,

Cr(2k, 2k, ..., 2k) = (—1)"" (2m) %" — ! B(HBC,QC,QS )(0).

2ry

8 71.20

) C5( 4a4a474) = and

F le. Co(4.4
or example, Co( 548828480360160000

4) = 113400

73
1347828286825972065254765625

(5(6,6,6,6,6) =
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6. Appendix: Szenes formula

Let H be an arrangement of hyperplanes compatible with a lattice A. Let
g € Ry. Consider

B, A g)) = 3 g(2imy)edmo,

'Yerreg (H)

This function (a generalized function on V') coincide with a polynomial func-
tion B(H, A, g,7) on a tope 7 (see Proposition 1.25). The piecewise polynomial
function P(H, A, g) has been defined in Definition 1.14. Following Szenes [12],
we prove the following formula.

Theorem 6.1. (Szenes) Let g € Ry. On Vieg(H, A) we have the equality
B(H,A\,g) = P(H, A, g).

We recall that, for f € Sy, Z2(0)(f)(2) = 3, cp f(2imy —2)el*2™ =) and
P(H, A, g)(v) is the trace on Sy of the operator A(v,g) : Sy — Sy defined by

F(2) = R(*g(2)(Z2" (0) f)(2)). (6.1.1)

Here R : Ry — Sy is the total residue.

We first consider the one dimensional case where V' = R, and A = Z. Here
‘H = {0}, with equation z = 0. The topes are the intervals | —n,n + 1], and the
space Sy is one dimensional with basis f, = %

Let 7 =]0,1[. Assume v € 7 so that [v] = 0. If we consider g(z) = J, the

formula to be proven is

2imnv

> it = Reseool e (7)) (2). (6.1.2)

. k .
= 2imn) z

As ZM7)(f5)(2) = 2= (see Example 1.10), we have to verify that

2imTnu 1

= Reszzo(gezvm).

The poles of the function 1%

— consist of the elements 2imn, with n € Z.
When & > 0, the equality above follows from the residue theorem in one variable.
If k& < 0, both sides vanish (the left hand side gives a generalized function
supported on Z, the right hand side has no poles).
Szenes formula generalizes this result in higher dimensions, which we aim to
demonstrate below.

Proof. Our proof is a slightly modified version of Szenes’s proof where we use
the total residue as opposed to iterated residue.

We first remark that using the comparison formula (1.14.1) and those of
Lemma 1.23 over commensurable lattices, it suffices to prove the equality for
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any lattice A (compatible with H) of our choice. We will prove Theorem 6.1 by
the standard ‘deletion-contraction’ argument on arrangement of hyperplanes.
Choose a set ®°? of equations for H. For ¢ € ®°?, we consider the following
two arrangements:
o H/ =H \ H¢.
e Ho={HNHy, H € H'}, the trace of the arrangement ' on Hy.
Consider the vector space Vo := V/R¢, let p : V. — V; be the projection.
The dual space Uy of Vj is the hyperplane H,. We now compare the spaces Sy,
SHU and SH/.

Definition 6.2. We say that a function f € My has at most a simple pole
along the hyperplane ¢ =0 if ¢f € My . In this case, we define resyf € My,

by resyf = (6f)n,

In other words, the meromorphic function f has at most a simple pole on Hy
if the denominator of f contains the factor ¢ at most once. Then we multiply f
by ¢, eliminating ¢ from the denominator of f, and we can restrict ¢f to ¢ = 0.
This operation kills the functions f having no poles of ¢ = 0.

If f = if’ with f' € My, then

ressRf = Rresg f. (6.2.1)

This is easy to verify using for example a decomposition of f’ with denominator
on a set of independent hyperplanes (see Lemma 1.2).

The map resy is well defined on Sy, as elements in Sy have at most a simple
pole on ¢ = 0. It is easy to prove that we have the exact sequence

TeSy

0 Sy —— Sy Sy, 0. (6.2.2)

Let v € Vieg(A,H). Its projection vy = p(v) belongs to Vi.eq(Ao, Ho).
Lemma 6.3. Let v € Vieg(A,H) and f € Sy. Then

resyZ () (f) = —Z% (vo)(resqy f),

with vo = p(v).

Proof. We have Z™(v)(f)(2) = X2, cp f(2imy — 2)e{v:2m7=2) " If ~ is such that
(¢,7) # 0, then the term f(2imy — z) has no pole on ¢ = 0. Thus we obtain,
for z € Hy,

resquA(v)(f)(Z) = Z (o(2) f(2imy — Z))|H¢e<”072i”7—2>
YEL,(7,¢)=0
- Z ¢(27T"y - Z)f(QZ’/T’y — Z)|H¢€<Uo,2i7r'yfz>'
YEL (v,¢)=0

37



Lemma 6.4. Let g € Ry . Then the following diagram is commutative.

0 — 87-[/ SH S’HO 0
lawo  [aws | -awe (6.4.1)
0 — SH/ SH 57-[0 0

Proof. Let g € Ry, and let go be its restriction to H,. Then the operator
A(v, g) leaves Sy stable. If F' has at most a simple pole on ¢ = 0, then gF
also has at most a simple pole on ¢ = 0, as g has no pole on ¢ = 0. Thus maps
in the above diagram are well defined. Its commutativity follows from Lemma
6.3. O

We are now ready to prove Theorem 6.1 by induction on the number of
hyperplanes in H. If there are less than r hyperplanes, then S3; = {0}, the
generalized function B(H, A, g) is supported on affine walls, so both sides of the
equation of Theorem 6.1 vanish.

Assume that H consists of r independent hyperplanes. Changing the lat-
tice A, we may assume that A is the lattice generated by the equations ¢y of
the hyperplanes. Then, the theorem follows from Formula (6.1.2) in the one
dimensional case.

Assume that H has more than r hyperplanes. Then by Lemma 1.2, we can
write a function in R4 as a sum of functions g whose poles lie on an independent
subset of hyperplanes of A, thus in number less or equal to r. Thus Ry is
linearly generated by functions g such that some equation ¢ € ®°? is not a
pole of g. We consider such a couple (g, ¢) and the arrangements H’ and H,
associated to ¢ by deletion and contraction. The function g is in Ry .

Let go € Ry, be the restriction of g to Hys. Thus B(Ho, Ao, go) is a general-
ized function on Hj = V/R¢ and p*B(Ho, Ao, go) is a function on V' (constant
in the direction ¢).

We have the following recurrence relation for the function (eventually gen-
eralized) B(H, A, g) associated to an element g € Ry .

Proposition 6.5. If g € Ry, then
B(H7A7g) = B(HI,A,Q) - p*B(H(%AOmgO)'

This is clear. Indeed the set I';..q (') is larger than I',.4(#) as it may contain
also elements v with (v,¢) = 0. This additional summation gives rise to the
term B(Ho, Ao, g0)-

Let v € Vieg(H,A). As P(H, A, g)(v) is the trace of the operator A(v,g)
defined in (6.1.1), the commutativity of the diagram (6.4.1) above implies that

P(H, A, g)(v) = P(H', A, g)(v) — P(Ho, Mo, 90) (vo)-

Comparing with Proposition 6.5, we see by induction that Szenes formula holds.
O
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