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Abstract

We describe an algorithm for the computation of generalized(or weighted) Ehrhart
series based on Stanley decompositions as implemented in the offspring NmzIn-
tegrate of Normaliz. The algorithmic approach includes elementary proofs of the
basic results. We illustrate the computations by examples from combinatorial vot-
ing theory.
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Let M ⊂Zn be an affine monoid endowed with a positiveZ-grading deg. Then
theEhrhart or Hilbert seriesis the generating function

EM(t) = ∑
x∈M

tdegx =
∞

∑
k=0

#{x∈ M : degx= k}tk,

andE(M,k) = #{x∈ M : degx= k} is the Ehrhart or Hilbert function ofM (see
[6] for terminology and basic theory). It is a classical theorem thatEM(t) is the
power series expansion of a rational function of negative degree att0 = 0 and that
E(M,k) is given by a quasipolynomial of degree rankM−1 with constant leading
coefficient equal to the (suitably normed) volume of the rational polytope

P= cone(M)∩A1
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where cone(M)⊂ Rn is the cone generated byM andA1 is the hyperplane of de-
gree 1 points. See Beck and Robbins [5] for a gentle introduction to the fascinating
area of Ehrhart series. In the following we assume that

M = cone(M)∩L

for a sublatticeL of Zn. ThenE(M,k) counts theL-points in the multiplekP, and
is therefore the Ehrhart function ofP (with respect toL).

Monoids of the type just introduced are important for applications, and in
some of them, like those discussed in Section 3, one is naturally led to consider
generalized(or weighted)Ehrhart series

EM, f (t) = ∑
x∈M

f (x)tdegx

where f is a polynomial inn indeterminates. It is well-known that also the gener-
alized Ehrhart series is the power series expansion of a rational function; see [3],
[4].

In applications that involve strict linear inequalitiesM is to be replaced by
M′ = M∩ (cone(M)\F ) whereF is a union of faces (not necessarily facets) of
cone(M). Our approach covers this “semi-open” situation as well.

In 2012 we have implemented an offspring of Normaliz [8] called NmzInte-
grate1 that computes generalized Ehrhart series. The input polynomials of Nmz-
Integrate must have rational coefficients, and we assume that f is of this type
although it is mathematically irrelevant. This note describes the computation of
generalized Ehrhart series based on Stanley decompositions [16]. Apart from tak-
ing the existence of Stanley decompositions as granted, we give complete and
very elementary proofs of the basic facts. They follow exactly the implementa-
tion in NmzIntegrate (or vice versa). The semi-open case mentioned above has
already been implemented in the current development versions of Normaliz and
NmzIntegrate. It will be contained in the next public version.

The generalized Ehrhart function is given by a quasipolynomial q(k) of degree
≤ degf + rankM −1, and the coefficient ofkdegf+rankM−1 in q(k) can easily be
described as the integral of the highest homogeneous component of f over the
polytopeP. Therefore we have also included (and implemented) an approach to
the computation of integrals of polynomials over rational polytopes in the spirit

1NmzIntegrate version 1.2 is available as part of the Normaliz 2.11 distribution.
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of the Ehrhart series computation. See [4] and [10] for more sophisticated ap-
proaches. Our algorithm and its implementation in NmzIntegrate have been de-
veloped independently from LattE integrale [11]. It is a consequent extension of
the Normaliz algorithm for the computation of ordinary Ehrhart series.

Acknowledgement.We gratefully acknowledge the support we received from
John Abbott and Anna Bigatti in using CoCoALib [1], on which the multivari-
ate polynomial algebra in NmzIntegrate is based. ChristianKrattenthaler kindly
provided reference [2] for the Beta integral.
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was written.

Both authors thank the Deutsche Forschungsgemeinschaft for support of the
Normaliz project through the SPP 1489 “Experimental methods in algebra, geom-
etry and number theory”.

1. The computation of generalized Ehrhart series

Via a Stanley decomposition and substitution the computation of generalized
Ehrhart series can be reduced to the case in whichM is a free monoid, and for free
monoids one can split off the variables off successively so that one ends at the
classical caseM = Z+. We take the opposite direction, starting fromZ+.

1.1. The monoidZ+

Let M = Z+. By linearity it is enough to consider the polynomialsf (k) = km,
k∈ Z+, for which the generalized Ehrhart series is given by

∞

∑
k=0

kmtum, u= deg1,

and if necessary we can assumeu= 1, substitutingt 7→ tu in the final result.
The rising factorials

(k+1)m= (k+1) · · ·(k+m)

form aZ-basis of the polynomial ringZ[k]. Therefore we can write

km =
m

∑
j=0

sm, j(k+1) j (1.1)
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and use that
∞

∑
k=0

(k+1)r tk =
dr

dtr

∞

∑
j=r

(t j) =
dr

dtr

∞

∑
j=0

(t j) =
dr

dtr

(
1

1− t

)
=

r!
(1− t)r+1 . (1.2)

Equations (1.1) and (1.2) solve our problem forM = Z+ and f (k) = km:

∞

∑
k=0

kmtuk =
Am,u(t)

(1− tu)m+1 , Am,u(t) ∈ Z[t]. (1.3)

It is enough to computeAm,1(t) becauseAm,u(t) = Am,1(tu). One should note that
Am,u is a polynomial of degreem. Therefore the rational function in (1.3) has
negative degree.

Since the coefficientsm,m of (k+1)m in the representation ofkm is evidently
equal to 1, we have

∞

∑
k=0

kmtum=
m!

(1− t)m+1 + terms of smaller pole order att = 1 (1.4)

Remark 1. The coefficientssm, j in (1.1) and the coefficients of the polynomials
Am,1 are well-known combinatorial numbers.

(a) sm, j = (−1)m− jS(m+1, j +1) whereS(p,q) is the Stirling number of the
second kind that counts the number of partitions of ap-set intoq blocks. This
follows immediately from the classical identitykm+1 = ∑m+1

j=1 (−1)m+1− jS(m+

1, j)(k) j (for example, see Stanley [17, 4.3,c]).
(b) For m= 0 we haveA0,1 = 1 andAm,1 = ∑m

j=1A(m, j)t j for m> 0 where
A(m, j) is the Eulerian number [17, 4.3,d].

1.2. The monoidZd
+

Next we considerM = Zd
+. The crucial observation is that the problem is

multiplicative for products of polynomials in disjoint variables. Suppose that
f (x) = g(y)h(z), y= (x1, . . . ,xr), z= (xr+1, . . . ,xd). Then

EM, f (t) = ∑
x∈Zd

+

f (x)tdegx =

(
∑

y∈Zr
+

g(y)tdegy
)(

∑
z∈Zd−r

+

h(z)tdegz
)

(1.5)

by multiplication of power series.
In order to exploit (1.5) we split the last variable off,

f (x) =∑
i

fi(x1, . . . ,xd−1)x
i
d,
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and obtain

EM, f (t) = ∑
i



(

∑
x′∈Zd−1

+

fi(x
′)tdegx′

)( ∞

∑
k=0

kitui
)


= ∑
i


 Ai,u(t)
(1− tu)i+1 ∑

x′∈Zd−1
+

fi(x
′)tdegx′


 (1.6)

with u= deged.
Applying this formula inductively allows us to eliminate all variablesxi and to

end with the desired representation ofE
Zd
+, f

(t).

Generalizing (1.4), let us consider the case in whichf is a monomial,f (x1, . . . ,xd)=
xm1

1 · · ·xmd
d , andZd

+ is endowed with itsstandard degree, deg(x) = x1+ · · ·+ xd.
Then equations (1.5) and (1.4) imply that

EM, f (t) =
m1! · · ·md!

(1− t)m1+···+md+d + terms of smaller pole order att = 1. (1.7)

1.3. Using the Stanley decomposition

We now turn to generalM ⊂ Zn. Normaliz computes a triangulationΣ of
C= cone(M) into full dimensional simplicial subconesσ . Moreover, it computes
adisjoint decomposition

cone(M) =
⋃

σ∈Σ
σ \Sσ (1.8)

whereSσ is a union of facets ofσ . The existence of such a decomposition is a
nontrivial fact. Classically it is derived from the Brugesser-Mani theorem on the
existence of line shellings (see Stanley [16]). Instead of aline shelling, Normaliz
(now) uses a method of Köppe and Verdoolaege that we describe in the following
remark; also see [12] and [9, Section 4]. It is computationally much better than
line shellings.

Remark 2. In order to compute the Stanley decomposition one starts with a vector
OC in the interior of one of the simplicial cones in the triangulationOC that avoids
all hyperplanes spanned by the facets of allσ ∈ Σ. In practice, one choosesOC

in the interior of the first simplicial coneσ in the triangulation and works with an
infinitesimal perturbation; see [9, Section 4]. Forσ ∈ Σ one then collects inSσ all
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facetsF of σ such thatOC andσ lie on different sides of the hyperplane through
F.

It is important to note the following:Sσ is never the union of all facets ofσ .
This could only happen ifOC ∈−σ . But since C is pointed we have−σ∩C= {0},
andOC 6= 0.

The following figure indicates the decomposition of a (cross-section of a) cone
computed by the method just described.

+

+-

+

+-

+ +
-

+
+

-

+-

+- +

+OC
•

Every simplicial subcone (of full dimension) is generated by linearly indepen-
dent vectorsv1, . . . ,vd ∈ M, d = rankM. They generate a free submonoidMσ of
M. For everyσ Normaliz computes the set

Eσ =
{

x∈ gp(M) : x= α1v1+ · · ·+αdvd, α i ∈ [0,1)
}

where gp(M) denotes the group generated byM. For x ∈ Eσ we let ε(x) be the
sum of thosevi for which (i) α i = 0 and (ii) the facet ofσ opposite tovi lies in
the excluded setSσ : ε(x) 6= 0 if and only if x lies in the excluded set, and the
translation byε(x) movesx out off Sσ . Then it is not hard to see that we have a
disjoint decomposition

M =
⋃

σ∈Σ

⋃

x∈Eσ

x+ ε(x)+Mσ . (1.9)

It is called aStanley decompositionsince its existence is originally due to Stanley
[16].

In the following we set̃x= x+ ε(x) and

Nσ ,x = x̃+Mσ .

Then
EM, f (t) =∑

σ
∑

x∈Eσ

ENσ ,x, f (t).
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Setd = rankM, and for givenσ consider the linear map

ασ : Zd
+ → Zn, ασ(y1, . . . ,yd) = y1v1+ · · ·+ · · ·+ydvd, (1.10)

wherev1, . . . ,vd is the generating set ofMσ as above. With

degσ y= degασ(y),

gσ ,x(y) = f
(
ασ(y)+ x̃

)
, (1.11)

we have
ENσ ,x, f (t) = tdeg̃x ∑

y∈Zd
+

gσ ,x(y)t
degσ y. (1.12)

For a precise estimate of the degrees arising in (1.12) one should note that

deg̃x< degv1+ · · ·+degvd. (1.13)

Sincex̃= ξ1v1+ · · ·+ξdvd with 0≤ ξi ≤ 1 for i = 1, . . . ,d, one must only exclude
equality in (1.13). In fact, equality would only be possiblewith ξi = 1 for all i,
and in its turn this would imply thatSσ consists of all facets ofσ . However, this
is impossible as observed in Remark 2.

Equation (1.12) transforms the summation overNσ ,x into a summation over
Zd
+. Then we can apply (1.6) inductively to

Ẽσ , f (t) = ∑
x∈Eσ

ENσ ,x, f (t). (1.14)

Finally, we sum the rational functions̃Eσ , f (t) over the triangulationΣ.

Remark 3. (a) Instead of applying (1.6) to everyσ , we accumulate the polyno-
mialsgσ ,x over allσ that induce the same degree degσ onZd (the classes formed
in this way are calleddenominator classes).

(b) The time critical steps in the algorithm are

1. the coordinate transformation (1.11), and
2. the inductive application of (1.6).

In order to speed up (1), we factor the polynomialf , transform the factors sepa-
rately, and multiply the transformed factors. Iff happens to decompose into linear
factors, then multiplication of linear polynomials becomes a time critical step. In
order to speed up (2) we have introduced the denominator classes.
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(c) Note that∑y∈Zd
+

gσ ,x(y)tdegσ y is invariant under permutations of variables
yi that preserve the degrees degσ ei . Therefore one can go overgσ ,x monomial by
monomial and reorder the exponent vectors in such a way that the exponents of
variables corresponding to the same degree become decreasing. The reordering
significantly reduces the number of monomials in the polynomials to which (1.6)
must be applied, saves memory and also speeds up (1.6).

(d) We want to point out that (1.6) isnot applied recursively. Instead the right
hand side is expanded after the elimination ofxd, andxd−1 is then eliminated
from the resulting polynomial whose coefficients are rational functions int. This
procedure is repeated until allxi have been eliminated.

1.4. The semi-open case

In applications like those sketched in Section 3 one is interested in counting
lattice points in semi-open rational cones of type

C′ =C\F

whereF is a union of faces ofC. The monoidM = C∩L is then to be replaced
by its ideal

M′ =C′∩L.

One should note that counting lattice points inM′ is intrinsically more difficult
than counting those inM, even ifF is a union of facets. For example, letC be the
cone over the unit square, i.e.,

C= R+

{
(0,0,1), (1,0,1), (1,1,1) (0,1,1)

}

andF be the union of the faces ofC through two opposite edges of the square.
Then the ordinary Ehrhart series ofM′ is (2t2−t3)/(1−t)3. This excludes a Stan-
ley decomposition of type (1.9) which would give a numeratorpolynomial with
nonnegative coefficients since the coefficient oftk in the numerator just counts the
elementsx+ε(x) that have degreek. From the geometric viewpoint, the difficulty
is demonstrated by the fact thatC′ has no decomposition of type (1.8): in at least
one of the simplicial cones one must remove an edge without any of the two facets
in which the edge is contained.

For this reason Normaliz and NmzIntegrate treat the semi-open case by inclusion-
exclusion. This principle is applicable since taking Ehrhart series is additive in the
sense of measure theory. But we do not go the most obvious way by computing
the Ehrhart series for each of the involved faces and evaluating the sieve formula
at the very end. Instead inclusion-exclusion is applied to all simplicial conesσ .
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Let F be a face ofC. By (1.9) we have

F ∩L =
⋃

σ∈Σ

⋃

x∈Eσ

F ∩ (x̃+Mσ)

where, as abovẽx = x+ ε(x). The faceF is an extreme subset ofC: y+ z∈ F
impliesy,z∈ F for all y,z∈C. This fact makes the computation ofF ∩ (x̃+Mσ )
very easy:

F ∩ (x̃+Mσ) =

{
/0 if x̃ /∈ F,

x̃+(F ∩Mσ) otherwise,

andF ∩Mσ is simply the free submonoid ofMσ that is generated by thosevi that
lie in F (notation as in (1.10)). This simple observation shows thatthe decomposi-
tion of C directly induces a decomposition ofF into components whose ordinary
Ehrhart series can easily be computed.

For generalized Ehrhart series this approach is even more advantageous: the
expensive coordinate transformation in (1.12) needs to be done only once for̃x
since it can simply be restricted toF ∩ σ by selecting those terms that do not
contain any indeterminate representing a generator outsideF .

However, one should note that the application of inclusion-exclusion to each
simplicial cone usually increases the number of componentsthat must be taken
into account for the Ehrhart series of a faceF since dimF ∩σ < dimF in general,
and the Stanley decomposition ofM∩F is no longer full-dimensional.

2. The quasipolynomial, its virtual leading coefficient, and integration

2.1. The quasipolynomial

All rational functions int that come up in (1.14) can be written over the de-
nominator

(1− tℓ)degf+rankM

whereℓ is the least common multiple of the numbers degx for the generatorsx of
M that appear in the triangulation. This follows from (1.6) ifone observes that
1− tu divides 1− tℓ. Moreover, all summands have negative degree as rational
functions int, as follows from (1.13). Therefore [17, 4.4.1] implies the following
proposition.

Proposition 4.

EM, f (t) =
∞

∑
k=0

q(k)tk
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where q is a rational quasipolynomial of periodπ dividing ℓ and of degree≤
degf + rankM−1.

The statement about the quasipolynomial means that there exist polynomials
q( j), j = 0, . . . ,π−1, of degree≤ degf + rankM−1 such that

q(k) = q( j)(k), j ≡ k (π),

and
q( j)(k) = q( j)

0 +q( j)
1 k+ · · ·+q( j)

degf+rankM−1kdegf+rankM−1

with coefficientsq( j)
i ∈Q. As we will see below, it is justified to call

ed(M, f ) = degf + rankM−1

theexpected degreeof q.

2.2. The virtual leading coefficient and Lebesgue integration

Let m= degf and write f = fm+g where fm is the degreem homogeneous
component off . Then degg < m, and it follows from Proposition 4 thatg does

not contribute to the coefficientq( j)
ed(M, f ). Moreover, this coefficient is independent

of j and given by an integral, as we will see in Proposition 5 below.
For the representation as an integral we must norm the measure in such a way

that it is compatible with the lattice structure. We will integrate over the polytope

P= cone(M)∩A1, A1 = {x∈ Rn : degx= 1}.

Let L0 = L∩RM ∩A0 whereA0 = {x∈ Rn : degx= 0} is the linear subspace of
degree 0 elements. ThenL0 is a (saturated) sublattice ofL of rank d− 1 (d =
rankM), and we choose a basisu1, . . . ,ud−1 of L0. Note thatH = RM ∩A1 has
dimensiond−1 and contains a pointz∈ L since we have required that deg takes
the value 1 on gp(M), and we can consider thebasic L0-simplexδ = conv(z,z+
u1, . . . ,z+ud−1) in H. Now we norm the Lebesgue measureλ on H by giving
volume 1/(d−1)! to the basicL0-simplex. (The measure is independent of the
choice ofδ since two basicL0-simplices differ by an affine-integral automorphism
of H.) We callλ theL-Lebesgue measureonH.

The following Propositions 5, 6 and 7 are quite elementary, as their proofs
will show. They may have appeared elsewhere, and we do not claim originality
for them.
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Proposition 5. For all j = 0, . . . ,π−1 one has

q( j)
ed(M, f ) =

∫

P
fmdλ . (2.1)

Proof. We may assume thatf is homogeneous of degreem. Let

Lc =
1
c

L.

Then ∫

P
fmdλ = lim

c→∞ ∑
x∈P∩Lc

1
cd−1 f (x)

by elementary integration theory.
Note that

f (x) =
1
cm f (cx)

by homogeneity and thatx∈ P∩Lc if and onlycx∈ L∩cP. Thus

∫

P
fmdλ = lim

c→∞ ∑
y∈cP∩L

1
cm+d−1 f (y).

On the other hand, we obtainq( j)
ed(M, f ) as the limit over the subsequence(bπ+

j)b∈Z+:

q( j)
ed(M, f ) = lim

b→∞ ∑
y∈(bπ+ j)P∩L

1
(bπ+ j)m+d−1 f (y)

by Proposition 4. This concludes the proof.

In view of Proposition 5 it is justified to callqed(M, f ) = q( j)
ed(M, f ) the virtual

leading coefficient, and the proposition justifies the term “expected degree” for
degf + rankM−1 the. In analogy with the definition of multiplicity in commuta-
tive algebra (for example, see [7]), we call

vmult(M, f ) = ed(M, f )!qed(M, f )

thevirtual multiplicity of (M, f ). It is an integer ifP is a lattice polytope andfm
has integral coefficients, as we will see below.
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2.3. Computing the integral

It is natural to compute the integral by summation over the triangulation: the
triangulation of cone(M) into simplicial subconesσ induces a triangulation of the
polytopeP into simplicesδ = σ ∩P. As usual letv1, . . . ,vd ∈ M be the gener-
ators ofσ . Thenδ is spanned by the degree 1 vectorsvi/deg(vi), i = 1, . . . ,n.
Let e1, . . . ,ed be the unit vectors inRd. Then the substitutionei 7→ vi/deg(vi)
induces a linear mapRd → RM that in its turn restricts to an affine mapα from
the standard degree 1 hyperplane inRd spanned bye1, . . . ,ed to the hyperplane
H = A1∩RM, and the image of the unit simplex∆ is justδ.

Proposition 6. One has
∫

δ
f dλ =

|detL(v1, . . . ,vd)|

deg(v1) · · ·deg(vd)

∫

∆
( f ◦α )dµ (2.2)

whereµ is theZd-Lebesgue measure on the hyperplaneH̃ of standard degree1
in Rd anddetL(v1, . . . ,vd) is the determinant of the coefficient matrix of v1, . . . ,vd

with respect to a basis of L∩RM.

Proof. This is just the substitution rule if one observes that the absolute value of
the functional determinant ofα |H̃ is given by the factor in front of the integral.
For an affine map the functional determinant is constant. So we can assumef = 1
and it remains to relate the volumes ofδ and∆. But ∆ has volume 1/(d−1)! with
respect toµ andδ has volume

1
(d−1)!

|detL(v1, . . . ,vd)|

deg(v1) · · ·deg(vd)

with respect toλ ; see [9, Section 4].

After the substitution it remains to evaluate the integral over∆, and this can be
done monomial by monomial:

Proposition 7.
∫

∆
ym1

1 · · ·ymd
d dµ =

m1! · · ·md!
(m1+ · · ·+md+d−1)!

. (2.3)

Proof. Let g= ym1
1 · · ·ymd

d andM = Z+
d . Then

EM,g(t) =
m1! · · ·md!

(1− t)(m1+···+md+d)
+ terms of smaller pole order att = 1,
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as stated in (1.7).
The quasipolynomial is a true polynomial in this case, and the (virtual) mul-

tiplicity is given by the value of the numerator polynomial at t = 1, namely
m1! · · ·md! (for example, see [7, 4.1.9]). Now Proposition 5 gives the integral.

One can also derive the formula in Proposition 7 by iterated use of the classical
Beta integral

∫ 1

0
ym1

1 (1−y1)
m2 dy1 =

m1!m2!
(m1+m2+1)!

=
Γ(m1+1)Γ(m2+1)

Γ(m1+m2+2)
;

see [2, Theorem 1.1.4]

3. Computational examples

We illustrate the use of NmzIntegrate by three related examples coming from
combinatorial voting theory that are discussed in [15]. We refer the reader to [13],
[15] or [18] for a more extensive treatment.

Consider an election in which each of thek voters fixes a linear preference
order ofn candidates. In other words, voteri chooses a linear order of the candi-
dates 1, . . . ,n. Each such order represents a permutation of 1, . . . ,n. SetN = n!.
The result of the election is anN-tuple(x1, . . . ,xN) in which xp is the number of
voters that have chosen the preference order labeledp. Thenx1+ · · ·+ xN = k,
and(x1, . . . ,xN) can be considered as a lattice point in the positive orthant of RN

+,
or, more precisely, as a lattice point in the simplex

U (n)
k = RN

+∩Ak = k
(
RN
+∩A1

)
= kU(n)

whereAk is the hyperplane defined byx1+ · · ·+ xN = k, andU (n) = U (n)
1 is the

unit simplex of dimensionN−1 naturally embedded inN-space. We assume that

all lattice points in the simplexU (n)
k have equal probability of being the outcome

of the election.
The following three problems have been considered in [15] for 4 candidates

A,B,C,D:

1. the Condorcet paradox,
2. the Condorcet efficiency of plurality voting,
3. plurality voting versus cutoff.
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Forn= 4 one hasN = 24, and the dimension of the polytopeU (4) is already quite
large.

Let us say that candidateA beatscandidateB if the number of voters that prefer
candidateA to candidateB is larger than the number of voters with the opposite
preference. CandidateA is theCondorcet winnerif A beats all other candidates.
As the Marquis de Condorcet noticed, the relation “beats” isnontransitive for
some outcomes of the election, and there may be no Condorcet winner. This
phenomenon is called theCondorcet paradox. Problem (1) asks for its asymptotic
probability as the numberk of voters goes to∞, or even for the precise number of
election results without a Condorcet winner, depending on the numberk of voters.

It is not hard to see that the outcomes that haveA is the Condorcet winner can
be described by three homogeneous linear inequalitiesλ i(x) > 0 whose coeffi-
cients are given in Table 1 (relative to the lexicographic order of the permutations
of A,B,C,D). They cut out a rational polytope fromU (n), and the probability of

λ1: 1 1 1 1 1 1−1−1−1−1−1−1 1 1−1−1 1−1 1 1−1−1 1−1
λ2: 1 1 1 1 1 1 1 1−1−1 1−1−1−1−1−1−1−1 1 1 1−1−1−1
λ3: 1 1 1 1 1 1 1 1 1−1−1−1 1 1 1−1−1−1−1−1−1−1−1−1

Table 1: Inequalities expressing thatA beats the other 3 candidates

Condorcet’s paradox can be computed from the volume of the polytope. Find-
ing the precise number of election results without (or with)a Condorcet winner
requires the computation of the Ehrhart function of the semi-open polytope.

Problems (2) and (3) can be described by similar systems of linear inequali-
ties. Since version 2.8, Normaliz can indeed compute the volumes and the Ehrhart
series in dimension 24 that arise from tasks (1), (2) and (3) although the triangu-
lations to be evaluated for (2) and (3) are indeed formidable(see Table 3 or [9]).

As Schürmann [15] observed, the computations can be considerably simpli-
fied by exploiting the symmetries in the inequalities: some variables share the
same coefficients in each inequality, for example the first 6 variables in Table 1.
Therefore they can be replaced by their sum, and the replacement constitutes a
projection of the original polytopes, monoids or cones ontoobjects of smaller di-
mension. For the Condorcet paradox the system of inequalities reduces to Table 2.
However, instead of simply counting lattice points, one must now count them with
their numbers of preimages. These are given by polynomials,namely products of
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1 -1 1 1 1 -1 -1 -1
1 1 -1 1 -1 1 -1 -1
1 1 1 -1 -1 -1 1 -1

Table 2: Inequalities exploiting the symmetries in Table 1

binomial coefficients. In our example the polynomial is
(

y1+5
5

)
(y2+1)(y3+1)(y4+1)(y5+1)(y6+1)(y7+1)

(
y8+5

5

)

wherey1 = x1 + · · ·+ x6 etc. In other words, the Ehrhart function (or the vol-
ume) of a high dimensional polytope is replaced by a generalized Ehrhart function
of a polytope of much lower dimension (or the virtual leadingcoefficient of the
quasipolynomial).

A priori it may not be clear that the replacement of combinatorial complexity
in high dimension by multivariate polynomial arithmetic inlow dimension pays
dividends, but this is indeed the case. Tables 3 and 4 compareboth approaches.
The computations in Table 3 and the Condorcet efficiency in Table 4 were run on
a SUN xFire 4450 with 20 parallel threads. The other computations in Table 4
were done on the same machine, but serially.

If the computations in Table 3 are restricted to volumes, they become faster by
a factor of approximately 3. The times are given for the Ehrhart series of the closed
polytopes. For the semi-open versions one must approximately add another 30%,
but we hope that a refined implementation will reduce the extra time somewhat.

computation triangulation size real time

Condorcet paradox 1,473,107 00:00:30 h

Condorcet efficiency 347,225,775,338 218:13:55 h

plurality vs. cutoff 257,744,341,008 175:11:26 h

Table 3: Computation times (real) for Ehrhart series in dimension 24

The last 3 columns of Table 4 list the times for the following computations: (i)
the time Normaliz needs for the computation of the Stanley decomposition, (ii) the
time in which NmzIntegrate 1.2 computes the generalized Ehrhart series, and (iii)
the NmzIntegrate time for the leading coefficient. Whether the extra computation
time for the semi-open case can be further improved is not yetclear.
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computation rank degf # triangulation / Normaliz gen Ehrhart lead coeff

# Stanley dec time series time time

Condorcet paradox 8 16 17 / 21 0.01 sec 2.3 sec 0.04 sec

– semi-open 2.5 sec

Condorcet efficiency 13 11 17,953 / 23,453 0.34 sec 1:53 h 22 min

– semi-open 2:02 h

plurality vs. cutoff 6 18 3 / 4 0.01 sec 8.1 sec 0.09 sec

– semi-open 13.6 sec

Table 4: Computation times (real) for symmetrized data

A welcome side effect of the computations of the generalizedEhrhart func-
tions is that they have confirmed the results obtained by Normaliz.

J. Jeffries, J. Montaño and M. Varbaro [14] have applied NmzIntegrate for the
evalutaion of integrals that compute certain multiplicities. A typical example is

∫

[0,1]m

∑x=t

(x1 · · ·xm)
n−m ∏

1≤i< j≤m

(x j −xi)
2dµ,

taken over the intersection of the unit cube inRm and the hyperplane of constant
coordinate sumt. It is supposed thatt ≤ m≤ n. For t = 2, m= 4, n = 6 the
computation time is≪ 1 sec.

Remark 8. While NmzIntegrate accepts polynomials with rational coefficients as
input, in version 1.2 all internal computations are based onintegers of the Co-
CoALib typeBigInt that is essentially a wrapper for the GMP typempz class.
The use of integral arithmetic is possible since a common denominator can be
computed beforehand.

Version 1.0 had used rational arithmetic instead. The change from rational to
integer arithmetic has saved about 50 % of the computation time.
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[12] M. Köppe and S. Verdoolaege,Computing parametric rational generating
functions with a Primal Barvinok algorithm.Electr. J. Comb.15(2008), R16,
1–19.

[13] D. Lepelley, A. Louichi and H. Smaoui,On Ehrhart polynomials and prob-
ability calculations in voting theory.Social Choice and Welfare30 (2008),
363–383.

[14] J. Jeffries, J. Montaño and M. Varbaro,Multiplicities of classical varieties.
http://arxiv.org/abs/1308.0582

17

http://math.sfsu.edu/beck/ccd.html
http://www.math.uos.de/normaliz
http://www.math.ucdavis.edu/~latte/
http://arxiv.org/abs/1308.0582
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