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Abstract

We describe an algorithm for the computation of general{pedeighted) Ehrhart
series based on Stanley decompositions as implemented offdpring NmzIn-

tegrate of Normaliz. The algorithmic approach includesnaetary proofs of the
basic results. We illustrate the computations by examptes tombinatorial vot-
ing theory.
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LetM c Z" be an affine monoid endowed with a positi«grading deg. Then
theEhrhart or Hilbert seriesis the generating function

Em(t) = § t%% = § #{xc M : degx = k}t¥,
XEZ/I k;)

andE(M,k) = #{x € M : degx = k} is the Ehrhart or Hilbert function d1 (see
[6] for terminology and basic theory). It is a classical thezn thatEy (t) is the
power series expansion of a rational function of negatiggekeaty = 0 and that
E(M,k) is given by a quasipolynomial of degree rdnik- 1 with constant leading
coefficient equal to the (suitably normed) volume of theoradil polytope

P =condM)NA;
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where conéM) C R" is the cone generated b andA; is the hyperplane of de-
gree 1 points. See Beck and Robbins [5] for a gentle introdnitd the fascinating
area of Ehrhart series. In the following we assume that

M = condM)NL

for a sublatticel of Z". ThenE(M, k) counts the_-points in the multiple&kP, and
is therefore the Ehrhart function &f(with respect td.).

Monoids of the type just introduced are important for apgliens, and in
some of them, like those discussed in Secfibn 3, one is nigtled to consider
generalizedor weighted)Ehrhart series

Em ¢ (t) = Za f (x)tde

wheref is a polynomial imn indeterminates. It is well-known that also the gener-
alized Ehrhart series is the power series expansion of @atfunction; see [3],
[4].

In applications that involve strict linear inequaliti®t is to be replaced by
M’ =Mn(con&M)\ .%) where.# is a union of faces (not necessarily facets) of
congM). Our approach covers this “semi-open” situation as well.

In 2012 we have implemented an offspring of Normaliz [8] edINmzInte-
gratE] that computes generalized Ehrhart series. The input polyais of Nmz-
Integrate must have rational coefficients, and we assunteftigof this type
although it is mathematically irrelevant. This note desesi the computation of
generalized Ehrhart series based on Stanley decompasilib6h Apart from tak-
ing the existence of Stanley decompositions as granted,iveecpmplete and
very elementary proofs of the basic facts. They follow elyattte implementa-
tion in Nmzintegrate (or vice versa). The semi-open casetiomeed above has
already been implemented in the current development ves6 Normaliz and
Nmzintegrate. It will be contained in the next public versio

The generalized Ehrhart function is given by a quasipolyiabgik) of degree
< degf +rankM — 1, and the coefficient gf9€df+rankM-1 jn q(k) can easily be
described as the integral of the highest homogeneous canponf over the
polytopeP. Therefore we have also included (and implemented) an apprto
the computation of integrals of polynomials over rationalypopes in the spirit

INmzintegrate version 1.2 is available as part of the Nomll 1 distribution.



of the Ehrhart series computation. See [4] and [10] for maghssticated ap-
proaches. Our algorithm and its implementation in Nmzlraeghave been de-
veloped independently from LattE integrale![11]. It is a sequent extension of
the Normaliz algorithm for the computation of ordinary Ehrtrseries.
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ate polynomial algebra in Nmzintegrate is based. Chridiatenthaler kindly
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1. The computation of generalized Ehrhart series

Via a Stanley decomposition and substitution the compurtatf generalized
Ehrhart series can be reduced to the case in wMicha free monoid, and for free
monoids one can split off the variables buccessively so that one ends at the
classical cas® = Z.. . We take the opposite direction, starting fr@m.

1.1. The monoid.
LetM = Z,.. By linearity it is enough to consider the polynomidigk) = k™,
k € Z., for which the generalized Ehrhart series is given by

Z Kmum u=degl
K=o

and if necessary we can assume 1, substituting — t" in the final result.
The rising factorials

(K+1)m=(k+121)---(k+m)

form aZ-basis of the polynomial ring [k]. Therefore we can write

M_ Smj(K+1); (1.1)
j;) j j



and use that

> d 2 d 2 d’ 1 !
Dt =g 5 0= 5 0= (155) = e 02

k_
Equations[(1]1) and (T.2) solve our problemKkbe= Z. and f (k) = k™

Z)k”‘t“k ti‘jmfﬂ Anmu(t) € Z[t]. (1.3)

It is enough to computdy 1(t) becauséy y(t) = Am1(t"). One should note that
Anmy is a polynomial of degreen. Therefore the rational function ifi_(1.3) has
negative degree.

Since the coefficiengmm of (k+ 1) in the representation & is evidently
equal to 1, we have

> KUM= +terms of smaller pole order ait= 1 (1.4)
K=0

m!
(1—t)m+l
Remark 1. The coefficientsn j in (1.1) and the coefficients of the polynomials
Am, are well-known combinatorial numbers.

(@) smj=(—1)™!S(m+1,j+1) whereS(p,q) is the Stirling number of the
second kind that counts the number of partitions gf-set intoq blocks. This
follows immediately from the classical identi"* = zm”( 1)™1-Ig(m+
1,j)(k); (for example, see Stanley [17, 4.3,c]). _

(b) Form= 0 we haveAg; = 1 andAy1 = 3|11 A(m, j)t! for m > 0 where
A(m, j) is the Eulerian number [17, 4.3,d].

1.2. The monoi@d
Next we consideM = Z4. The crucial observation is that the problem is
multiplicative for products of polynomials in disjoint vables. Suppose that

f(x) =09(y)h(2),y=(X1,---,%), Z= (Xr+1,---,%4)- Then

ust) = 3 100 = (5 gyeeew) (3

xezd yeZl, zez%"

h(z)tde@) (1.5)

by multiplication of power series.
In order to exploit[(1.5) we split the last variable off,

Zfl X17 7Xd 1Xd
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and obtain

-3 (3 00 (52

xezd-1
=) % zd fi (X )t9e9 (1.6)
' xezdt

with u = degey.

Applying this formula inductively allows us to eliminatd aariablesx; and to
end with the desired representatiori:‘% (1)

Generalizing[(114), let us consider the case in wHicha monomialf (xg,...,Xq) =
xqt--xj¢, andZ4 is endowed with itsstandard degreedegx) = X1 + - - - + Xqg.
Then equations (11.5) and (1.4) imply that

my ! rndl
EM,f(t> = (1_t>m1+---+md+d

+terms of smaller pole order ait= 1. (1.7)

1.3. Using the Stanley decomposition

We now turn to generall c Z". Normaliz computes a triangulatian of
C = condM) into full dimensional simplicial subcones Moreover, it computes
adisjointdecomposition

congM) = | J 0\ S (1.8)

o

whereS; is a union of facets 0&. The existence of such a decomposition is a
nontrivial fact. Classically it is derived from the Bruges$/lani theorem on the
existence of line shellings (see Stanley [16]). Insteadlofeashelling, Normaliz
(now) uses a method of Koppe and Verdoolaege that we dederibe following
remark; also see [12] and [9, Section 4]. It is computatilyraluch better than
line shellings.

Remark 2. In order to compute the Stanley decomposition one startsawector
Oc in the interior of one of the simplicial cones in the triangfidnOc that avoids
all hyperplanes spanned by the facets ofaalt Z. In practice, one choos&3:
in the interior of the first simplicial cone in the triangulation and works with an
infinitesimal perturbation; see![9, Section 4]. kpe X one then collects iy all



facetsF of o such thalOc ando lie on different sides of the hyperplane through
F.

It is important to note the followingS; is never the union of all facets of.
This could only happen D¢ € —o. But since Cis pointed we haveo NC = {0},
andQOc¢ # 0.

The following figure indicates the decomposition of a (cresstion of a) cone
computed by the method just described.

Every simplicial subcone (of full dimension) is generatgdibearly indepen-
dent vectorss,...,vg € M, d = rankM. They generate a free submondig of
M. For everyo Normaliz computes the set

Eo = {xegp(M):x=0avi+---+0agvg, 0i €[0,1)}

where ggM) denotes the group generated My Forx € E; we lete(x) be the
sum of thosey; for which (i) a; = 0 and (ii) the facet otb opposite tov; lies in
the excluded se®,: £(x) # 0 if and only if x lies in the excluded set, and the
translation bye(x) movesx out off S;. Then it is not hard to see that we have a
disjoint decomposition

M=J (U x+e&()+Mo. (1.9)

ocs xekEg

It is called aStanley decompositiaince its existence is originally due to Stanley
[1€].
In the following we sek = x+ £(x) and

NO',X - X‘}‘ Mo‘.

Then
Em,t(t) =5 Z Eng.. f (t)-
0 Xekg
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Setd = rankM, and for giveno consider the linear map
Ao Z¢ 2", Ag(yr,....Ya) =YiVi+--+ -+ Yava, (1.10)
wherevy, ..., Vq is the generating set &, as above. With

deg,y = degas(y),

dox(y) = f(ag(y) +%), (1.11)
we have B
En, £ (1) =t%F S g x(y)te®Y. (1.12)
yezd

For a precise estimate of the degrees arisingin {1.12) comédhote that
degx < degvy + - - - +degvy. (1.13)

Sincex=§&vi+---+&qvgwith0< & < 1fori=1,...,d, one must only exclude
equality in [1.18). In fact, equality would only be possikigh & = 1 for all i,
and in its turn this would imply tha®; consists of all facets af. However, this
is impossible as observed in Remark 2.

Equation [(1.1R) transforms the summation oMgry into a summation over
74 Then we can apply(1.6) inductively to

Eo ()= 5 Enget(t). (1.14)

Xekg

Finally, we sum the rational functior%c,,f (t) over the triangulatiofx.

Remark 3. (a) Instead of applyind (11.6) to every, we accumulate the polyno-
mialsgq x over allo that induce the same degree gem 74 (the classes formed
in this way are calledenominator classés

(b) The time critical steps in the algorithm are

1. the coordinate transformatidn (11.11), and
2. the inductive application of (1.6).

In order to speed up (1), we factor the polynomiatransform the factors sepa-
rately, and multiply the transformed factors.flhappens to decompose into linear
factors, then multiplication of linear polynomials becaaetime critical step. In
order to speed up (2) we have introduced the denominatwedas

7



(c) Note thatzyezd+ Jox(Y)t9%Y is invariant under permutations of variables
yi that preserve the degrees ge&g Therefore one can go ovgs x monomial by
monomial and reorder the exponent vectors in such a way hiatgxponents of
variables corresponding to the same degree become degeddie reordering
significantly reduces the number of monomials in the polyiatsrto which [1.6)
must be applied, saves memory and also speeds Up (1.6).

(d) We want to point out thal (1.6) rsot applied recursively. Instead the right
hand side is expanded after the eliminationxgf andxy_; is then eliminated
from the resulting polynomial whose coefficients are ragidanctions int. This
procedure is repeated until &llhave been eliminated.

1.4. The semi-open case

In applications like those sketched in Sectidon 3 one is @stied in counting
lattice points in semi-open rational cones of type

C'=C\.Z

where.# is a union of faces of. The monoidV = CnL is then to be replaced
by its ideal

M’ =C'NL.
One should note that counting lattice pointshMh is intrinsically more difficult
than counting those i1, even if.# is a union of facets. For example, @be the
cone over the unit square, i.e.,

C=R;+{(0,0,1), (1,0,1), (1,1,1) (0,1,1)}

and.# be the union of the faces @f through two opposite edges of the square.
Then the ordinary Ehrhart seriesf is (2t2—t3) /(1—t)3. This excludes a Stan-
ley decomposition of typé (1.9) which would give a numergtolynomial with
nonnegative coefficients since the coefficient‘ah the numerator just counts the
elementx+ £(x) that have degrele From the geometric viewpoint, the difficulty
is demonstrated by the fact tHathas no decomposition of type (1..8): in at least
one of the simplicial cones one must remove an edge withgub&the two facets

in which the edge is contained.

For this reason Normaliz and Nmzintegrate treat the seraircpse by inclusion-
exclusion. This principle is applicable since taking Emntlsaries is additive in the
sense of measure theory. But we do not go the most obvious wagrputing
the Ehrhart series for each of the involved faces and evalyitie sieve formula
at the very end. Instead inclusion-exclusion is appliedlitsi@plicial coneso.

8



LetF be a face o€. By (1.9) we have

FnL=J U FnE+Mg)

oes xeEq

where, as abovg = x+ £(x). The faceF is an extreme subset &f y+zc F
impliesy,z < F for all y,z€ C. This fact makes the computationf (X+My)
very easy:

() if X¢ F,

FN(X+Mg) =
(X+Mo) {>~(+(FHMU) otherwise

andF N Mg is simply the free submonoid &, that is generated by thosethat
liein F (notation as in[(1.10)). This simple observation showsttihatlecomposi-
tion of C directly induces a decomposition Bfinto components whose ordinary
Ehrhart series can easily be computed.

For generalized Ehrhart series this approach is even me@ntabeous: the
expensive coordinate transformation in (1.12) needs todme @nly once fox
since it can simply be restricted 6N o by selecting those terms that do not
contain any indeterminate representing a generator @ftsid

However, one should note that the application of inclug&ohusion to each
simplicial cone usually increases the number of compontatismust be taken
into account for the Ehrhart series of a fa€since dinF N o < dimF in general,
and the Stanley decompositionMfn F is no longer full-dimensional.

2. The quasipolynomial, its virtual leading coefficient, anl integration

2.1. The quasipolynomial

All rational functions int that come up in[{1.14) can be written over the de-

nominator
(1 . tE>degf+rankM

where/ is the least common multiple of the numbers dégy the generators of

M that appear in the triangulation. This follows from (1.6pife observes that

1 —tY divides 1—t‘. Moreover, all summands have negative degree as rational
functions int, as follows from[(1.13). Therefore [17, 4.4.1] implies tlodidwing
proposition.

Proposition 4.



where q is a rational quasipolynomial of perigddividing ¢ and of degree<
degf +rankM — 1.

~ The statement about the quasipolynomial means that thesepatynomials
g, j=0,...,m—1, of degree< degf + rankM — 1 such that

and

q(j)(k) _ qél) +q(ll)k+”.+q((jle)ngrrankM7lkdegf+rankal

with coefficientsqi(j) € Q. As we will see below, it is justified to call
edM, f) = degf +rankM — 1
theexpected degreef q.

2.2. The virtual leading coefficient and Lebesgue integrati

Let m= degf and writef = f,+ g where f, is the degreen homogeneous
component off. Then deg < m, and it follows from Propositionl4 thaf does

not contribute to the coefficie Q(M f)° Moreover, this coefficient is independent
of j and given by an integral, as we will see in Propositibn 5 below
For the representation as an integral we must norm the neassuch a way

that it is compatible with the lattice structure. We willégrate over the polytope
P = congM) N Ay, A; = {xeR":degx=1}.

LetLo = LNRMNAg whereAg = {x € R": degx = 0} is the linear subspace of
degree 0 elements. Thenp is a (saturated) sublattice afof rankd —1 (d =
rankM), and we choose a baagis, ...,uq_; of Lo. Note thatH = RMNA; has
dimensiond — 1 and contains a poirzte L since we have required that deg takes
the value 1 on g{M), and we can consider thmsic Lp-simplexd = conV(z,z+
up,...,Z+Ug_1) in H. Now we norm the Lebesgue measuren H by giving
volume %/(d — 1)! to the basid_o-simplex. (The measure is independent of the
choice ofd since two basit.o-simplices differ by an affine-integral automorphism
of H.) We callA theL-Lebesgue measumnH.

The following Proposition§]5,16 arid 7 are quite elementasytheir proofs
will show. They may have appeared elsewhere, and we do niat daginality
for them.
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Proposition 5. Forall j =0,...,m1— 1 one has

) _
qud(M’f)_/med/\. (2.1)

Proof. We may assume thdtis homogeneous of degree Let

1
LC - EL
Then L
/med)\ — lim = f(x)

C%wxe Nlc c

by elementary integration theory.
Note that

f(x) = Cimf(cx)

by homogeneity and thate PN L. if and onlycxe LNcP. Thus

: 1
Jmdd =lim 5 o)

Qn the other hand, we obtaqijd)(Mﬁf) as the limit over the subsequengd®T+
bez,: .

(1) i

q = lim a1 Y

edM. ) bﬁwye(anrj)PmL (er—J)mHj !

by Propositioi 4. This concludes the proof. O

In view of Propositiori b it is justified to calleqm,r) = qéQ(M’f) the virtual
leading coefficientand the proposition justifies the term “expected degree” fo
degf +rankM — 1 the. In analogy with the definition of multiplicity in comnas
tive algebra (for example, see [7]), we call

vmult(M, f) = edM, f)!Geqm. 1)

the virtual multiplicity of (M, f). Itis an integer ifP is a lattice polytope andiy,
has integral coefficients, as we will see below.

11



2.3. Computing the integral

It is natural to compute the integral by summation over ti@gulation: the
triangulation of conéM) into simplicial subcones induces a triangulation of the
polytopeP into simplicesd = g NP. As usual letv,...,vqg € M be the gener-
ators ofo. Then¢ is spanned by the degree 1 vecturgdeqv;), i =1,...,n.
Let ey, ....eq be the unit vectors iRY. Then the substitutios — vi/deq V)
induces a linear mag? — RM that in its turn restricts to an affine mapfrom
the standard degree 1 hyperplaneRih spanned byey, . .., e4 to the hyperplane
H = A1 N RM, and the image of the unit simpléxis justo.

Proposition 6. One has

|det (v,...,Vd)|
/fd)\ dogv,) - deqv) /A(foa)du 2.2)

wherep is theZ9-Lebesgue measure on the hyperpl&hef standard degred
in R4 and def (vi,...,Vq) is the determinant of the coefficient matrix @f.v., vy
with respect to a basis of LRM.

Proof. This is just the substitution rule if one observes that theohlie value of
the functional determinant af|H is given by the factor in front of the integral.
For an affine map the functional determinant is constant. &oam assumé=1
and it remains to relate the volumesdandA. ButA has volume 1(d — 1)! with
respect tqu andd has volume

1 |det(vi,...,vq)]
(d—1)!degvy)---degvg)

with respect to\ ; see[9, Section 4]. O

After the substitution it remains to evaluate the integkard, and this can be
done monomial by monomial:

Proposition 7.

/Aylml...yghdu: my!---mg! . 2.3)

(Mg +---+my+d-1)!
Proof. Letg=yy™---y;¢ andM = Z]. Then

my!--- rndl
(1_t)(m1+~-~+md+d)

Emg(t) = +terms of smaller pole order &it= 1,

12



as stated in(117).

The quasipolynomial is a true polynomial in this case, ard(thrtual) mul-
tiplicity is given by the value of the numerator polynomidlta= 1, namely
my!---my! (for example, see [7, 4.1.9]). Now Proposit[dn 5 gives titegral. [

One can also derive the formula in Proposifibn 7 by iteratsdai the classical
Beta integral

1 my!'my! M(m+ 1) (mp+1)
101 — M qy, = — :
/oyT( e (e S TR W)

seel[2, Theorem 1.1.4]

3. Computational examples

We illustrate the use of Nmzintegrate by three related exesmoming from
combinatorial voting theory that are discussed in [15]. Wlerthe reader to [13],
[15] or [18] for a more extensive treatment.

Consider an election in which each of thesoters fixes a linear preference
order ofn candidates. In other words, votethooses a linear order of the candi-
dates 1...,n. Each such order represents a permutation, of. In. SetN = n!.
The result of the election is ad-tuple (Xg,...,xn) in which xp is the number of
voters that have chosen the preference order labelethenx; +--- +xy = K,
and(x,...,Xn) can be considered as a lattice point in the positive orthaREo
or, more precisely, as a lattice point in the simplex

UMW =RY nA = k(RN NA) = kU

whereA, is the hyperplane defined by + - +xy = k, andU®™ =U!" is the
unit simplex of dimensioN — 1 naturally embedded iN-space. We assume that
all lattice points in the simplekllfn) have equal probability of being the outcome
of the election.

The following three problems have been considered in [16ifoandidates

A,B,C,D:

1. the Condorcet paradox,
2. the Condorcet efficiency of plurality voting,
3. plurality voting versus cutoff.

13



Forn= 4 one had\ = 24, and the dimension of the polytopé? is already quite
large.

Let us say that candidafebeatscandidateB if the number of voters that prefer
candidateA to candidateB is larger than the number of voters with the opposite
preference. Candidatis the Condorcet winneif A beats all other candidates.
As the Marquis de Condorcet noticed, the relation “beatsidatransitive for
some outcomes of the election, and there may be no Condoioeemw This
phenomenon is called tl&ondorcet paradoxProblem (1) asks for its asymptotic
probability as the numbédrof voters goes teo, or even for the precise number of
election results without a Condorcet winner, dependindiemumbek of voters.

It is not hard to see that the outcomes that haagthe Condorcet winner can
be described by three homogeneous linear inequalities > 0 whose coeffi-
cients are given in Tabl€ 1 (relative to the lexicographieonf the permutations
of A,B,C,D). They cut out a rational polytope frobh("), and the probability of

A111111-1-1-1-1-1-12 1 1-1-1 1-1 1 1-1-1 1-1
2111121221211 2-1-1 1-1-1-1-1-1-1-1 1 1 1-1-1-1
30111122111 2%1-12-12 11 1-1-1-1-1-1-1-1-1-1

Table 1: Inequalities expressing thhabeats the other 3 candidates

Condorcet’'s paradox can be computed from the volume of thgque. Find-
ing the precise number of election results without (or wahfondorcet winner
requires the computation of the Ehrhart function of the sep&n polytope.
Problems (2) and (3) can be described by similar systemseatiinequali-
ties. Since version 2.8, Normaliz can indeed compute themwes and the Ehrhart
series in dimension 24 that arise from tasks (1), (2) andl{Bdagh the triangu-
lations to be evaluated for (2) and (3) are indeed formidédee Tablél3 or [9]).
As Schirmann_[15] observed, the computations can be oeradily simpli-
fied by exploiting the symmetries in the inequalities: soragables share the
same coefficients in each inequality, for example the firsaGables in Tabléll.
Therefore they can be replaced by their sum, and the repEmteconstitutes a
projection of the original polytopes, monoids or cones afifects of smaller di-
mension. For the Condorcet paradox the system of ineceatitiduces to Table 2.
However, instead of simply counting lattice points, one tmasv count them with
their numbers of preimages. These are given by polynormmategly products of

14



Table 2: Inequalities exploiting the symmetries in Tdble 1

binomial coefficients. In our example the polynomial is

(y15+5) (Y2+1)(ya+1)(Ya+ 1)(Y5+1)(y6+1)(y7+1)< ;

wherey; = X1 +--- 4+ Xg etc. In other words, the Ehrhart function (or the vol-
ume) of a high dimensional polytope is replaced by a germ@liEhrhart function
of a polytope of much lower dimension (or the virtual leadougfficient of the
guasipolynomial).

A priori it may not be clear that the replacement of combinata@omplexity
in high dimension by multivariate polynomial arithmeticlow dimension pays
dividends, but this is indeed the case. Tables 3[and 4 coniyodiheapproaches.
The computations in Tablé 3 and the Condorcet efficiency bield were run on
a SUN xFire 4450 with 20 parallel threads. The other commriatin Tabld_4
were done on the same machine, but serially.

If the computations in Tablg 3 are restricted to volumes; ttecome faster by
afactor of approximately 3. The times are given for the Ehrdexies of the closed
polytopes. For the semi-open versions one must approxiyreade another 30%,
but we hope that a refined implementation will reduce thesetitne somewhat.

YB+5>

computation triangulation size real time
Condorcet paradox 1,473,107, 00:00:30 h
Condorcet efficiency 347,225775338 | 218:13:55 h
plurality vs. cutoff | 257,744 341,008| 175:11:26 h

Table 3: Computation times (real) for Ehrhart series in disien 24

The last 3 columns of Tableé 4 list the times for the followirgrputations: (i)
the time Normaliz needs for the computation of the Stanlepd®osition, (ii) the
time in which Nmzintegrate 1.2 computes the generalizeth&fiseries, and (iii)
the Nmzintegrate time for the leading coefficient. Whetherdxtra computation
time for the semi-open case can be further improved is natlget.
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computation rank | degf | # triangulation /| Normaliz | gen Ehrhart| lead coeff
# Stanley dec time | series time time
Condorcet paradox 8 16 17/21| 0.01sec 2.3sec| 0.04 sec
— semi-open 2.5sec
Condorcet efficiency 13 11| 17,953/23,453 0.34 sec 1:53 h 22 min
— semi-open 2:02h
plurality vs. cutoff 6 18 3/4| 0.01sec 8.1sec| 0.09 sec
— semi-open 13.6 sec

Table 4. Computation times (real) for symmetrized data

A welcome side effect of the computations of the generaliZbthart func-
tions is that they have confirmed the results obtained by ldbzm

J. Jeffries, J. Montaino and M. Varbaro [14] have applied Mrtegrate for the
evalutaion of integrals that compute certain multiplesti A typical example is

/ (Xl...xm>n—m |—| (Xj—Xi>2d[1,

[O,l]m 1<i<)j<m
3 x=t

taken over the intersection of the unit cubeRiff and the hyperplane of constant
coordinate sum. It is supposed that< m<n. Fort =2, m=4,n=6 the
computation time is< 1 sec.

Remark 8. While Nmzintegrate accepts polynomials with rational éogfnts as
input, in version 1.2 all internal computations are basedntegers of the Co-
CoALib typeBigInt that is essentially a wrapper for the GMP tyjgez_class.

The use of integral arithmetic is possible since a commoroehémator can be

computed beforehand.
Version 1.0 had used rational arithmetic instead. The ohdmgn rational to
integer arithmetic has saved about 50 % of the computatioa. ti
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