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The three-state toric homogeneous Markov chain model has

Markov degree two

Patrik Norén

IST Austria, 3400 Klosterneuburg, Austria

Abstract

We prove that the three-state toric homogenous Markov chain model has Markov degree
two. In algebraic terminology this means, that a certain class of toric ideals are generated
by quadratic binomials. This was conjectured by Haws, Martin del Campo, Takemura
and Yoshida, who proved that they are generated by degree six binomials.

1. Introduction

This paper concerns the algebraic statistics of time homogenous Markov chains. Markov
chains are simple yet important random processes but the algebra surrounding them is
relatively unexplored. A Markov chain give a distribution on the set of words of a given
length on the alphabet consisting of the states of the Markov chain. We are interested in
the toric ideals generated by the binomial equations satisfied by all such distributions. The
Markov chains considered are time homogenous, meaning that the transition probabilities
do not depend on time.

One motivation to study these ideals is that the generating sets of these ideals can
be used to do hypothesis testing, this idea was proposed by Diaconis and Sturmfels [6].
When the Markov chain only have two states Hara and Takemura [7] found generating sets
consisting of binomials of degree at most two. In this paper we are interested in Markov
chains with more states but with the restriction that the initial distribution is uniform
and that the transition probabilities from a state to itself are zero. In this setting Haws,
Martin del Campo, Takemura and Yoshida [9] conjectured that there are generating sets
consisting of binomials of degree at most S − 1, where S is the number of states. The
main contribution of this paper is to prove the conjecture for the three state case. The
conjecture is false in general, a counterexample for the four state case is provided. We
also investigate Gröbner bases for these ideals.

The results of this paper are about algebraic statistics, an area further surveyed in the
book by Drton, Sturmfels, and Sullivant [2].

The rest of the introduction is a more formal setup of the problem and the description
of the results, in Section 2 the main tools used in the proofs are introduced and in Section
3 the main theorem is proved.

Let S and T be positive integers, set

RS,T = K[xw | w is a T -letter word i1 . . . iT on the alphabet [S] with ij 6= ij+1],
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and define the S-state toric homogeneous Markov T–chain ideal, IS,T , as the kernel of the
ring homomorphism

ΦS,T : RS,T → RS,2

given by Φ(xi1...iT ) = xi1i2xi2i3 · · ·xiT−1iT . When the T is clear from context this is some-
times abbreviated to S-state model ideal. The Markov degree of an ideal is the smallest
upper bound of the degree of the generators of the ideal, and the Gröbner degree is the
smallest upper bound for the degrees of the elements in a Gröbner basis.

Theorem (Haws, Martin del Campo, Takemura and Yoshida, [8], [9]). The Markov degree
of the three-state model ideal is at most six.

Conjecture ([8], [9]). For S > 2, the S-state model ideal has Markov degree S − 1 and
Gröbner degree S.

We prove the Markov part of the conjecture for the three-state model ideal by combi-
natorial arguments.

Theorem 3.7. The Markov degree of the three-state model ideal is two.

Before this paper only the two state case was settled. For more states only conjectures
were known.

Example 1.1. When T is less than or equal to two then the ideal is is trivial. The ideal
I3,3 is

〈x123x321−x121x232, x231x132−x131x232, x312x213−x121x131, x121−x212, x131−x313, x232−x323〉.

The S-state toric homogeneous Markov T–chain ideal is similar to the ideal of graph
homomorphisms from the path of length T to the complete graph on S vertices. The
following result motivates the belief that the structure of IS,T should be possible to un-
derstand.

Theorem (Engström and Norén [5]). The ideal of graph homomorphisms from any forest
to any graph has a square-free quadratic Gröbner basis.

This theorem was proved using the toric fiber product. In this paper, we will use an
adaption of that object, similar to those in [3], [4] and [10], for ideals that are not always
toric fiber products right off.

The corresponding problem for general Markov chains where the transition probabil-
ities are allowed to depend on time is easier, the ideals are then ideals of graph homo-
morphisms from a path to a complete graph with loops and these are always generated
in degree at most two. This suggests that there should be an easier argument to settle
the case with non-uniform initial distribution, as the ideals with non-uniform initial dis-
tribution is in some sense closer to be ideals of graph homomorphisms. The problem is
still open when all transition probabilities are allowed to be nonzero, but it seems likely
that similarly combinatorial methods can be used to settle this case too.
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2. State graphs and normal monomials

Let PT be the directed path on vertex set [T ] with edges 12, 23, . . . , (T − 1)T and let
K3 be the directed complete graph on vertex set [3]. Each T -letter word i1 . . . iT on the
alphabet [3] with ij 6= ij+1 encodes a graph homomorphism PT → K3, by sending vertex
j to ij. A state graph is a directed graph on vertex set [3] with multiple edges allowed
but no loops.

The variables of R3,T are indexed by graph homomorphisms PT → K3 each of which
induces a state graph. If x and y are two variables with the same state graph, then
x − y ∈ I3,T . When describing the relations between higher degree monomials, it is
enough to have one variable for each state graph.

The state graphs will be decomposed into paths and cycles. The notation for a path
is ij or ijk depending on its length, the notation for a two-cycle is (ij), and the notation
for triangles is (ijk) (the cycle (ijk) have the edges ij, jk, ki.) We keep careful track of
orientation: 12, 23, 31, 123, 231, 312, and (123) are oriented one way and 13, 21, 32, 132,
213, 321, and (132) are oriented the other way.

Proposition 2.1. The state graph G of a variable can be uniquely decomposed into a
collection of two-cycles, triangles with the same orientation, and potentially a leftover
path oriented in the same way as the triangles.

Proof. It is a basic fact in graph theory that a directed graph with the same in and out
degree for each vertex can be decomposed into cycles.

The state graph comes from a graph homomorphism PT → K3. If the homomorphism
sends 1 and T to the same vertex, then the state graph can be decomposed into directed
cycles. If there are triangles with different orientations, then any two oppositely oriented
triangles can be replaced by a triple of two-cycles.

If the graph homomorphism sends 1 to i and T to j with i 6= j, then add an extra
edge ji in G to get G′. Decompose G′ as before into cycles, with triangles oriented the
same way. Then remove ji from a triangle if possible, and otherwise from a two-cycle, to
achieve compatible orientation.

That the decomposition is unique follows from the fact that all edges with one orien-
tation are locked into two-cycles and the leftover edges are put into as many triangles as
possible.

Proposition 2.2. Any collection of two-cycles, triangles, and at most one path with the
same orientation as the the triangles; with in total T − 1 edges, is a decomposition of the
state graph of a variable.

Proof. For each cycle α, let cα be the number of copies of the cycle α in the collection.
The goal is to construct a word realizing the decomposition as a state graph of a variable.
There are four different cases depending on what kind of path and cycles that occur in
the decomposition.

Case 1. If the path 123 occurs in the collection, then the word

1212 . . . 12︸ ︷︷ ︸
c(12)

1313 . . . 13︸ ︷︷ ︸
c(13)

123123 . . . 123︸ ︷︷ ︸
c(123)

132132 . . . 132︸ ︷︷ ︸
c(321)

1 2323 . . . 23︸ ︷︷ ︸
c(23)

23
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realizes the collection as the state graph of a variable. The numbers under the brackets
denote the number of times the small subword is repeated. For example,

132132 . . . 132︸ ︷︷ ︸
c(321)

represents c(321) copies of the word 132.
Case 2. If the path 12 occurs, then the collection is realized by the word:

1212 . . . 12︸ ︷︷ ︸
c(12)

1313 . . . 13︸ ︷︷ ︸
c(13)

123123 . . . 123︸ ︷︷ ︸
c(123)

132132 . . . 132︸ ︷︷ ︸
c(321)

1 2323 . . . 23︸ ︷︷ ︸
c(23)

2.

Case 3. If the collection only consists of cycles, and at least one of them is (12), then
the word

123123 . . . 123︸ ︷︷ ︸
c(123)

132132 . . . 132︸ ︷︷ ︸
c(321)

1313 . . . 13︸ ︷︷ ︸
c(13)

1 2323 . . . 23︸ ︷︷ ︸
c(23)

2121 . . . 21︸ ︷︷ ︸
c(12)

gives a realization.
Case 4. If the collection only consists of triangles, then the word

123123 . . . 123︸ ︷︷ ︸
c(123)

132132 . . . 132︸ ︷︷ ︸
c(321)

1

gives a realization.
By symmetry, this proves that collections with T − 1 edges come from words.

Example 2.3. The word 123231323123 has the decomposition (13)(23)(23)(123)123.

Since the state graph can be reconstructed from its decomposition, there is one variable
associated to each decomposition. If x, x′, y, y′ are variables from the decompositions
A,A′, B,B′ and xy − x′y′ ∈ IS,T , then we get the Markov step[

A
B

]
→
[
A′

B′

]
.

The convention is that only the parts of the decomposition that is changed is written out,
that is, the step [

AC
BD

]
→
[
AC ′

BD′

]
is written as [

C
D

]
→
[
C ′

D′

]
.

After one step it might be necessary to decompose the graphs in a new way. For example,[
(123)
(321)

]
→
[

(321)
(123)

]
could give [

(123)
(321)(321)

]
→
[

(321)
(12)(13)(23)

]
.
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Remark 2.4. The order of the cycles and paths in the decompositions does not matter.
For example, (12)(23)13 is the same decomposition as 13(23)(12).

Definition 2.5. Let

I≤3,T = 〈b ∈ I3,T | b is a quadratic binomial whose Markov move changes at most 12 edges〉 .

The following normal form for monomials is useful.

Definition 2.6. A monomial n is normal, if

(1) all triangles in n are oriented the same way;

(2) and if two variables divide n, then the number of triangles in them differ by at most
two;

(3) and either

(a) all triangles and paths are oriented in the same way,

(b) or there is at most one triangle in each variable in n, and there is no monomial
n′ satisfying

(i) n′ − n ∈ I≤3,T ,

(ii) and n′ has fewer triangles than n, or n′ has equally many triangles but
fewer paths than n,

that is normal.

Example 2.7. The monomial x1231x3213 is not normal as it breaks Condition 1. The
monomial x1231231231x1212121212 is not normal as it breaks Condition 2. The monomial
n = x123x321 is not normal as it breaks condition 3, the monomial n′ = x121x323 is an
example of a normal monomial illustrating this.

3. Proof of the main theorem

To prove that the ideals I3,T are generated by quadrics, five lemmas are needed.

Lemma 3.1. From a monomial m, it is possible by degree two-moves to reach a normal
monomial n.

Proof. The first step is to get all the triangles of m oriented the same way.
If the monomial m has variables with triangles oriented differently, and a variable with

more than one triangle, then the move[
(123)
(321)

]
→
[

(321)
(123)

]
decreases the number of triangles, since (123)(321) becomes (12)(13)(23) in the decom-
position. After possible repetitions, either all triangles have the same orientation or the
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variables have at most one triangle. If there is a pair of variables with opposite oriented
triangles, then there are two cases depending on if anyone of them have a path. If one of
them have a path P , then it has the triangle, say (123), with the same orientation. The
step [

(123)P
(321)

]
→
[

(321)P
(123)

]
,

reduce the number of triangles. If neither of them have a path, then the move[
(123)
(321)

]
→
[

(12)31
(23)13

]
reduces the number of triangles. Now all triangles can be assumed to have the same
orientation, and Condition 1 is satisfied.

The second step is to reduce the difference between the number of triangles in the
variables. If one variable contains at least three more triangles T1, T2, T3 than another
variable, then the other one contains at least three two-cycles C1, C2 and C3. The move[

T1T2
C1C2C3

]
→
[
C1C2C3

T1T2

]
reduces the difference. After repetitions, Condition 2 is satisfied.

If all paths and triangles have the same orientation, then the monomial is normal,
since Condition 3.a is satisfied.

To show that Condition 3.b is satisfied we first find moves to a monomial with at most
one triangle in each variable.

If there are no triangles, then we are done. Otherwise, there is a triangle and a path
P with opposite orientations. The path P is not in a variable with a triangle, and thus no
variable contains more than two triangles due to that Condition 2 is satisfied. If there is
a variable with two triangles and a path Q, then P and Q are equally long, and the step[

P
Q

]
→
[
Q
P

]
reduce the number of triangles. From now on, we assume that no variables with two
triangles have a path. If there are no variables with two triangles and no paths, then
all variables have at most one triangle. Now assume that there is a variable with two
triangles, say (123), and no path. By parity the path P have two edges, and is of opposite
orientation, say 321. The move [

321
(123)

]
→
[

(12)
(23)31

]
reduces the number of triangles. This procedure can be repeated as long as there are
variables with more than one triangle, and there are triangles and paths of opposite
orientation. Thus, we either get everything oriented in the same way, and satisfy Condition
3.a, or get at most one triangle in each variable. Using quadratic Markov moves changing
at most 12 edges, minimize according to satisfy Condition 3.b.
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Definition 3.2. The ij-spin of a variable x is sij(x) = cij − cji where ckl is the number
of kl edges in the state graph of x. The ij-spin of a monomial m = x1 · · · xd is sij(m) =
Σd
k=1sij(xk). The spin-vector of a monomial m is the vector (s12(m), s31(m), s23(m)). The

total spin of a monomial m is s12(m) + s23(m) + s31(m).

Although there are homotopy and valuation theoretic interpretations of spin, we only
use it for combinatorial calculations.

Example 3.3. The state graph of m = x123x212 has two 12 edges and one 21 edge and
one 23 edge. This give that the spin vector of m is (1, 0, 1).

Lemma 3.4. Let m and n be normal monomials with m − n ∈ I3,T . If m has all paths
and triangles oriented the same way, then so does n.

Proof. The proof is divided into four cases: Whether or not n has triangles in any of the
variables and parity of T . By symmetry, we can assume m has orientation (123). For
contradiction, assume that n has a path or triangle with orientation (321).

Case A. There are no triangles in n.
Case A.1. Let T be even.
By assumption, n contains a path with (321) orientation. This path has an odd

number of edges as there is an odd number of edges in the state graph of each variable.
Every variable in m has a triangle or a path. In m, everything has the same orientation,
so the total spin is at least the degree of m. In n, all variables contribute 1 or −1 to the
total spin, and at least one of the variables contributes −1. Thus, n has total spin strictly
less than its degree, contradicting that m and n have the same total spin.

Case A.2. Let T be odd.
By assumption, n contains a path with (321) orientation. This path has an even

number of edges as there is an even number of edges in the state graph of the variable.
By symmetry, we can assume n contains the path 321. Now, n cannot contain the path
123 since n is normal and that would allow a move reducing the number of paths:[

321
123

]
→
[

(12)
(23)

]
.

To cancel the negative 23-spin from a 321 path, n must contain a 23 edge outside a
two-cycle. That edge must be in a path since there are no triangles in n. The only path
of the right length and orientation is 231 since 123 is excluded. The same argument for
12 gives that n contains a 312 path for every path 321. Since n is normal, the only type
of path oriented as (321) in n is 321. All spin in n is from the paths 312, 231, 312, so the
31-spin is strictly greater than the sum of the 12-spin and 23-spin in n. The only way to
get a similar contribution to 31-spin in m is from 31 paths without triangles, but that is
impossible since m is normal and T is odd.

Case B. There are triangles in n.
Case B.1. Let T be even.

7



If all triangles in n have orientation (321), then there are variables with paths 12, 23
and 31 in n. If there is a variable in n with a triangle and no path, then the move[

(321)
12

]
→
[

(12)32
13

]
reduces the number of triangles in n, contradicting normality. If there is a path on the
variable with a triangle, then moves of the type[

321
12

]
→
[

(12)
32

]
reduce the number of paths.

Next, we consider the case that all triangles in n have orientation (123). By assump-
tion, there is a variable in n with a (321) oriented path. This variable does not contain a
triangle since it is oriented differently and n is normal. This is a single edge path since T
is even. By symmetry, let the path be 21. If n contains the path 123, then the move[

21
123

]
→
[

23
(12)

]
reduces the number of paths, contradicting normality. If n contains a variable with a
triangle and no path, then the move[

21
(123)

]
→
[

23
(12)31

]
reduces the number of triangles, again contradicting normality. The variables in n with
triangles have exactly one triangle since n is normal. Furthermore, they have a path on
two edges since T is even. The only such path with correct orientation is 231. The path
12 cannot occur in n since the move[

12
231

]
→
[

31
123

]
creates a variable with the path 123, yielding a contradiction as earlier. If n contains a
32 path, then the move [

32
231

]
→
[

31
(23)

]
reduces the number of paths, contradicting normality. Likewise, the move[

13
231

]
→
[

23
(13)

]
contradicts that n contains the path 13. The set of spin vectors
(s12(x), s31(x), s23(x)) of variables x potentially occurring in n is:

{(−1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 2, 2)},
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and (−1, 0, 0) occurs. The spins then satisfy s23(n) + s31(n)− 3s12(n)− d > 0 where d is
the degree of n. All d variables x in m satisfy s23(x) + s31(x) − 3s12(x) − 1 ≤ 0 since m
is normal and oriented (123).

Case B.2. Let T be odd.
First, we consider the case that all triangles are oriented (321). Since n is normal,

every variable contains at most one triangle. With every triangle comes a single edge path
since T is odd. By symmetry, we assume that 13 is a path in n. To get a non-negative
31-spin, the edge 13 is compensated by a path with 31. This path is not in a variable
with a triangle since they would have different orientation. The path with 31 contains
two edges since T is odd. There are two options: 231 and 312.

However, the moves[
(321)13

312

]
→
[

(12)(13)
132

]
and

[
(321)13

231

]
→
[

(12)(23)
213

]
reduce the number of triangles, contradicting that n is normal.

Now, we consider the case of all triangles oriented (123). By assumption, there is a
path in n with the orientation (321) and this variable has no triangle since n is normal.
The path has two edges since T is odd. By symmetry, we assume that n contains the
path 321. All variables with triangles in n have a path with one edge since n is normal.
If that path is not 31, then the moves[

(123)12
321

]
→
[

(12)312
(23)

]
or

[
(123)23

321

]
→
[

(23)231
(12)

]
decrease the number of triangles, contradicting normality. Thus, all paths with the (321)
orientation have to be 321 and all variables with triangles have the path 31. The set of
spin vectors (s12(x), s31(x), s23(x)) of variables x potentially occurring in n is

{(0, 0, 0), (0, 1, 1), (−1, 0,−1), (1, 1, 0), (1, 2, 1)},

and (−1, 0,−1) occurs. The spins satisfy s12(n)− s13(n) + s23(n) < 0 while the variables
x in m all satisfy s12(x)− s13(x) + s23(x) ≥ 0.

Lemma 3.5. Let m and n be normal monomials with m−n ∈ I3,T . The maximal number
of triangles in a variable in m cannot be less than the minimal number of triangles in a
variable in n.

Proof. If m has variables with different orientation, then so does n by Lemma 3.4. In
this case, both monomials have at most one triangle in each variable and both monomials
have variables with no triangles.

Now, we consider the case that both monomials have all variables oriented the same
way. The total spin is different for m and n if the maximal number of triangles in a
variable in m is less than the minimal number of triangles in a variable in n.
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Lemma 3.6. If m and n are normal monomials such that m − n ∈ I3,T and m and n
have all paths and triangles oriented in the same way, then it is possible to use degree
two-steps to go from m to n.

Proof. By symmetry, we can assume that the orientation of the monomials is (123). The
proof is structured as follows: We start with two monomials m and n of degree d and no
common variables. Then, a sequence of steps is presented from m to m′ and from n to
n′ so that they share a variable. By induction on d, it is then possible to go between m
and n by degree two steps. The base case is trivial. The induction step is split into two
cases: A. There is a variable x in m and a variable y in n that have the same number of
triangles; B. Otherwise.

Case A. There is a variable x in m and variable y in n that have the same number
of triangles.

By parity, there can not be paths in x and y of different lengths. This case is split into
four different subcases: 1. The variables x and y have the same path; 2. The variables
x and y have different one edge paths; 3. The variables x and y have different two edge
paths; 4. The variable x has no path and y has a path with two edges.

Case A.1. The variables x and y have the same path.
The state graphs of m and n are the same. All edges with orientation (321) are in

two-cycles since all variables in m and n have the orientation (123). All two cycles contain
an edge with orientation (321). This proves that the collection of two cycles in m is the
same as the collection of two-cycles in n. Now it is possible to do a sequence of moves[

(i1i2)
(i3i4)

]
→
[

(i3i4)
(i1i2)

]
to m′, n′ that share a variable since any subcollection of two-cycles from m and n can be
picked and moved to these variables.

Case A.2. The variables x and y have different paths with one edge.
By symmetry, let the path on x be 12 and let the edge on y be 23. If the monomial

m contains the paths 23 or 231, then the moves[
12
23

]
→
[

23
12

]
or

[
12
231

]
→
[

23
312

]
create a monomial m′ that contains a variable x′ with the same number of edges as y and
the same path. This reduces to Case 1.

If m does not contain 23 or 231, then any edge 23 not in a two-cycle or a triangle is
in a path 123. In particular, the 12-spin of m and n is strictly greater than the 23-spin of
m and n. By a similar argument for n, the steps[

23
12

]
→
[

12
23

]
or

[
23
312

]
→
[

12
231

]
,

give either a reduction to Case 1 or that the 23-spin of n and m is greater than the 12-spin
of n and m, a contradiction.
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Case A.3. The variables x and y have different two edge paths.
By symmetry, let x have the path 123 and let y have the path 231. If m contains the

path 231 or n contains the path 123, then Case 1 applies after a swap of paths. If both
m and n contain the path 312, then, after the moves[

123
312

]
→
[

312
123

]
and

[
231
312

]
→
[

312
231

]
,

Case 1 applies. If n contains a path 12 or m contains the path 31, then the steps[
231
12

]
→
[

123
31

]
and

[
123
31

]
→
[

231
12

]
reduce to Case 1.

Neither n nor m contain 312. If n contains no 312-path, then the 31-spin of n and m
is strictly greater than the 12-spin of n and m while in m, all 31-edges not in two-cycles
are in triangles or paths containing 12. This is a contradiction.

Similarly, if m contains no 312, then the 12-spin of m and n is strictly greater than
the 31-spin of m and n while in n, all 12-edges not in two-cycles are in triangles or paths
containing 31. This is also a contradiction.

Case A.4. The variable x has no path and y has a path with two edges.
By symmetry, we can assume that y has the path 123. If m contains any variable with

a path on two edges, then swapping that path to x with a two-cycle gives a reduction
to Case 1 or 3. If m contains a variable with a triangle and a path with one edge, then
moves of type [

(i1i2)
(ijk)ij

]
→
[

ijk
(i1i2)kij

]
give a reduction to Case 1 or 3.

If m contains a variable other than x that has a triangle with no path, then the move[
(i1i2)
(ijk)

]
→
[

ijk
(i1i2)ki

]
gives a reduction to Case 1 or 3.

The remaining case is that all variables in m except x contain no triangles and no
paths of length two. If T is odd, then the other variables contain no paths and if T is
even, then the other variables have paths with one edge. The variable x contains fewer
edges outside two-cycles than y and the other variables in m contain the lowest possible
number of edges outside two-cycles. Thus, the total spin of m and n cannot be the same,
a contradiction.

Case B. There are no variables in m and n that have the same number of variables.
By Lemma 3.5 and symmetry, we have that for some integer t: The variables in n

have t or t+2 triangles; the variables in m have t−1 or t+1 triangles; there are variables
with t, t + 1, and t + 2 triangles. By parity, there are two subcases: 1. The variables in
m have paths with one edge; 2. The variables in y have paths with one edge.
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Case B.1. The variables in m have paths with one edge.
If all paths on the variables are the same, then this edge would get d higher spin than

any other edge. This is a contradiction because the paths in n all have two edges and
the edge spins are more evenly distributed. Thus, there are different paths in m. By
symmetry, we can assume the paths are 12 and 23. The move[

(123)12
(i1i2)23

]
→
[

(i1i2)123
(123)

]
almost gives a reduction to Case A. It is possible that the new monomial needs to be
normalized first by swapping two triangles for three two-cycles, but then Case A applies.
If 12 is not on a variable with a triangle to start off with, we can swap it that way.

Case B.2. The variables in n have paths with one edge.
The same type of argument as in Case 1 applies, with m and n switched.

Lemma 3.7. If m and n are normal monomials, both with paths and triangles in different
orientations, and if m − n ∈ I3,T , then it is possible to go from m to n using degree two
steps.

Proof. Divide into four cases: By parity of T , and whether or not m has triangles in any
of the variables.

Case A. Let T be even.
Case A.1. There are triangles in m.
By symmetry, let the triangles in m have orientation (123). By assumption, m have

a path of orientation (321), and by parity and symmetry one of these paths is 21. If a
triangle has the paths 123 or 312, then the moves[

123
21

]
→
[

(12)
23

]
or

[
312
21

]
→
[

(12)
31

]
reduce the number of paths, contradicting normality. If there is a triangle with no path,
then the move [

(123)
21

]
→
[

(12)23
31

]
reducse the number of triangles, again contradicting normality. Thus, every triangle in
m has the path 231. We assumed that there is a triangle in m, so the path 231 is in m.
Using that path and moves similar to those above, we exclude the existence of paths 13
and 32. Furthermore, if the path 12 exists, then the move[

231
12

]
→
[

123
31

]
leads to a contradiction, as one of the earlier moves demonstrated.

The only paths left are 21, 23, 31, and 231. Thus, the only possible spin vectors of
variables in m are (−1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 2, 2) with (1, 2, 2) and (−1, 0, 0)
occurring.
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If n has triangles, then the same argument gives six possible sets of spin vectors, due
to symmetry break. However, only one of the six have the two last coordinates positive
and larger than the first coordinate and that is the same as for m. The variables m and
n contain paths and triangles of the same type. To match up the spins, they have to be
equally many of each type. It suffices to swap two-cycles using degree two steps.

If n does not contain triangles, then |s12(n)|+ |s23(n)|+ |s31(n)| is at most the degree
of n. From the list of paths in m, we know that the same expression for m is larger than
the degree of m, a contradiction.

Case A.2. There are no triangles in m.
If there are triangles in n, then this is Case 1, so assume that n does not contain

triangles. Using the steps[
(i1i2)k1k2
(j1j2)k2k1

]
→
[

(i1i2)j1j2
(k1k2)j2j1

]
and

[
(ij)
(k`)

]
→
[

(k`)
(ij)

]
we get from m to n by degree two moves.

Case B. Let T be odd.
Case B.1. There are triangles in m.
By symmetry, the triangles have the orientation (123) and m contains the path 321.

If m contain a variable with the path 12 or 23, then the moves[
321

(123)23

]
→
[

231
(12)(23)

]
or

[
321

(123)12

]
→
[

312
(12)(23)

]
reduce the number of triangles, contradicting normality. All paths on variables with
triangles have to be 31. If the paths 132 or 213 occur, then the moves[

132
31

]
→
[

(13)
32

]
or

[
213
31

]
→
[

(13)
21

]
reduce the number of paths, contradicting normality. All paths with orientation (321) are
321. If the path 123 occurs, then the move[

123
321

]
→
[

(12)
(23)

]
reduces the number of paths and contradicts normality. If there is a variable with no
triangle and no path, then the move[

(123)31
(ij)

]
→
[

(ij)312
231

]
reduces the number of triangles, contradicting normality. The paths that occur are 321, 31,
231 and 312. Now proceed exactly as in Case A.1.

Case B.2. There are no triangles in m.
If there are triangles in n, then this is Case 1, so assume that there are no triangles

in n.
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The steps [
ijk
kji

]
→
[

(ij)
(jk)

]
give that the monomials cannot contain both orientations of a path. If both the paths
123 and 231 are more common in m than in n, then the 23-spin cannot be equal for
both monomials. Thus, there is at most one type of path in any orientation that is more
common in m than in n. By symmetry, there is one path in each orientation for which
the monomials m and n have an equal number. These paths have one undirected edge
ij in common. The ij-spin gives that the other paths containing directed ij are equally
common. Then the total spin gives that both monomials m and n have the same number
of each path. The collection of paths and two-cycles are the same. In this situation
swapping two-cycles is enough to go between m and n.

Theorem 3.8. The three-state toric Markov chain model is generated by quadrics.

Proof. Let m′, n′ be two monomials with m′−n′ ∈ I3,T and let m,n be the corresponding
normal monomials from Lemma 3.1. According to Lemma 3.4, either both m and n have
everything oriented in the same way or they have paths and triangles oriented differently.
It is possible to go between m and n by Lemma 3.6 and Lemma 3.7.

Remark 3.9. In the Markov moves introduced, at most 12 edges were interchanged. This
shows that the Markov moves, and the generating binomials, fall into a finite number of
symmetry classes.

Remark 3.10. Using computer calculations we found a monomial order and a corespond-
ing Gröbner basis of I3,4 consisting of quadratic binomials. These monomial orders seem
very rare and this explains why these quadratic bases have not been found before. For
example the weight vector

(3276, 2143, 272, 3760, 8497, 5589, 4947, 9850, 4347, 2483,

4517, 1124, 1610, 7287, 3128, 4608, 161, 8235, 9582, 7607)

for the variable ordered

(x3232, x2323, x3231, x1323, x3132, x2313, x3131, x1313, x2321, x2132,

x2131, x1232, x1231, x1312, x3212, x2123, x3121, x1213, x2121, x1212)

produce a quadratic Gröbner basis. This was checked with the software 4ti2 [1].

Example 3.11. The Markov degree of I4,T is in general higher than 3. For example the
binomial x1414x2323x4142x4232 − x21423x3232x4141 is indispensable in I4,4 this proves that the
conjecture is false in general.
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mony of Gröbner Bases and the Modern Industrial Society, edited by T. Hibi, World
Scientific, 2012, 388 pp.

[9] D. Haws, A. Martin del Campo, A. Takemura and R. Yoshida. Markov degree of
the three-state toric homogeneous Markov chain model. arXiv:1204.3070, preprint
2012, 20 pp.

[10] B. Sturmfels and S. Sullivant. Toric geometry of cuts and splits. Michigan Math. J.
57 (2008), 689–709.

15


