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Abstract

We provide formulas and develop algorithms for computing the excess numbers
of an ideal. The solution for monomial ideals is given by the mixed volumes
of polytopes. These results enable us to design numerical algebraic geometry
homotopies to compute excess numbers of any ideal.

1. Introduction

Consider a homogeneous ideal I ⊂ C [x0, . . . , xn], and let f1, . . . , fn be homoge-
nous polynomials in I. Since (f1, . . . , fn) ⊂ I, we have V (f1, . . . , fn) ⊃ V (I).
The excess intersection of the variety of (f1, f2, . . . , fn) with respect to the vari-
ety of I is defined as the quasiprojective variety V (f1, . . . , fn) \V (I). We define
the excess number E• (I; f1, . . . , fn) of an ideal I to be the number of solutions
in V (f1, . . . , fn) \V (I).

Excess intersections are a well studied problem with applications in enumera-
tive geometry, machine learning [10, 11], and algebraic statistics [9]. In addition,
there is a well developed theory of Segre classes to study this problem that has
been exploited in [3, 5, 12] using computational algebraic geometry as well. Re-
cent work by Paolo Aluffi has pushed this area even further in [1]. However, the
motivation for this paper came at the 2012 Institute for Mathematics and its Ap-
plications Participating Institution Summer Program for Graduate Students in
Algebraic Geometry for Applications by Mike Stillman. We will focus on the nu-
merical algebraic geometry perspective, where it is ideal to solve square systems
of equations, meaning the number of unknowns equals the number of equations.
So by understanding the zero-dimensional solutions of an excess intersection of
an ideal, we can study the ideal itself. Our computations were performed with
Bertini, PHCpack, and Macaulay2.

We begin our study in the case that I is an ideal generated by B1, B2, . . . , Bl,
and f1, . . . , fn define a BI-system of equations of degree (d1, d2, . . . , dn).
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Definition 1. Let I be an ideal of C [x0, . . . , xn] generated by B1, . . . , Bl whose
respective degrees are p1, . . . , pl. Suppose (d1, d2, . . . , dn) is such that

min (d1, d2, . . . , dn) ≥ max(p1, . . . , pl).

Let aij denote a form of degree di − degBj. If the forms f1, . . . , fn are given by
f1

f2
...
fn

 =


a11 · · · a1l

a21 · · · a2l
...

...
an1 · · · anl


 B1

...
Bl

 ,
then we say f1, . . . , fn are a BI-system of degree (d1, d2, . . . , dn).

The space of BI-system’s with degree (d1, d2, . . . , dn) is parameterized by the
coefficients of the homogeneous polynomials aij. If I is generated by B1, . . . , Bl,
then we denote the excess number of a general BI-system with degree (d1, d2, . . . , dn)
as E• (I; d1, . . . , dn).

In the first section we will be interested in determining excess numbers of
BI-system’s where B1, . . . , Bl are monomials.

At times it will be more convenient to work with the equivalence number

E◦ (I; d1, . . . , dn) := d1 · · · dn − E• (I; d1, . . . , dn) .

This definition is inspired by the notion of the equivalence in [6] [Chapter 6].
This number is the difference between the Bezout bound and the excess num-
ber in the cases we consider. The contributions of the paper include numerical
algebraic geometry algorithms to compute excess numbers and a combinatorial
proof of the theorem below. This theorem can be proven easily using Fulton-
MacPherson intersection theory, and in fact doing so generalizes the result to any
ideal generated by a regular sequence. But in the proof we present, we will see
how E• (I; d1, . . . , dn) and E◦ (I; d1, . . . , dn) relate to the volume of a subdivided
simplex. The algorithms we present take advantage of the polyhedral structure
in our problem to give bounds (lower and upper-bound) for an excess number.

Theorem 2. Let I be an ideal of C [x0, . . . , xn] generated by B1, B2, . . . , Bk such
that Bi = xpii . If f1, . . . , fn define a BI-system of degree (d1, d2, . . . , dn), then

E• (I; d1, . . . , dn) + p1 · · · pk
n−k∑
δ=0

(
(−1)δ Dn−k−δPδ

)
= d1d2 · · · dn
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where Dn−k−δ is the degree n − k − δ elementary symmetric function evaluated
at d1, . . . , dn and Pδ is the degree δ complete homogenous symmetric function
evaluated at p1, . . . , pk.

The paper is structured as follows. We consider the case when I is a monomial
ideal, and show excess numbers equal mixed volumes of polytopes (Lemma 7).
By further restricting to the case when the ideal I defines a complete intersection
that is also a linear space (though not necessarily reduced), we do a mixed volume
computation (Lemma 10) to get an explicit formula for excess numbers. In the
final section, we present our algorithms that take advantage of the first sections
results.
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2. The Monomial Case

The key idea to Theorem 2 is to cast our excess intersection problem in the
language of combinatorial geometry and prove Lemma 7. Since the following
proofs will use Newton polytopes, Minkowski sums, and genericity, we set up
additional notation here.

The Newton polytope of a form f will be denoted as N (f). The standard n-
simplex is the convex hull of the origin ε0, and the standard basis of unit vectors
ε1, . . . , εn in Rn. The binary operation, Minkowski sum, will be denoted as “+”.

Now, we give examples of BI-system’s.

Example 3. Let I = (1) be the trivial ideal of C[x0, x1], so B1 = 1 generates I.
Then, a BI-system of degree d1 is given by 1 homogenous polynomials f1

f1 = a1 · 1.

Here, a1 is a polynomial of degree d1. For a general choice of a1, the excess
number is d1. When the coefficients of a1 are specially chosen the excess number
can decrease. In this case, the excess number can only be less than di if the
discriminant of a1 vanishes.

Whenever I is a principal ideal, the excess numbers are easy to determine
algebraically.
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Example 4. Let I = (B1) be a principal ideal of the ring C [x0, . . . , xn], and let
degB1 = p. Then, a BI-system of degree (d1, d2, . . . , dn) is given by n homogenous
polynomials f1, . . . , fn :

f1 = a1B1, f2 = a2B1, . . . , fn = anB1.

Here, ai is a polynomial of degree di − p. To determine the excess number
E• (I; d1, . . . , dn), we saturate (f1, . . . , fn) by I. Doing so, we conclude that
the excess intersection of (f1, . . . , fn) is defined by (a1, . . . , an) and consists of
finitely many points. By Bezout’s theorem, it follows that E• (I; d1, . . . , dn) ≤
(d1 − p) (d2 − p) · · · (dn − p). When the ai are general polynomials of degree di−p,
the equality above holds.

Example 5. Let the ideal I ⊂ C [x, y, z, w] be generated by the monomials

B1 = z2, B2 = yw, B3 = yz, B4 = xw, B5 = y2, B6 = xz.

Then, a BI-system of degree (2, 2, 2) is a system of 3 quadrics which are linear
combinations of B1, . . . , B6. A general BI-system in this case has four solutions
not contained in V(I). So E•(I; 2, 2, 2) = 4. Four is also the the mixed volume
of the Newton polytopes of f1, f2, f3. In Lemma 7, we will see that this is not a
coincidence.

Example 6. Let the ideal I ⊂ C [x, y, z, w] be generated by the forms

B1 = z2 − yw, B2 = yz − xw, B3 = y2 − xz,

Then a BI-system of degree (2, 2, 2) is a system of 3 quadrics which are linear
combinations of B1, B2, B3. A general BI-system in this case is equal to the ideal
I and has no solutions outside of V(I). So E•(I; 2, 2, 2) = 0.

In Example 5 the excess number was a mixed volume of the Newton polytopes
of fi, but in Example 6, this was not the case. Now, we explain the differences
between these two situations.

Lemma 7. Let I ⊂ C [x0, . . . , xn] be an ideal defined by the monomials B1, . . . , Bl.
If f1, . . . , fn are a general BI-system of degree (d1, d2, . . . , dn), then the excess
number E• (I; d1, . . . , dn) equals the mixed volume of the Newton polytopes
N (f1) , . . . ,N (fn).
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Proof. The set of BI-system’s of degree (d1, d2, . . . , dn) is parameterized by the
coefficients of aij in Definition 1. We denote the projective space associated to the
coefficients of all of the polynomials aij by PA. The dimension of this projective
space is one less than the number of coefficients of all the aij. We denote the
projective space associated to the coefficients of the monomials of f1, f2, . . . , fn as
PC . So we have a natural map ψ from PA to PC that maps the coefficients of aij to
coefficients of f1, . . . , fn. Important for our situation, is that when B1, . . . , Bn are
monomials, the image of this map ψ is onto. Let U1 denote a Zariski dense open
subset of PA whose complement contains coefficients that give rise to BI-system’s
with excess numbers less than expected. Let V2 be a Zariski dense open set of
coefficients of f1, . . . , fn such that the mixed volume is less than expected. If U2

is in the inverse image of V2 under ψ, then the intersection of U1 and U2 is again
a Zariski dense open subset of PA. In particular, this means we can say a general
BI-system’s for which B1, . . . , Bl are monomials has E• (I; d1, . . . , dn) equal to the
mixed volume of N (f1) , . . . ,N (fn).

In Example 5, PA equals P9 and PC equals P17. By a dimension count we see
that ψ is not onto and explains why the mixed volume can be different from the
excess number in this case.

The key idea of this proof was the notion of a "general BI-system" so that
we could use Bernstein’s theorem to count the solutions we are interested in. So
to determine excess numbers of monomial ideals, we determine mixed volumes.
In general, mixed volume computations are complicated, but in some cases there
is hope for an explicit formula. The case we consider is when I = (xp11 , . . . , x

pk
k )

is generated by powers of unknowns. If f1, . . . , fn define a BI-system of degree
(d1, d2, . . . , dn), then we determine the excess number E• (I; d1, . . . , dn) by calcu-
lating the mixed volume of N (f1) , . . . ,N (fn). Recall that the mixed volume [13]
[Chapter 8.5] can be calculated by determining the coefficient of λ1λ2 · · ·λn in the
polynomial defining the volume of the scaled Minkowski sum

λ1N (f1) + · · ·+ λnN (fn) .

If we letS denote a simplex, then Lemma 9 shows that slicingS by an appropriate
hyperplane subdivides S into two convex polytopes S0 and S1. The hyperplane
can be chosen so that S1 = λ1N (f1) + · · · + λnN (fn). Since VolS = VolS0 +
VolS1, we compute our desired mixed volume by determining the coefficients of
λ1 · · ·λn in VolS0 and VolS (Lemma 10).

To elucidate our ideas we consider the following example.
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Example 8. Let I = (xp11 , x
p2
2 ) be an ideal of the ring C [x0, x1, x2, x3] and let

f1, f2, f3 be a BI-system of degree (d1, d2, d3). Then the Newton polytope of fi
will be the convex hull of two tetrahedra. Specifically, the Newton polytope of fi
is the convex hull of the following eight points in R3 of which six are vertices of
N (fi):

(p1, 0, 0) (di, 0, 0) (p1, di − p1, 0) (p1, 0, di − p1)
(0, p2, 0) (0, di, 0) (p2, di − p2, 0) (p2, 0, di − p2) .

To avoid confusion with points in P3, we describe points in R3 as (u1, u2, u3)
rather than (x1, x2, x3). We will also describe the Newton polytope N (fi) by its
5 supporting hyperplanes rather than its vertices:
• the 3 coordinate hyperplanes,
• the hyperplane defined by u1 + u2 + u3 − di, and
• the hyperplane defined by u1

p1
+ u2

p2
− 1.

The normal vectors of the 5 hyperplanes supporting N (fi) are the same for every
i. Indeed they are the standard unit vectors ε1, ε2, ε3, the vector ε1 + ε2 + ε3,
and the vector 1

p1
ε1 + 1

p2
ε2. By standard polytope theory [15][Proposition 7.12], it

follows that the scaled Minkowski sum λ1N (f1) + λ2N (f2) + λ3N (f3), has the
same 5 normal vectors as those of N (fi). Indeed, the supporting hyperplanes are
• the 3 coordinate hyperplanes,
• the hyperplane defined by u1 + u2 + u3 − (λ1d1 + λ2d2 + λ3d3), and
• the hyperplane defined by u1

p1
+ u2

p2
− (λ1 + λ2).

Now note that four of the five hyperplanes are defining facets of a simplex whose
volume is 1

3!
(λ1d1 + λ2d2 + λ3d3)3. The fifth hyperplane subdivides the simplex

as seen in Figure 1. By subtracting the volume of the white figure from the
volume of the simplex, we attain the mixed volume by considering the coefficients
of λ1λ2λ3 in the difference. In this example, we would find the excess number
satisfies E• (xp11 , x

p2
2 ; d1, d2, d3) + p1p2 (d1 + d2 + d3 − p1 − p2) = d1d2d3.

We now precisely define the polytopes S,S0,S1. Let D = λ1d1 + · · · + λndn
and Λ = λ1 + · · · + λn. Then S is defined as the n-simplex whose n + 1 vertices
are the origin and Dεi. Moreover, the volume of S equals Dn/n! which has a
term d1d2 · · · dnλ1λ2 · · ·λn when expanded out. If we define the hyperplane hp by
u1
p1

+ · · · + uk
pk
− Λ, then hp slices S into two convex polytopes S0 containing the

origin, and S1. We will prove that S1 is the scaled Minkowski sum λ1N (f1) +
· · ·+ λnN (fn).

Lemma 9. Let f1, . . . , fn be a BI-system of degree (d1, d2, . . . , dn). If
I = (xp11 , . . . , x

pk
k ), then S1 = λ1N (f1) + · · ·+ λnN (fn).
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Figure 1:

Proof. We will show that the polytopes S1 and λ1N (f1) + · · · + λnN (fn) have
the same n + 2 supporting hyperplanes so that they must be equal. Specifically,
we show that the supporting hyperplanes are
• the n coordinate hyperplanes,
• the hyperplane hd defined by u1 + · · ·+ un −D, and
• the hyperplane hp defined by u1

p1
+ · · ·+ uk

pk
− Λ.

The first n+1 hyperplanes support the simplexS. The last hyperplane hp slicesS
into two polytopes one containing the origin and a second which is by definition the
polytope S1. Now because λiN (fi) has n+ 2 supporting hyperplanes consisting
of
• the n coordinate hyperplanes,
• the hyperplane defined by u1 + · · ·+ un − λidi, and
• the hyperplane defined by u1

p1
+ · · ·+ uk

pk
− λi .

By standard polytope theory [15][Proposition 7.12], it follows λ1N (f1) + · · · +
λnN (fn) has the desired supporting hyperplanes.

With Lemma 9, we are able to calculate the mixed volume by determining the
coefficient of λ1λ2 · · ·λn in an integral as seen in Lemma 10.

Lemma 10. With the previous notation, Vol (S0) is a polynomial whose coeffi-
cient of λ1λ2 · · ·λn equals p1 · · · pk

∑n−k
δ=0

(
(−1)δ Dn−k−δ · Pδ

)
.

Proof. By Lemma 9, it follows that the volume of S0 equals

Vol (S0) =

ˆ [ˆ
· · ·
ˆ
dxndxn−1 · · · dxk+1

]
d4

with the bounds of each integral inside the brackets with respect to dxi being
(xi = 0)→ (xi = D − xi−1 − · · · − x1) and4 denotes the simplex in k-dimensional
space with k + 1 vertices of ε0,Λp1 · ε1, . . . ,Λpk · εk.
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By using the calculus fact
[´
· · ·
´
dxndxn−1 · · · dxk+1

]
= 1

r!
(D − xk − · · · − x1)r

and the binomial theorem, we have

Vol (S0) = 1
r!

´
(D − xk − · · · − x1)r d4

= 1
r!

∑r
δ=0

(
(−1)δ

(
r
δ

)
Dr−δ ´ (xk + · · ·+ x1)δ d4

)
= p1 · · · pk

∑r
δ=0

(
(−1)δ Dn−k−δ

(n−k−δ)!
Λk+δ

(δ+k)!
Pδ
)

with r = n− k. It is known how to integrate a linear form raised to some power
over the simplex. So to get the last equality, we use [2] [Remark 9], that says´

(xk + · · ·+ x1)δ d4 = Λk+δp1 · · · pk δ!
(δ+k)!

Pδ.
Note that Lm (λ1, . . . , λn) := m! (the monomials in λ1, . . . , λn of degree m) is

congruent to Λm modulo λ2
1, . . . , λ

2
n. Similarly, also note that Dm is congruent to

Lm (λ1d1, . . . , λndn) modulo λ2
1, . . . , λ

2
n. So we have

Vol (S0) ≡ p1 · · · pk
∑n−k

δ=0

(
(−1)δ Ln−k−δ (λ1d1, . . . , λndn) · Lk+δ (λ1, . . . , λn)Pδ

)
≡ λ1 · · ·λn · p1 · · · pk

∑n−k
δ=0

(
(−1)δ Dn−k−δPδ

)
.

The last congruence is shown by an easy combinatorial argument.

Remark 11. We remark that the number E• (I; d1, . . . , dn) depends only on the
Newton polytopes N (f1) , . . . ,N (fn). For example, consider the ideals I1 =
(x3, y3), I2 = (x3, y3, x2y, xy2), I3 = (x3, y3, x2y2) in the ring C [w, x, y, z]. All
three of these ideals have the same excess numbers when every di is greater than 4
because the Newton polytopes of the defining polynomials of a BI-system are the
same for i = 1, 2, 3. In particular, E• (I i; 5, 5, 5) = 44 for i = 1, 2, 3. But if we con-
sider the ideal J = (x3, y3) + (xy), we find the Newton polytopes of a BJ -system
are different from those Newton polytopes of a BI-system. In particular, one can
compute the excess number E• (J ; 5, 5, 5) to be 65.

3. Numerical Algebraic Geometry Algorithms

We have given a combinatorial description of excess numbers of monomial
ideals in the first part of the paper and used this idea to give an explicit for-
mula in Theorem 2. In the last part of this paper, we give algorithms that use
homotopy continuation, an idea from numerical algebraic geometry, to compute
excess numbers of any ideal I ⊂ C [x0, . . . , xn]. As mentioned in the introduction
there are other ways to compute excess numbers with Segre classes. In addition,
one can use off-the-shelf computer algebra software like Macaulay2 to compute
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excess numbers by saturating the ideal of a BI-system by I. Also, the exam-
ples we present here can also be worked out by hand using Fulton-MacPherson
intersection theory.

Our algorithms will construct two homotopies, called hupp and hite, that
take the isolated solutions of a BI’-system f ′1, . . . , f

′
n as start points and tracks

them to solutions of f1, . . . , fn giving bounds on E• (I; d1, . . . , dn). In the first
algorithm, the monomial ideal I ′ is constructed so that E• (I ′; d1, . . . , dn) ≥
E• (I; d1, . . . , dn). By doing a numerical membership test [13] [Chapter 15], we
will determine E• (I; d1, . . . , dn) and isolated solutions of V (f1, . . . , fn) \V (I)
explicitly. In the second algorithm, the monomial ideal I ′ is constructed to give
lower bounds of E• (I; d1, . . . , dn) instead. But by iterating the second algorithm,
we have a probabilistic way to make this bound sharp and compute all isolated
solutions of V (f1, . . . , fn) \V (I) explicitly. The hupp-homotopy gets its name be-
cause it produces an upper bound of E• (I; d1, . . . , dn) prior to a membership test.
The hite-homotopy gets its name because several iterations can produce sharp
lower bounds of E• (I; d1, . . . , dn) after a membership test.

3.1. Algorithm one and the hupp-homotopy
We now give a definition of the hupp-homotopy and prove that it does indeed

provide an upper bound of E• (I; d1, . . . , dn) prior to a membership test.

Definition 12. Let B1, . . . Bl ∈ C [x0, . . . , xn] be forms such that Bj =
∑

k Aj,k

with Aj,k being a monomial multiplied by a scalar. To ease notation, let
−→
Aj =[

Aj,1, . . . , Aj,kj
]
be a row vector whose entries sum to Bj, −→αi,j be a row vector of kj

different general forms, and
−→
βi,j be a row vector of a general form that is repeated

kj times. Define the hupp-homotopy as hupp (t; d1, . . . , dn) :=

t

−−→α1,1

−−→α1,2 · · · −→α1,l
...

...
−−→αn,1 −−→αn,2 · · · −→αn,l

+ (1− t)


−→
β1,1

−→
β1,2 · · ·

−→
β1,l

...
...

−−→
βn,1

−−→
βn,2 · · ·

−→
βn,l




−→
A1

T

−→
A2

T

...
−→
Al

T

 ,

with the degrees of the general forms of−→αi,j and
−→
βi,j chosen so that hupp (t, d1, . . . , dn)

is a system of n forms of degrees d1, . . . , dn. We denote the start points of
hupp(t; d1, . . . , dn) as Shupp and take them to be the isolated solutions of
hupp (1; d1, . . . , dn). Denote the end points of hupp(t; d1, . . . , dn) as Thupp .

With this definition, we have when t = 1 that hupp (t; d1, . . . , dn) is a general
BI’-system f ′1, . . . , f

′
n of degrees (d1, d2, . . . , dn). On the other hand, when t =
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0 we have hupp (t; d1, . . . , dn) is a BI-system of degree (d1, d2, . . . , dn). By the
fundamental theorem of parameter continuation of isolated roots [13] [Theorem
7.1.6] it follows that Thupp contains all isolated solutions of f1, . . . , fn. In particular,
this proves Theorem 13 because #Shupp ≥ #Thupp .

Theorem 13. Let I ⊂ C [x0, . . . , xn] be generated by the forms B1, . . . Bl such
that Bj =

∑
k Aj,k with Aj,k being a monomial multiplied by a scalar. If we let I ′

be generated by Aj,k, then

E• (I ′; d1, . . . , dn) ≥ E• (I; d1, . . . , dn) .

Moreover, the parameter homotopy hupp (t; d1, . . . , dn) has endpoints Thupp con-
taining all isolated solutions of f ′1, . . . , f ′n.

Now that we have the theorem, we present our algorithm.

Input: Natural numbers d1, . . . , dn and generators B1, . . . , Bl of an ideal
I in C [x0, . . . , xn] such that Bj =

∑
k Aj,k.

Output : The excess number E• (I; d1, . . . , dn).
Step 1 : Construct the the hupp-homotopy hupp (t; d1, . . . , dn).
Step 2: Solve the start system hupp (1; d1, . . . , dn) := [f ′1, . . . , f

′
n]T and

compute Shupp .
Step 3: Use the hupp-homotopy to determine Thupp and an upper bound
of E• (I; d1, . . . , dn).
Step 4: Use a numerical membership test to determine E• (I; d1, . . . , dn)
and the isolated solutions of hupp (0; d1, . . . , dn) := f1, . . . , fn.

For this algorithm, we assume in Step 2 that the excess intersection of a
monomial ideal can be determined. We now give an example where I defines the
twisted cubic.

Example 14. Let the ideal I ⊂ C [x, y, z, w] be generated by the forms

B1 = z2 − yw, B2 = yz − xw, B3 = y2 − xz,

and suppose we want to calculate E• (I; 3, 3, 3). To run the first algorithm, we in-
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put d1 = d2 = d3 = 3 and B1, B2, B3. In Step 1, we determine hupp (t; d1, . . . , dn) =

t
 a11 a12 · · · a16

a21 a22 · · · a26

a31 a32 · · · a36

+ (1− t)

 b11 b11 b12 b12 b13 b13

b21 b21 b22 b22 b23 b23

b31 b31 b32 b32 b33 b33




z2

−yw
yz
−xw
y2

−xz

 .

The forms aij and bij are general linear forms of C [x, y, z, w]. Once we have solved
the system hupp (1; 3, 3, 3) in Step 2, we path track in Step 3 to calculate Thupp

giving an upper bound #Thupp of E• (I; 3, 3, 3). In Step 4, we use a numerical
membership test [13] to conclude E• (I; 3, 3, 3) = 10. Indeed, if


b11

b12
...
b33

 =


1/2 1 4/5 1/3 1/5 7/8 13 1/3
3 7 9/7 1/8 4 1/6 5 −1
−5 4 7/8 8/9 3 1/15 1/6 −8
−1/4 2 1/3 −1 −1 −2 7/9 1/4


T 

x
y
z
w

 ,
then we find the ten excess points are s1, s2, s3, s4, s5, s6, s7, s8 = s̄5, s9 = s̄6, s10 =
s̄7:

s1 s2 s3 s4

x −6.1999 −0.2081 −1.0024 −0.1530
y 5.9766 0.5979 3.1208 0.3771
z −2.3702 −2.1386 −5.1077 −0.6183
w 1 1 1 1

,

s5 s6 s7

x −.6493 + 1.4057i 0.4713− 0.0461i 2.9076 + 0.0384i
y .4134− 1.4061i 0.2603− 0.5271i −1.0341 + 1.7553i
z −1.1267 + 0.3173i −0.9278 + 0.1923i −0.7082− 1.2392i
w 1 1 1

.

3.2. Algorithm two and the hite-homotopy
The second algorithm we present is probabilistic. The algorithm uses the

hite-homotopy to compute a lower bound of excess numbers. By iterating this
algorithm, the lower bounds can become sharp.
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Definition 15. Let B1, . . . Bl ∈ C [x0, . . . , xn] be forms that generate I and
A1, . . . , Al be monomials that generate I ′ such that degBj = degAj. The hite-
homotopy is defined as hite (t; d1, . . . , dn) := a11 a12 · · · a1l

...
an1 an2 · · · anl


t
 A1

...
Al

+ γ (1− t)

 B1
...
Bl


 ,

with the degrees of the general forms aij equal to deg fi − degAj. We denote
the start points of hite as Site and take them to be the isolated solutions of
hite (1; d1, . . . , dn) and denote the end points of hite (t; d1, . . . , dn) as Tite.

With this definition, we have when t equals 1 that
hite (t; d1, . . . , dn) is a BI’-system f ′1, . . . , f

′
n of degrees (d1, d2, . . . , dn). On the

other hand, when t = 0 we have hite (t; d1, . . . , dn) is a system of n I-general
forms of degrees d1, . . . , dn. While the hite-homotopy is easy to set up, the funda-
mental theorem of parameter continuation of isolated roots [13] [Theorem 7.1.6]
cannot be applied. So Thite

does not necessarily contain all isolated solutions of
f1, . . . , fn. However, after doing a membership test, we can determine some points
in Thite

are isolated solutions of f1, . . . , fn. So what we have is a lower bound on
E• (I; d1, . . . , dn). But, by iterating this homotopy, we can find more isolated
solutions and give a better lower bound.

Input: Natural numbers d1, . . . , dn, generators B1, . . . , Bl of an ideal I ⊂
C [x0, . . . , xn], monomials A1, A2, . . . , Al such that degAj = degBj, and
a (possibly empty) set W of isolated solutions of f1, . . . , fn.
Output : A set Wite containing W of isolated solutions of f1, . . . , fn, and
#Wite a lower bound for the excess number E• (I; d1, . . . , dn).
Step 1 : Construct the hite-homotopy hite (t; d1, . . . , dn) and track start
solutions Site to target solutions Tite.
Step 2: Use a membership test to determine which solutions of Tite are
isolated and set Wite to be the union of W and isolated solutions of Tite.
Step 3: OutputWite and #Wite OR repeat steps 1−3 by making a different
choice of γ in the hite-homotopy.

By taking different choices of γ in the hite-homotopy we were able to produce
the following example.

Example 16. If we take A1 = z2, A2 = yz, A3 = y2 , then we have the excess num-
ber E• (I ′; 3, 3, 3) = 7. Next, we construct the hite-homotopy as hite (t; d1, . . . , dn) =

12



 b11 b12 b13

b21 b22 b23

b33 b32 b33

t
 z2

yz
y2

+ γ (1− t)

 z2 − yw
yz − xw
y2 − xz


with aij the same as in Example 14. We find the 7 isolated solutions of
hite (1; d1, d2, d3) are s′1, s′2, s′3, s′4, s̄′2, s̄′3, s̄′4:

s′1 s′2 s′3 s′4
x −8.4814 −.0354 + .7868i .8876 + .0702i −.3053 + .4774i
y 8.2976 −.1201 +−.7446i .3006− .5880i .3779− .7007i
z −2.9043 −.9638 + .1650i −1.2929 + .2635i −1.8276 + .6092i
w 1 1 1 1

.

By taking γ to be different complex numbers and keeping bij fixed, with 4 itera-
tions, we were able to find that E• (I; d1, . . . , dn) has a lower bound of 10. By the
previous subsection, we know that this lower bound is actually sharp.

We comment that with some choices of A1, A2, A3 defining I, it can happen
that E• (I ′; 3, 3, 3) is greater than, equal to, or less than E• (I; 3, 3, 3). So one may
be tracking too many paths, too few paths, or perhaps luckily the right number.
Open questions remain about for which choice of monomials A1, . . . , Al yield the
best computational results. In addition, how should we choose γ to find new
solutions as we iterate; and how can we verify that our lower bound has become
sharp are also interesting questions. These questions will remain for future work,
and their answers may depend heavily on the context of the problem.
Remark 17. We remark that the hite-homotopy need not have had the Aj be
monomials. Any choice of a form Aj whose degree equals Bj could have been used.
However, in this section, we have made the assumption that excess intersections
of monomial ideals can be computed effectively, as we saw combinatorics can be
used to understand excess numbers of monomial ideals.

To conclude, we have shown that determining excess numbers of monomial
ideals can be reduced to computing a mixed volume in some cases. With this
idea, we are able to provide an explicit formula for excess numbers of ideals
with general generators. We presented two algorithms using numerical algebraic
geometry to determine excess numbers of any ideal. We also demonstrated that
these algorithms have successfully lead to the calculation of excess numbers of
an ideal defining the twisted cubic. We believe that the the hupp-homotopy can
compute excess numbers of many other ideals defined by sparse forms in many
unknowns.
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