N

N

Intensification/Diversification-Driven ILS for a Graph
Coloring Problem

Samir Loudni

» To cite this version:

Samir Loudni. Intensification/Diversification-Driven ILS for a Graph Coloring Problem. 12th Euro-
pean Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP 2012), Apr
2012, Malaga, Spain. pp.160-171. hal-01022859

HAL Id: hal-01022859
https://hal.science/hal-01022859

Submitted on 11 Jul 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01022859
https://hal.archives-ouvertes.fr

Intensification/Diversification-Driven ILS
for a Graph Coloring Problem

Samir Loudni

Université de Caen Basse-Normandie,
UMR 6072 GREYC, F-14032 Caen, France

Abstract. This paper presents an extension of the ILS algorithm, called
ID-ILS, by introducing new local search devices that enforce an efficient
tradeoff of intensification and diversification. Experiments performed on
the DIMACS benchmarks show that our method is competitive with the
best coloring algorithms.

1 Introduction

The Graph Coloring Problem (GCP) is to find the minimum number of colors
required to color the vertices of a graph so that no edge has both endpoints with
the same color. The GCP has received much attention in the literature, not only
for its direct applications to many other real world problems [1]2], but also for its
difficulty from complexity point of view. In fact, although many exact algorithms
have been proposed for this problem (see [3]), such algorithms can only be used
to solve small instances (up to 100 vertices). Therefore, heuristic algorithms are
needed for larger instances. The best performing heuristic algorithms are local
search methods (e.g., [4]5l6]7]) and hybrid algorithms that combines a local
search with a population based method (e.g. [8[9]10/11]).

TIterated local search (ILS) [12] is a simple and effective type of metaheuristic
that has been successfully applied on a wide range of problems. The basic princi-
ple of ILS consists in successively applying perturbations and local search to the
current solution. The perturbation step plays a primary role because it drives
ILS to explore different regions of the search space, in order to escape from the
basin of attraction of the most recently visited local optima (diversification ef-
fort), while the goal of local search step is to focus more intensively within each
promising region to converge towards a local optimum (intensification effort).
However, as explained in [13], most LS algorithms handle diversity and intensity
as two opposite objectives : as one gets more intensity, one can lose diversity. So,
more coordination/balance is required between these two main objectives. The
Aspiration Plus CLS (Candidate List Strategy) [14[15] is a promising mech-
anism proposed for the Tabu Search. It restricts the number of neighbors to
examine for the next move, in order to control the intensification effort.

The goal of this work is to propose a new extension of the ILS algorithm,
noted ID-ILS, by introducing in both steps of ILS new local search devices that
enforce an efficient tradeoff of intensification and diversification. We performed

experiments on a set of challenging DIMACS graphs [16], and we have compared
our results to six local search methods, as well as to three hybrid evolutionary
algorithms HCA [9], MACOL [10]| and MMT [11]. These results show that, our method
clearly dominates the local search approaches and is competitive compared to
the hybrid ones. Section [2] gives a synthetic overview of the GCP and presents
the best performing algorithms for solving it. Section [3]describes our resolution
approach ID-ILS and details their main components. Section [4] is devoted to
experimentations. Finally, we conclude and draw some perspectives.

2 Graph Coloring Problem

2.1 Definitions and Notations

Given a graph G = (V, E) with vertex set V and edge set F, and given an integer
k, a k-coloring of G is a function ¢ : V — {1,...k}. The value c(u) of a vertex
u is called the color of u. An edge (u,v) € E is said conflicting if its vertices u
and v have the same color. A k-coloring without conflicting edges is said legal,
otherwise it is illegal. Let s = [¢(1),...,¢(|V])] be a legal k-coloring, s can be
represented by a partition of V into k disjoint subsets V1, ..., V*. We say that
V" is the color class r induced by s (i.e., the set of vertices having a color r in
s). The objective function f counts the number of conflicting edges induced by
s. The GCP is to determine the chromatic number x(G) of G, i.e. the minimum
value of k for which there is a k-coloring s of G such that f(s) = 0.

2.2 Metaheuristic Approaches to the GCP

TABUCOL [5] is one of the most famous local search algorithms proposed for
the GCP. Morgenstern [7] proposed a complex algorithm, called MOR, based on
partial k-colorings. A solution is a partition of vertices of G into k disjoint color
classes {V!, ..., V¥}. A specific class (i.e., V¥*1) is used to represent the set
of uncolored vertices. A neighbor solution is obtained by moving an uncolored
vertex u from V**1! to a pre-existing color class V", and by moving to V1 all
vertices in V" that are adjacent to u. The complete legal k-coloring is obtained
by emptying V*+1.

In [9], an evolutionary algorithm, called HCA, combining an improved version of
TABUCOL with a Greedy Partitioning Crossover operator (GPX) was proposed.
GPX builds a partial legal k-coloring {V',..., V*} by alternatively selecting
from two parent solutions the class of maximum size to become color class V' of
the offspring. All vertices in this color class are then deleted from the parents.
The remaining vertices are then assigned to a class randomly chosen. In [10], a
similar approach was proposed, called MACOL, which extends GPX to use more
than two parents for generating color classes of the offspring.

In [4], two TS methods (DYN-P . COL and FOO-P. COL), based on partial k-colorings
were proposed. Finally, Hertz et al. [6] proposed an extension of the VNS algorithm,
called Variable Search Space (VSS). The idea of VSS is to completely change the
search space and to consider different objective functions for each space. They pro-
posed VSS-Col, which moves between three different search spaces.

Algorithm 1. Pseudo-code algorithm for ID-ILS

function ID-ILS(maxlter, maxneigh, maxMoves, nextneigh) ;
begin
s < genRandomSol(), ¢ < 1, b < bmac;
while (i < maxlter) do
i1+ 1
s’ + Perturbation(s,b) ;
s’ « LS(s’, maxneigh, maxMoves, nextneigh) ;
if f(s') < f(s) then
s+ 8, i+ 1,
b« bmaz§

© 00N O Uk W N

else b < updatePertubationSize (7);

return s;

[y
o

end

3 Intensification/Diversification-Driven ILS

3.1 Main Scheme of ID-ILS

ID-ILS extends ILS [12]| by introducing new local search devices that enforce an
efficient tradeoff of intensification and diversification. To achieve this goal, we
first define an adaptive scheme to control the size for the perturbation (cf. Sect
[3:2). Second, we make use a candidate list strategy, endowed with a diversification
mechanism to exit from local minima (cf. Sect.[3.3). Algorithm [I] presents its
pseudo-code. We denote by b4, the maximum perturbation size. It starts from
an initial solution s which is randomly generated. The loop in lines [2] to [9] is
performed until ¢ number of consecutive iterations performed without improving
s reaches maxIter. A new local optimum s’ is obtained by the combination of a
perturbation move of size b applied to the current solution s (line[d) with a local
search procedure applied to the so obtained perturbed solution (line[5). If s is
better than s, it becomes the new current solution and ¢ is reset to 1 (line[7);

3.2 Perturbation Step

Adaptive Perturbation. As explained in [12], the perturbation is just a col-
lection of moves that complement those carried out by the local search. A weak
perturbation is likely to get rapidly stuck in a deep local optima, whereas a
strong perturbation is prone to be slow in convergence and similar to a random-
ized search. Achieving such a delicate balance is a challenge and certainly it is the
key to success in ILS. We propose to exploit the search history to determine the
perturbation size (i.e., b). In our approach, b proportionally decreases according
to the value of i (see Algorithm[I). The main idea is to perform large perturba-
tions each time the current solution s is improved, and to favor gradually small
perturbations when s has not been improved for a long time. In fact, in our
experiments we observed that the space of solutions has very distant solutions

that are nearly as good as the optimum. So, after getting a best coloring in one’s
neighbor solution by the local search procedure (i.e., intensification effort), one
must go explore other regions of locally optimal solutions. This is achieved by
using large perturbations (i.e., diversification effort). Initially, b is set to biaz-
During the search, each time s is improved b is reset to byqe (line[8); otherwise
it is decreased whenever i is increased, until reaching the value by, (line[9).

Perturbation Schemes. Our perturbation operator consists of changing the
color of some conflicting vertices in s. Let us note by neighbors(u) the set of
all vertices adjacent to u and by X(s) the set of conflicting vertices in s. We
randomly select a first vertex vo in X(s) and move its original color to the best
possible other one (i.e. the new color is chosen among those producing the small-
est number of conflicts). Let s; be the new perturbed solution. If s; increases
the number of conflicts, we randomly select a new vertex among conflicted ones
in X(s1) \ X(s) and assign to it the best possible new color. This process is
repeated until a non-deteriorating move (i.e., that does not increase the num-
ber of conflicts) is found. In this way, we only accept moves that deacrese as
small as possible the solution quality. To favor the diversification capability, we
prevent changing the color of a vertex more than once. This sequence of moves
are successively applied with b different vp. This perturbation operator is noted
ConflictVar (Py). This operator, which is based on random choices, will change
the current solution in an unpredictable way. The result will be, most likely, a
worse solution, and many times, much worse. We propose to exploit information
from the topology of the constraints graph to guide the perturbation operator
towards more promising regions [17[18]. We propose new perturbations :

a) ConflictVar Chain (P2): We first randomly select an initial vertex v;n; in
X(s) and move it into the best possible other color class V*. Let s; be the new
perturbed solution. If s; increases the number of conflicts, we randomly select a
new vertex u among conflicted ones in (X(s1) \ X(s)) NV and assign to it the
best possible new color class V7. This sequence of moves is achieved until a non-
deteriorating move is found. This process is repeated by successively applying
such sequences of changes with b different v;,.

b) ConflictVar Connected Centers (P3): We randomly select a first vertex ve.
noted “connected center” in X(s) and move it into the best possible other color
class V. Then, for each conflicting vertex v, in neighbors(ve.) NV, we move it
into the best possible other color class V7, and we assign the best possible color
to every new conflicting vertex in neighbors(v.) N V7. This sequence of moves
are successively applied with b different v...

c) Conflict ColorClass (Py): We first select a color class V¢ having the highest num-
ber of conflicting vertices (ties are randomly broken) and move each of its vertices
into the best possible other color class. Let s; be the new perturbed solution. Then,
we select randomly b new conflicting vertices from X'(s1) \ X(s) and move each
of them into a best possible other color. A tabu list is used to forbid selecting the
color class V¥ for the next [iterations of ID-ILS, with [= 0.6 x |X'(s)|+rand(0,9)
[9], where rand(0,9) is a function providing a random number in {0, ...,9}.

3.3 Local Search Step

Our local search procedure is an extension of TABUCOL. Algorithm [2] shows its
pseudo-code. We use a neighborhood defined by the 1-flip move, which consists
of changing the original color class V() of a single conflicting vertex v to its best
possible new color class V? (¢(v) # 7). (s,v,i) will denote this move (lines[7]to[8).
Once a move is performed, vertex v is forbidden to move back to its previous color
c(v) for the next T iterations (line[19). After preliminary experiments, the tabu
tenure T was fixed to 20. At each iteration, it determines the best neighbor s’ of
the current solution s such that either s is a non-tabu solution or f(s’) < f(s*),
where s* is the best solution found so. Our stopping condition is based on a total
number of iterations (stopIter). Initially, stopIter = maxMoves (line[L). Each
time a best solution is found, stopIter is increased by the current number of
iterations performed (lines[20]to[2I).

The most critical part for local search methods concerns the neighborhood
exploration, and more exactly: (i) the number of candidate neighbors to visit,
and (ii) the way of selecting the next move among these candidates. Indeed,
the number of candidates should be large enough to focus more intensively on
regions found to be good. However, it should be small enough to prevent ex-
amining a large set of candidates and thus to allow the search to exit from
local optima more quickly. Moreover, the way of selecting the next move should
drive the search towards unexplored regions in the solution space. To address
these issues, we make use a candidate list strategy (CLS) to manage the neigh-
borhood exploration. Two parameters are defined : (a) maxneigh which is the
maximum number of candidate neighbors studied in every move. This CLS man-
ages the maxneigh candidates so as to obtain a good tradeoff between intensi-
fication and diversification efforts; and (b) nextneigh which is a diversification
devise to jump out of local minima. Two variants perform this diversification
process. In the first variant, ID-ILS(first), where nextneigh is set to first,
the first neighbor among the maxneigh non-accepted candidates is selected (i.e.,
s_first). In the second variant, ID-ILS (best), where nextneigh is set to best,
the best neighbor with a lowest cost among the maxneigh non-accepted candi-
dates is selected (i.e., s_best). The loop in lines [6] to [T6] is performed until a
better solution s’ which improves s* is obtained or no improvement has been
made after maxneigh iterations. According to the value of nextneigh, the next
neighbor solution is selected in lines [17] and [I8]from the rejected candidates.

4 Experimental Results

In this section, we report experimental results over different graph types from
the DIMACS benchmarks. For some very difficult graphs, we considered a set of
k-coloring instances for different values of k. As experiments have been run on
various machines, we will report (when it is possible), normalize CPU times.

! For a machine « times slower than ours, reported CPU times will be divided by &.

Algorithm 2. Pseudo-code algorithm for LS

function LS (s, maxneigh, maxMoves, nextneigh) ;
begin

1 stopIter <— maxMoves;

2 sfirst <+), sbest<«), f(sbest)+ T, i<+ 1, s" <+ s;

3 while (i < stopIter) do

4 i< i+ 1, nbtries < 1;

5 firstfound < false, done < false;

6 while (nbtries < maxneigh) and not(done) do

7 v <— randomConflictVertex(s);

8 s’ + getNeighbor(s,v);

9 if not(firstfound) then
10 L firstfound < true, s_first « s’;
11 if (not(done) and (v, s'[v]) ¢ tabulist) or (f(s') < f(s*)) then
12 L s+ s', done <« true;
13 else
14 if not(done) and (nextneigh = best) and (f(s’) < f(s_best))

then
15 L s_best + s ;
16 | nbtries < nbtries + 1;
17 if not(done) and (nextneigh = first) then s < s_first ;
18 if not(done) and (nextneigh = best) then s + s_best ;
19 insert (v, c(v)) in tabulist and make (v, ¢(v)) tabu for T iterations;
20 if f(s) < f(s*) then
21 L stopIter < i + maxMoves, s* <« s;
22 return s*
end

4.1 Problem Instances and Experimental Protocol
We experimented our algorithm on the following difficult graphs [16]:

— 8 DSJCn.y graphs: DSJCs are random graphs with n vertices and a density
equal to 0.y. We selected those with n € {250,500, 1000} and y € {1,5,9}.

— 2 DSJRn.r graphs: DSJRs are geometric random graphs. We selected those
with n = 500 and r € {1,5}.

— 5 flatn_x_0 graphs: flat graphs are quasi-random graphs. We selected the
flat300x_0, with « € {26,28} and the flat10000, with x € {50,60,76}.

— 4 len_z graphs: the Leighton graphs are derived from scheduling, and have
450 vertices. We selected instances ¢ and d, with = € {15,25}.

— one latin square graph (latin_square_10).

Based on preliminary testing, we used the following parameter settings:
maxIter=2xn,maxMoves=200,000,maxneighe {50, 100, 150, 175,200}, bypin =20,

and b4, =50 (except for P;, where b,,4,=100). A set of 20 (or 10) runs per k-
coloring instance has been performed on a 2GHz Intel Core 2 DUO with 2GB
of RAM. We report the value of k for which a k-coloring was found, the number
of successful runs ("succ. runs/total runs”), the average CPU time in seconds
for successful runs and the average cost over the total runs. ID-ILS has been
implemented in C++.

Table 1. Comparing the different perturbation schemes. The best results are in bold.

Tnstance k_|P; [MaxN. Succ. Time Avg | [Instance k |[P; [MaxN. Succ. Time Avg
DSJC250.5 Py [200 18/20 113.5 0.1 |[le450-15d Py 150 20/20 2.9 0
n=250 2s |P2|175 18/20 148.1 0.1 n=450 15 |P2 |50 20/20 6.4 0
m=15668 P3|150 20/20 118.9 0 m=16750 P3|150 19/20 6.7 0.05
k*=28 Py 150 20/20 76.4 3} k*=15 Py [50 20/20 3.2 0
DSJC250.9 P[50 20/20 8.5 0 Te450_25¢ Py [100 7/25 19.9 0.8
n=250 7o |P2|100 20/20 9.8 0 n=450 26 |P2[100 25/25 10 o
m=27897 P3 |50 20/20 8.4 o m=17343 P3|150 18/25 12 0.32
k*=72 Py [50 20/20 10.86 0 k*=25 Py (100 12/25 19.4 0.68
DSJC500.1 Py [175 17/20 142.4 0.15 | [Te450-25d Py [100 11/20 61 0.56
n=>500 12 |P2]175 17/20 448.9 0.2 n=450 26 |P2[100 20/20 11.3 o
m=24916 Pj3|100 13/20 303.4 0.5 m=17425 P3|100 17/20 9 0.4
k*=12 Py |200 20/20 121.9 o) k*=25 Py (150 7/20 17.2 0.88
DSJC500.5 P [200 1/10 2077.6 1.5 | [flat300-26-0 Py |50 20/20 4.6 0
n=>500 48 |P2]|100 2/10 4762.6 1.2 n=300 26 |P2[50 20/20 4.2 0
m=125248 Pj3|100 2/10 6445.6 1.6 m=21633 P3|50 20/20 3.2 o
k*=48 Py [50 1/10 2820.6 2.1 k* =26 Py |50 20/20 10.3 0
DSJC500.9 Py 150 18/20 2451 0.15 Py 150 15/20 192 0.25
n=>500 126 |P2[50 11/20 3513 0.45 31 |P2]|150 17/20 160.9 0.15
m=224874 P3(175 14/20 5348.8 0.3 P3|175 17/20 239.1 0.15
k*=126 Py (175 12/20 6093.4 0.4 P, (200 20/20 185 (]
DSJR500.1c Py [150 0/10 - 2 Flat300-28.0 Py 150 T0/20 1399.43 1.7
n=>500 85 |P2|200 0/10 - 2 n=300 30 |P2|100 10/20 1273.6 2
m=121275 P3 (50 1/10 152.2 1.8 m=21695 P3|150 9/20 19329 2
k*=85 P, |50 10/10 1713.5 O k*=28 Py [150 8/20 1344.8 2.2
P, [150 0/10 = 37 Py |50 2/20 547.3 9.35
125 |P2[100 0/10 - 3.1 29 |P2|200 4/20 2075.8 8.3
DSIR500.5 P3|100 0/10 - 1.4 P3|200 4/20 1612.7 8.2
;'00 : P4 |100 9/10 2702.6 0.15 P4 (200 3/20 1190.9 8.75
n=e 2 PL 175 0/10 B 3.6 | [flat1000-50 P[50 0/20 2379.8 -
8886 124 |P2[100 0/10 - 3.9 || n=1000 50 |P2[50 0/20 2305.1 -
= P3[175 0/10 - 1.8 m=224874 P3 |50 0/20 1977.4 -
Py 175 1/10 207.1 1.4 k*=50 P, |50 20/20 2858.1 0
DSJC1000.1 Py |50 20/20 3.67 0 flat 100060 Py |50 0/20 - -
n=1000 51 |P2]50 20/20 3.1 0 n=1000 60 |P2(50 0/20 - -
m=49629 P3 |50 20/20 3.3 0 m=245830 P3 |50 0/20 - -
k*=20 P, |50 20/20 3.08 o k* =60 P, |50 20/20 13,854 0
Py [150 20/20 1546.4 0 flat1000-76-0 Py [100 2/20 5750.6 1.77]
. Py |50 20/20 13229 0 n=1000 Py [100 1/20 29,765 2.8
DSJCL0005 | 85 Ip3lio0 20/20 852.6 © m=246708 | 3% |P5|150 0/20 - 9.88
499652 Py [50 20/20 1116.1 0 k* =82 P4|100 17/20 20,579 0.15
n* g3 Py [150 0/10 B 5.5 | [DSJC1000.9 Py |175 8/10 31,461 0.2
s6 |P2|100 2/10 4998.6 1.7 n=1000 504 | P2 [50 5/10 13,384 0.7
P3 |50 0/10 - 19.3 || m=449449 P3 |50 3/10 20,671 1.2
Py |175 2/10 27,071.2 4.8 ||k*=223 P,|150 9/10 32,598 0.1
Te450-15¢ Py |25 20/20 0.6 0 latin_square Py |50 0/20 - 3.35
n=450 15 |P2|25 20/20 0.6 0 n=900 100 |P2 (50 0/20 - 3.35
m=16680 Pj3 |25 20/20 0.4 0 m=307350 P3 |50 0/20 - 3.75
k*=15 Py |25 20/20 0.3 o k* =08 P,[100 15/20 12,812.1 0.3

4.2 Comparing the Different Perturbation Schemes

Our first experiment aims to evaluate the effectiveness of our perturbation
schemes. Table[I]reports the detailed results of ID-ILS(first). Column 1 gives
the features of each instance: its name, the number of vertices (n), the num-
ber of edges (m) and the value of the best known coloring (k*) (in bold when
it is the proven optimal value). Column 3 denotes the different perturbations
(P;). Column 4 reports the best setting for maxneigh. A score (b-s-w) is as-
signed to each P;, corresponding to the number of k-colorings for which P; gets

Table 2. Comparison among ID/TS and VSS-Col. Best results are in bold. Column P2
(resp. Py) refers to the results obtained by ID-ILS(first) with P2 (resp. P4).

Instance k¥ k ID-ILS(first+P4) ID-ILS(first+P2) VSS-Col ID/TS
Uco. Time Gco. Time e, Time [Fpe Time Ave.
DSJC250.5 28 28 | 20/20 76 | 18/20 148 B 28 (1) 1241 0.8
DSJC250.9 72 72 | 20/20 11 | 20/20 10 - - |72 (5) 15 0
DSJC500.1 12 12 [20/20 122 | 17/20 149 | 10/10 97 [12 (5) 1465 0
13 T/10 2820 2/10 4762 | 8/10 1331
DSJC500.5 48 49 |12/20 1894 | 14/20 889 |10/10 162 |50 (®) 2378 0.4
126 | 12/20 6094 | 11/20 3513 | 8/10 1686
5 5
DSJC500.9 126 1127 | 20720 194 | 20/20 173 | 10/10 169 P27 () 3435 L
DSIR500.1c 85 85_|10/10 1713 0/10 ~ | 9/10 736 |85 (0) B T4
124 | 1/10 297 0/10 = 0/10 =
500.5 5 R
DSJR500.5 122 |50 | %10 2702 0710 - 0710 T 125 (0) 3.4
20 0/20 E 0/20 [3/10 2396
DSJC1000.1 20 21 | 20/20 3 | 20/20 3 |10/10 11 |22 4 0
86 | 2/10 27,071 | 2/10 4998 0/10 =
-
DSJC1000.5 83 88 |20/20 1116 |=20/20 1323 8/10 2028 |20 (D 2711 L2
224 | 9/10 32,598 | 5/10 13,384 1/10 3326
DSJC1000.9 223 1235 |20/20 20.816 |20/20 1546 5/10 1484 |228 (1) 5707 12
Te450_15¢ 15 15 | 20/20 0 | 20/20 0 | 10/10 6 |15 (5) 3 0
1e450_15d 15 15 | 20/20 3 | 20/20 6 |10/10 44 |15 (5) 5 0
Te450_25¢ 25 26 | 12/25 10 |25/25 10 | 10/10 T 26 (3) G 0.4
le450_25d 25 26 7/20 17 |20/20 11 | 10/10 1|26 (1) 279 0.8
29 | 38/20 1191 | 4/20 2075 1/10 867
lat300-28_0 28 30 | 8/20 1344 |[10/20 1273 2/10 2666 |31 (1) 486 1.4
31 |20/20 185 | 17/20 160 |10/10 39
flat1000-50-0 50 50 |20/20 2858 0/20 [10/10 318 [60 (0) B 184.4
£1at1000.60.0 60 60 |20/20 13,854 0/20 - |10/10 694 |70 (0) - 223.8
86 |17/20 20,579 1/20 29,765 0/10 =
flat1000-76.-0 82 87 |20/20 1204 |[20/20 1780 4/6 1689 |90 (5) 1190 0
88 NA NA NA NA |10/10 1155
Pg Py Py Py Py P2
Better a 0 3 2 |10 8
Equal 14 14 12 9 |8 8
Worse 0 4 1 14 |o 0
. TLd .
respectively better (2™ better in parentheses), equal (100%) and worse success

rates than the other perturbations. From Table [I] the following remarks are
drown :

— Perturbations based on the topology of the constraints graph (except P3)
are clearly more relevant. Both Py (score: 2(5)-6-10) and P3 (score: 3(6)-6-9)
perform similarly, with a slight advantage to P3. This can be explained by
the fact that P3 performs perturbations only on a very limited part of the
graph, whereas the random character of P; allows more diversification in the
perturbation step, which helps to find better solutions.

— Py (score: 6(3)-6-7) and P4 (score: 12(2)-6-4) outperform Ps. Both pertur-
bations find solutions with better success rates respectively for 6 and 12
coloring instances among 24, whereas P3 obtains best success rates for 3 col-
oring instances. Indeed, perturbations Py and P4 allow a more “aggressive”
diversification by performing perturbations on different connected subparts
of the graph.

— Finally, P4 clearly dominates Ps: Py obtains better success rates on 5 k-
coloring instances while P4 outperforms P, on 11 k-coloring instances.

4.3 Comparison with Two Local Search Methods

We have compared ID-ILS(first) using the two best perturbations P; and Py,
with two local search methods:

(i) ID/TS, a variant of TS endowed with our CLS. We made experiments with
nextneigh set to first and maxneigh € {50, 100, 150, 175, 200}. For
each value of k, and each trial, ID/TS is run 20 times with maxMoves set
to 1,500,000. If no legal k-coloring is found, then it is run 10 times with
maxMoves equal to 5,000,000. A set of 5 trials per k-coloring is performed.

(ii) VSS-Col which is one of the most performing among local search coloring
algorithms [6]. The reason for comparing ID-ILS with VSS-Col is that both
methods are very close. However, VSS-Col considers different search spaces,
each one being associated with a set of neighborhoods.

Table [2] compares performances of the four methods. Results for VSS-Col are
taken from [6] and correspond to those obtained with a time limit of 1h on a 2
GHz Pentium 4, with 512 MB of RAM. For ID/TS, we report the best value of k
(Kpest) found, the number of successful runs (in parentheses), the average CPU
time in seconds for successful runs and the average cost among the five trials.
The last three rows show the summary of the comparisons. The rows better,
equal and worse gives respectively the number of graphs for which our method
gets better, equal and worse colorings than the other algorithms.

ID-ILS(first+Py) is clearly the best one. From these results, we observe
that the two variant of ID-ILS(first) outperform ID/TS, particularly on large
graphs, where better colorings have been found on at least eight large graphs.
For the two flat1000_50&60, ID/TS was not able to find a legal coloring even for
high values of k. On the eight remaining graphs, the two methods find solutions
of the same quality, but ID-ILS(first) provides better success rates.

When comparing with the results of VSS-Col, ID-ILS(first+P4) gets better
solutions on three graphs, with colorings using respectively 2, 2 and 1 less colors,
and it is worse on one graph. Both methods obtain the same colorings on 12
graphs. However, if we compare the success rates, ID-ILS(first+P,) performs
better than VSS-Col on three graphs. Both algorithms find the same colorings,
with the same success rate on five graphs, but VSS-Col is generally faster, except
for 1le450-15c&15d, where ID-ILS (first+P,4) find optimal colorings very quickly.
So, ID-ILS(first+P4) can be considered as more effective than VSS-Col.

4.4 Comparison with the Most Effective Algorithms

In this section we compare our method with the most performing algorithms for
the GCP: four local search algorithms (MOR [7], ILS [19] and DYN/FO0-P.COL [4])
and three hybrid evolutionary methods (HCA [9], MACOL [10] and MMT [11]). How-
ever, we do not report the CPU times because the conditions of experimentation
are not equivalent. So, comparisons must be done with care. Results are given
so that the reader may have a baseline by which he may evaluate ID-ILS.

If we compare the results of ID-ILS(first+P4) with those of local search
methods, one easily observes that our method clearly dominates these local
search algorithms (see last three rows of Table[3). Indeed, our method obtains
worse results for at most three graphs while better results are obtained for
at least six graphs, except for ILS, where our approach obtains better results

Table 3. Comparison with the state-of-the-art algorithms

Instance MOR ILS HCA FOO-P.COL DYN-P.COL MACOL MMT ID-ILS
kpest |kpest|Succ. k| Succ. k |Succ. k |Succ. klkpest|| Succ. k
DSJC250.5 28 | 28 |19/10 28 20/20 8| 28 ||20/20 28
DSJC250.9 - - 10/10 72| 72 ||20/20 72
DSJC500.1 12 | 12 23/50 12 [50/50 12 |20/20 12| 12 ||20/20 12
DSJC500.5 49 | 49 |5/10 48 |50/50 50 | 1/50 49 |20/20 48| 48 || 1/10 48
DSJC500.9 128|126 48/50 128| 1/50 127|20/20 126|127 |[12/20 126
DSJR500.1¢ | 85 | - 50/50 85 | 3/50 85 [20/20 85| 85 ||10/10 85
DSJR500.5 123124 24/50 128(28/50 126(11/20 122| 122 1/10 124
DSJC1000.1 | 21 | - - 20150/50 21 | 3/50 20 (20/20 20| 20 (|20/20 21
DSJC1000.5 | 88 | 89 - 83| 5/50 89 | 6/50 89 |20/20 83| 84 || 2/10 86
DSJC1000.9 |226| - - 224|30/50 228(30/50 228|18/20 225|225 || 9/10 224
le450_15¢ 15 | 15 |6/10 151(50/50 15 |50/50 15 [20/20 15| 15 ([20/20 15
le450_15d 15 | 15 50/50 15 [50/50 15 [20/20 15| 15 {|20/20 15
le450_25¢ 25 | 26 |10/10 26 [50/50 27 [50/50 27 [20/20 25| 25 ||12/20 26
le450_25d 25 | 26 50/50 27 [50/50 27 |20/20 25| 25 || 7/20 26
flat300.26_0 | 26 | 26 20/20 26| 26 ||20/20 26
flat300-28 .0 | 31 | 31 [6/10 31(35/50 28 |13/50 28 |15/20 29| 31 || 3/20 29
flat1000_50_.0 | 50 | - 50/50 50 [50/50 50 |20/20 50| 50 {|20/20 50
flat1000_60_.0 | 60 | - 50/50 60 [50/50 60 |20/20 60| 60 ||20/20 60
flat1000-76 0| 89 | - | 4/5 83(10/50 88 | 9/50 88 |20/20 82| 83 |[17/20 86
latin_square - 99 5/20 99/101 |[15/20 100
Better 6 3 1 8 8 0| 4
Equal 9 9 5 7 6 12| 10
Worse 3 1 3 1 2 8| 6

for three graphs. For DSJC500.9 (resp. DSJC1000.9), ID-ILS(first+P,), ILS
and VSS-Col are the only algorithms that can reach 126-coloring. Detailed com-
parisons are given bellow:

ID-ILS(first+P4) is better than MOR on six graphs and worse on three
graphs (DSJR500.5, 1le450_25¢ and 1e450-25d).

ID-ILS(first+P4) is better than ILS on three graphs and worse on one
graph (latin_square). This comparison is very informative as well and shows
the importance of our perturbation scheme P4 as well as of the CLS.
ID-ILS(first+Py) is better than DYN/FOO-P.COL on eight graphs and worse
on two/one graphs. For flat300_28, there are only few algorithms in the
literature that can reach 28-coloring.

ID-ILS(first+P4) is better than VSS-Col on three graphs (six graphs if we
consider the success rates) and worse on two graphs.

When comparing with the results of the two hybrid evolutionary algorithms
HCA and MMT, one observes that ID-ILS(first+P,) is competitive. Indeed, our
method is better than HCA on flat300-28_0 and worse on three graphs, better than
MMT on four graphs (DSJC500.9, DSJC1000.9, flat30028_0 and latin_square) and
worse on six graphs. If we compare with the results of MACOL, one easily observes

Table 4. Impact of the CLS and the nextneigh parameter on the performance of
ID-ILS. We report in parentheses the best cost for the unsuccessful runs.

Instance k Pi ID-ILS(first) ID-ILS(best) ILS/TS

Succ. Time Avg. Succ. Time Avg. Succ. Time Avg.
T I 7 P = -
e I A R A - T S
e O O P 7 - T R
e R A A T sin o om
e S A TR
bcsws o7 [palom mr oo Ny R

that MACOL clearly outperforms ID-ILS (first+P,) . However, our method should
be considered as a simple local search method which uses very simple diversi-
fication devices, while HCA, MMT and MACOL are much more complex algorithms,
with sophisticated ingredients finely tuned.

4.5 Analysis of the Parameters of ID-ILS

The aim of this section is to study the impact of the two local search devices,
on the performance of ID-ILS.

(a) Impact of nextneigh. Table[] compares the results of the two variants of
ID-ILS. The impact of setting nextneigh to first has a strong influence on
the effectiveness of ID-ILS, particularly on 1e450_25 and DSJC500.9, for which
several orders of magnitude are gained. The poor results of ID-ILS(best) are
probably due to the fact that selecting the best neighbor among the maxneigh
non-accepted candidates leads ID-ILS to get stuck in a deep local optimum
looping between already visited areas. This surprising result shows that setting
nextneigh to first clearly favors diversification.

(b) Impact of the CLS. In this study, we compared ID-ILS with a version
of ILS using TABUCOL without any CLS (noted ILS/TS). As showed in Table[4]
ID-ILS(first) is clearly more relevant. We can observe that the impact of the
CLS when nextneigh = best is not systematic. Indeed, compared to ILS/TS,
ID-ILS(best) performs very well on 1le450_15c&d, but on the other instances,
ILS/TS is very effective. These results highlight the importance of the CLS device
for enforcing a tradeoff between intensification and diversification.

5 Conclusions

In this paper, we have proposed a new extension of the ILS algorithm, noted
ID-ILS, by introducing new devices that enforce an efficient tradeoff between in-
tensification and diversification. For the graph coloring problem, we have defined
new perturbation schemes that exploit information from the topology of the con-
straints graph. Experimentations, carried out on a set of DIMACS graphs show
that our method is very competitive with the current best hybrid approaches. Let

us mention that our approach is generic (with some adaptations for perturba-
tion schemes) and could be applied to other difficult optimization problems. We
are currently investigating such a direction on Radio link frequency assignment
(RLFAP), and Car Sequencing problems. We also intend to study the impact of
the perturbation size on intensification/diversification.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Burke, E.K., Marecek, J., Parkes, A.J., Rudovd, H.: A supernodal formulation
of vertex colouring with applications in course timetabling. Annals OR 179(1),
105-130 (2010)

Gamache, M., Hertz, A., Ouellet, J.O.: A graph coloring model for a feasibil-
ity problem in monthly crew scheduling with preferential bidding. Computers &
OR 34(8), 2384-2395 (2007)

Malaguti, E., Toth, P.: A survey on vertex coloring problems. Intl. Trans. in Op.
Res. 17(1), 1475-3995 (2010)

Blochliger, 1., Zufferey, N.: A graph coloring heuristic using partial solutions and
a reactive tabu scheme. Computers & OR 35(3), 960-975 (2008)

Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Comput-
ing 39(4), 345-351 (1987)

Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring.
Discrete Applied Mathematics 156(13), 2551-2560 (2008)

Morgenstern, C.: Distributed coloration neighborhood search. DIMACS Series,
vol. 26, pp. 335-357. Providence, RI (1996)

Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Annals
of Operations Research 63(3), 437-461 (1996)

Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb.
Optim. 3(4), 379-397 (1999)

Li, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of
Operational Research 203(1), 241-250 (2010)

Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex col-
oring problem. INFORMS Journal on Computing 20(2), 302-316 (2008)
Lourengo, H.R., Martin, O., Stiitzle, T.: Iterated local search: Framework and
applications. In: Handbook of Metaheuristics, vol. 146, pp. 363—-397. Springer, New
York (2010)

Linhares, A., Yanasse, H.: Search intensity versus search diversity: a false trade
off 7 Appl. Intell. 32(3), 279-291 (2010)

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)

Neveu, B., Trombettoni, G., Glover, F.: ID Walk: A Candidate List Strategy with
a Simple Diversification Device. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258,
pp. 423-437. Springer, Heidelberg (2004)

Trick, M.: Computational symposium: Graph coloring and its generalizations. Cor-
nell University, Ithaca, NY (2002), http://mat.gsia.cmu.edu/COLOR02/
Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph
coloring. European Journal of Operational Research 151(2), 379-388 (2003)
Loudni, S., Boizumault, P., Levasseur, N.: Advanced generic neighborhood heuris-
tics for vns. Eng. Appl. of AT 23(5), 736-764 (2010)

Chiarandini, M., Stiitzle, T.: An application of iterated local search to graph col-
oring. In: Proceedings of the Comput. Symposium on Graph Coloring and its Gen-
eralizations, Ithaca, New York, USA, pp. 112-125 (2002)

	ACTI-LOUDNI-2012-1-p1
	ACTI-LOUDNI-2012-1-p2
	ACTI-LOUDNI-2012-1-p3
	ACTI-LOUDNI-2012-1-p4
	ACTI-LOUDNI-2012-1-p5
	ACTI-LOUDNI-2012-1-p6
	ACTI-LOUDNI-2012-1-p7
	ACTI-LOUDNI-2012-1-p8
	ACTI-LOUDNI-2012-1-p9
	ACTI-LOUDNI-2012-1-p10
	ACTI-LOUDNI-2012-1-p11
	ACTI-LOUDNI-2012-1-p12

