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Abstract

We study a spline-based approximation of vector fields in the conservative case (the gradient vector
field derives from a potential function). We introduce a minimization problem on a Hilbert space
for which the existence and uniqueness of the solution is given. We apply this approach to a
registration process in image processing.
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1. Introduction

In image processing, registration is an important task since it allows to compare a subject/time-
variant template image T with an unbiased reference image R. More precisely, given a reference R
and a template T defined on an image domain Ω, the goal is to find a smooth invertible transfor-
mation to map T into an image similar to R. For images of the same modality, a well-registered
template has geometric features and intensity distribution matched with the reference.
An extensive overview of registration techniques can be found in [33]. These can be partitioned
into two classes: parametric and non-parametric ones. In the non-parametric methods (our frame-
work), the problem is phrased as a functional minimization whose unknown is the displacement
vector field u. The introduced functional combines a distance measure component D [R, T, u] and
a smoother on the displacement vector field S = S [u] to remove the ill-posed character of the
problem.
Thus we take as input in our problem the obtained vector field after applying a classical regis-
tration process (see for instance [9], [12], [14], [24], [18], [19] or [20]). In the examples related to
image registration, the reference system is centred on the top left corner, the x-direction (first
component) corresponds to the column direction and the y-direction (second component) to the
row direction. The y-direction points downwards.
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The starting point of this work is the conservative vector field approximation, that is to say,
when the studied vector field derives from a potential (real-valued function). This problem occurs
for instance in electromagnetism, meteorology, medical imaging or radar image analysis. Here, we
do not want to compute a potential that could generate the vector field data. We only want to get
a global approximation of the vector field dataset on a bounded domain, taking into account in the
modelling that this approximation derives from a potential. This implies that the components of
the computed vector field are an isotropic approximation of the vector field dataset. Furthermore,
contrary to interpolation methods, we prefer to fit the vector field dataset in the case of realistic
data (when the number of vectors is large or with noisy data). To achieve this (see Section 2),
we introduce a minimization problem defined as a regularized least-square problem formulated on
a Sobolev space of potentials. Obviously, this problem has an infinity of solutions, but we derive
from it a problem expressed in terms of the gradient vectors. We prove that the associated problem
in terms of vectors has a unique solution which is the corresponding approximation of the vector
field dataset. In Section 3, we give a convergence result when the number of vectors increases to
infinity. We use in Section 4 a finite element method to discretize the approximation problem and
provide bidimensional experimental results on both synthetic data and real data.

Before depicting the proposed model, we briefly review some prior related works. In [2], Amodei
and Benbourhim introduce a new family Pα,β of spline minimization problems for vector fields
defined by

Pα,β





min

(
α

∫

R2

||∇ divV ||2 dx dy + β

∫

R2

||∇ rotV ||2 dx dy

)
,

V ∈ χ and V (Xi) = Vi, i ∈ 1, · · · , N,

where V = (u, v) is a two component vector function, χ is the Beppo-Levi space D−2L2(R2) ×
D−2L2(R2), Xi = (xi, yi) are the interpolation points, and Vi = (ui, vi) are data values. The use
of the divergence and rotational operators allows to couple the components of V , which is very
useful when tracking geophysical fluid flows for instance. It also allows to handle the variations in
the magnitudes of the divergent and rotational parts of the flow.

In [38], Xu and Prince devise a new static external force called Gradient Vector Flow (GVF)
in order to address both the problem of initialization and slow/poor convergence near boundaries
with strong concavities in the context of image segmentation. The main idea behind this model
is to increase the capture range of the edge-map-related vector field and to make the contour
evolve toward the desired boundaries where classical methods would fail. This extrapolation step
is phrased in terms of a functional minimization problem. Denoting Df to be the gradient vector
field of an edge map (this field is only significant near boundaries and is almost null in homogeneous
regions) and w = (u, v) to be the expected extrapolated vector field, Xu and Prince propose to
minimize the following functional:

E(w) = µ

∫

Ω

(
u2
x + u2

y + v2x + v2y
)
dx dy +

∫

Ω

||Df ||2||w −Df ||2 dx dy,

with µ a tuning parameter, Ω, a bounded open subset of R2, || · || denoting the Euclidean norm
in R

2, and with the notation ux = ∂u
∂x

. The energy E is thus designed such that when ||Df || is
large, it is minimized by setting w = Df , and when ||Df || is small, the resulting w is smooth and
slowly varying. The Euler-Lagrange equations are computed and lead to a decoupled linear partial
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differential equation system to be solved. Numerically, these equations are solved by a gradient
descent method, and one obtains the following system:

{
∂u
∂t

= µ∆u− 2||Df ||2(u− fx),
∂v
∂t

= µ∆v − 2||Df ||2(v − fy).

In [22], Jifeng et al. propose to improve the diffusion properties of the GVF force field. They
obtain a new force by replacing the Laplacian operator used in the GVF model by its diffusion
term in the normal direction that is, the ‘normalized’ infinity Laplacian operator. Numerically,
the authors thus solve the following decoupled partial differential equation system:

{
∂u
∂t

= µ uNN − 2||Df ||2(u− fx),
∂v
∂t

= µ vNN − 2||Df ||2(v − fy),

where uNN =
u2
xuxx+2uxuyuxy+u2

yuyy

||Du||2 .

Unlike the GVF model, their new field (called NGVF) is anisotropic.
More recently, Le Guyader and Guillot investigate in [26] a new Gradient-Vector-Flow-inspired

external vector field for active contour models, deriving from the edge map of a given image
and allowing to increase the capture range. Contrary to the above related works, the number of
unknowns is reduced to a single one v by assuming that the expected vector field is the gradient
vector field of a scalar function. The model is phrased in terms of a functional minimization
problem comprising a data fidelity term and a regularizer based on the supremum norm of Dv.
The minimization is achieved by solving a second order singular degenerate parabolic equation.
A comparison principle as well as the existence/uniqueness of a viscosity solution together with
regularity results are established.

Another application in image processing dedicated to vector field interpolation is addressed in
[11]. Chessel et al. develop an axiomatic approach of vector field interpolation, which is useful
as a feature extraction preprocessing step. More precisely, the goal is to seek an orientation field
that captures the geometrical features of a given image. In this prospect, the authors propose an
analysis similar to [1], [10] and single out two operators: the curvature operator and the Absolutely
Minimizing Lipschitz Extension.

The originality of this work consists in considering that the vector field derives from a potential
(conservative vector field). We also present a rigorous study of existence-uniqueness of the solution
of the problem phrased as an energy minimization and a convergence result is given.

From our knowledge, our approach is the first one of this kind. Moreover, in our approach,
we propose a method easy to implement and parallelize, using classical tools like the least square
method and the finite element method (for the discretization).

2. Modelling

2.1. Notations

Let Ω be a non-empty connected bounded open subset of Rn with Lipschitz boundary. Let
A =

{
ai
}
i=1,··· ,N

be an ordered set of N points of Ω̄ which contains a Pm−1-unisolvent subset.
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Let also
{
wi

}
i=1,··· ,N

be a set of N vectors of Rn which corresponds to the vector field dataset.

We aim at finding a function Φ : Ω̄→ R smooth enough such that for i = 1, · · · , N ,

∇Φ(ai) ≃ wi ∈ R
n.

Let us denote by ρ the operator defined by:

ρ :

{
Hm(Ω,Rn)→ (Rn)N

v 7→ ρ(v) = (v(a1), · · · , v(aN ))T .
(1)

Let us assume that m > n
2 so that the following Sobolev ’s embeddings hold:

Hm(Ω,Rn) 	 C0(Ω̄,Rn) (2)

Hm+1(Ω,R) 	 C1(Ω̄,R) (3)

One sets ∀ξ ∈ (Rn)N and ∀η ∈ (Rn)N ,

〈ξ, η〉N =

N∑

i=1

〈ξi, ηi〉n,

where 〈·, ·〉n denotes the Euclidean scalar product in R
n and ∀ξ ∈ (Rn)N , 〈ξ〉N = 〈ξ, ξ〉

1
2

N .

2.2. The fitting model

We first introduce a regularized least-square problem defined on a space of potentials (real-
valued functions) to fit the vector field dataset. For any ǫ > 0, we introduce the functional Jǫ

defined as follows:

Jǫ :

{
Hm+1(Ω,R)→ R

v 7→ 〈ρ(∇v) − w〉2N + ǫ|v|2m+1,Ω,R,
(4)

where w = (w1, · · · , wN )T ∈ (Rn)
N

is the vector field dataset and | · |m+1,Ω,R, the semi-norm on
Hm+1(Ω,R).

This kind of approach is related to the smoothingDm−splines for surface approximation introduced
by Arcangéli [5] (see also Duchon [15] for a general introduction or Gout [21], and López de Silanes
and Arcangéli [29, 30] for convergence results). We consider the following fitting problem using
potentials:

{
Search for σǫ ∈ Hm+1(Ω,R) such that

∀v ∈ Hm+1(Ω,R), Jǫ(σǫ) ≤ Jǫ(v),
(5)
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where Jǫ is defined in (4). Obviously, the minimization problem (5) does not have a unique
solution, the potential function σǫ being defined up to a constant.
So, in order to overcome the lack of uniqueness, we introduce the following problem expressed in
terms of the gradients of the potentials: as ǫ is a positive arbitrary parameter and as |.|m+1,Ω,R

and |∇.|m,Ω,Rn are equivalent in Hm+1(Ω,R), we derive from problem (5), the following problem
of minimization:

{
Search for σǫ ∈ Hm+1(Ω,R) such that ∀v ∈ Hm+1(Ω,R),
〈ρ(∇σǫ)− w〉2N + ǫ|∇σǫ|

2
m,Ω,Rn ≤ 〈ρ(∇v)− w〉2N + ǫ|∇v|2m,Ω,Rn .

(6)

This formulation leads to the following problem associated to problem (6). To state this new
problem, we first define the following functional denoted by Fǫ:

Fǫ :

{
Hm(Ω,Rn)→ R

f 7→ 〈ρ(f)− w〉2N + ǫ|f |2m,Ω,Rn ,
(7)

and we consider the following problem stated by:

{
Search for uǫ ∈ Hm(Ω,Rn) such that

∀v ∈ Hm(Ω,Rn), Fǫ(uǫ) ≤ Fǫ(v).
(8)

2.3. Existence and uniqueness results

We have the following theorem:

Theorem 2.1. Problem (8) is equivalent to the following variational problem:

{
Search for uǫ ∈ Hm(Ω,Rn) such that

∀v ∈ Hm(Ω,Rn), 〈ρ(uǫ), ρ(v)〉N + ǫ(uǫ, v)m,Ω,Rn = 〈w, ρ(v)〉N .
(9)

Proof

Let us denote by a the mapping defined by:

a :

∣∣∣∣
Hm (Ω,Rn)×Hm (Ω,Rn)→ R

(u, v) 7→ 〈ρ(u), ρ(v)〉N + ǫ (u, v)m,Ω,Rn

(10)

with (u, v)m,Ω,Rn =
∑

|α|=m

∫

Ω

〈Dαu,Dαv〉n dx, and by L the mapping defined by:

L :

∣∣∣∣
Hm (Ω,Rn)→ R

v 7→ 〈w, ρ(v)〉N
. (11)
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Let us notice that ∀v ∈ Hm(Ω,Rn), Fǫ(v) = a(v, v)− 2L(v) + 〈w〉2N .

Problem (8) is equivalent to:

{
Search for uǫ ∈ Hm(Ω,Rn) such that

∀v ∈ Hm(Ω,Rn), ∀µ ∈ R, Fǫ(uǫ) ≤ Fǫ(uǫ + µv)
. (12)

Let uǫ be a solution of (12). Then ∀v ∈ Hm(Ω,Rn) and ∀µ ∈ R, Fǫ(uǫ) ≤ Fǫ(uǫ + µv). Using the
bilinearity and symmetry of the mapping a, and the linearity of the mapping L, one has:

Fǫ(uǫ + µv) = Fǫ(uǫ) + 2µ [a(uǫ, v)− L(v)] + µ2a(v, v), (13)

which means, using reformulation (12) that ∀v ∈ Hm(Ω,Rn) and ∀µ ∈ R:

2µ [a(uǫ, v)− L(v)] + µ2a(v, v) ≥ 0. (14)

Assuming that µ > 0, dividing inequality (14) by µ and letting µ tend to zero, we finally get:

a(uǫ, v)− L(v) ≥ 0. (15)

Assuming now that µ < 0, one proves in a same way that:

a(uǫ, v)− L(v) ≤ 0, (16)

from which we deduce that a(uǫ, v) = L(v), ∀v ∈ Hm(Ω,Rn).

The converse is readily obtained thanks to relation (13) and the V -ellipticity of a which is proved af-
terwards. �

We now give a lemma that will be of interest in the following.

Lemma 2.2. The mapping defined by:

|| · ||A,m,Ω,Rn :





Hm(Ω,Rn)→ R

f 7→ ||f ||A,m,Ω,Rn =

(
〈ρ(f)〉2N + |f |2m,Ω,Rn

) 1
2

=

( N∑

i=1

〈f(ai)〉
2
n + |f |2m,Ω,Rn

) 1
2 (17)

is a Hilbert norm equivalent to the norm ||f ||m,Ω,Rn in Hm(Ω,Rn) (Hm(Ω,Rn) is endowed with
the usual norm denoted by || · ||m,Ω,Rn and the associated semi-norm denoted by | · |m,Ω,Rn).

The proof of this lemma requires the use of Nec̆as’ theorem (Chapter 2, section 7.1 from [36])
which states the following (the notations are those by Nec̆as’):
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Theorem 2.3. Let Ω be a domain such that

v ∈ P k−1(Ω)⇒ ||v||Lp(Ω) <∞,

with k ≥ 1 a natural integer and p ≥ 1. Then there exist functionals, fi, i = 1, 2, · · · , l on W
(k)
p (Ω)

such that if v ∈ Pk−1(Ω), one has the equivalence:

l∑

i=1

|fiv|
p = 0⇔ v ≡ 0. (18)

Let Ω ∈ ℵ(0) (see [36]) and let fi be functionals satisfying (18), k ≥ 1 a natural integer and p ≥ 1.
One has the inequality:

c1||u||W (k)
p (Ω)

≤

[
∑

α=k

||Dαu||p
Lp(Ω) +

l∑

i=1

|fiu|
p

] 1
p

≤ c2||u||W (k)
p (Ω)

. (19)

Proof of Lemma 2.2

Let us take f such that ||f ||A,m,Ω,Rn = 0. It implies that |f |m,Ω,Rn = 0 and taking into account
the connectedness of Ω, it yields f ∈ Pm−1(Ω,Rn).
As the set A contains a Pm−1-unisolvent subset, we deduce that f ≡ 0.
It is now clear that || · ||A,m,Ω,Rn is a norm on Hm(Ω,Rn) associated with a scalar product.
We now prove the equivalence of the norm || · ||A,m,Ω,Rn with the norm || · ||m,Ω,Rn . First, we have:
∀f ∈ Hm(Ω,Rn), ∀ai ∈ A, i = 1, · · · , N ,

〈f(ai)〉n ≤ ||f ||C0(Ω̄,Rn) ≤ c||f ||Hm(Ω,Rn)( Sobolev’s embedding )

so, ||f ||A,m,Ω,Rn ≤ (1 + c2N)
1
2 ||f ||m,Ω,Rn .

Let us take k = m and p = 2 in Nec̆as’ theorem and let us take ρ as functional fi. Due to the
property of unisolvence of the set A, ρ satisfies property (18). We then obtain from Nec̆as’ theorem
that there exists a positive constant c1 such that:

||f ||m,Ω,Rn ≤
1

c1

[
|f |2m,Ω,Rn +

N∑

i=1

〈f(ai)〉
2
n

] 1
2

=
1

c1
||f ||A,m,Ω,Rn ,

which concludes the proof.

�

We now can establish the following theorem.

Theorem 2.4. Variational problem (9) admits a unique solution.
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Proof

The mapping L defined in (11) is a linear form on Hm(Ω,Rn), continuous on Hm(Ω,Rn). Indeed,

|L(v)| = |

N∑

i=1

〈wi, v(ai)〉n| ≤

N∑

i=1

|〈wi, v(ai)〉n|,

≤

N∑

i=1

〈wi〉n〈v(ai)〉n,

≤ ||v||C0(Ω̄,Rn)

N∑

i=1

〈wi〉n,

≤ cN max
i=1,··· ,N

〈wi〉n ||v||Hm(Ω,Rn).

Moreover, the mapping a is a symmetric, bilinear form, continuous on Hm(Ω,Rn) ×Hm(Ω,Rn).
While symmetry and bilinearity are obvious, the continuity of a can be obtained by using the
equivalence of norms established above.
∀u, v ∈ Hm(Ω,Rn)×Hm(Ω,Rn),

|a(u, v)| = |

N∑

i=1

〈u(ai), v(ai)〉n + ǫ(u, v)m,Ω,Rn |,

≤ max(1, ǫ)

[
N∑

i=1

|〈u(ai), v(ai)〉n|+ |(u, v)m,Ω,Rn |

]
,

≤ max(1, ǫ)

[
N∑

i=1

〈u(ai)〉n〈v(ai)〉n + |u|m,Ω,Rn |v|m,Ω,Rn

]
,

≤ max(1, ǫ)||u||A,m,Ω,Rn ||v||A,m,Ω,Rn .

This last inequality proves that a is continuous on Hm(Ω,Rn)×Hm(Ω,Rn).

To finish with, we prove that a is Hm(Ω,Rn)-elliptic.

Let v belongs to Hm(Ω,Rn).

a(v, v) = 〈ρ(v)〉2N + ǫ|v|2m,Ω,Rn

≥ min (1, ǫ) ||v||2A,m,Ω,Rn .

Using once again the equivalence of norms established above, we deduce that a is Hm(Ω,Rn)-
elliptic.

8



The Lax-Milgram theorem enables us to conclude that the variational problem (9) has a unique
solution denoted by uǫ.

�

We now go back to the initial minimization problem (6). As previously stressed, this problem does
not admit a unique solution since the potential is defined up to a constant. We have the following
theorem.

Theorem 2.5. If σ1
ǫ and σ2

ǫ are two distinct solutions of problem (6) then:

∇σ1
ǫ = ∇σ2

ǫ = uǫ, (20)

where uǫ is the unique solution of problem (8).

Proof

The minimization problem (6) is equivalent to the problem stated by:

{
Search for σǫ ∈ Hm+1(Ω,R) such that

∀v ∈ Hm+1(Ω,R), 〈ρ(∇σǫ), ρ(∇v)〉N + ǫ(∇σǫ,∇v)m,Ω,Rn = 〈w, ρ(∇v)〉N .
(21)

Let σ1
ǫ and σ2

ǫ be two distinct solutions of problem (6) and therefore of problem (21).

σ1
ǫ verifies: ∀v ∈ Hm+1(Ω,R),

〈ρ(∇σ1
ǫ ), ρ(∇v)〉N + ǫ(∇σ1

ǫ ,∇v)m,Ω,Rn = 〈w, ρ(∇v)〉N .

Let us take v = σ2
ǫ − σ1

ǫ as test function then the following holds:

〈ρ(∇σ1
ǫ ), ρ

(
∇

(
σ2
ǫ − σ1

ǫ

))
〉N + ǫ

(
∇σ1

ǫ ,∇
(
σ2
ǫ − σ1

ǫ

))
m,Ω,Rn = 〈w, ρ

(
∇

(
σ2
ǫ − σ1

ǫ

))
〉N . (22)

In a same way, σ2
ǫ satisfies: ∀v ∈ Hm+1(Ω,R),

〈ρ(∇σ2
ǫ ), ρ(∇v)〉N + ǫ(∇σ2

ǫ ,∇v)m,Ω,Rn = 〈w, ρ(∇v)〉N .

Taking as test function v = σ2
ǫ − σ1

ǫ , we finally obtain:

〈ρ(∇σ2
ǫ ), ρ

(
∇

(
σ2
ǫ − σ1

ǫ

))
〉N + ǫ

(
∇σ2

ǫ ,∇
(
σ2
ǫ − σ1

ǫ

))
m,Ω,Rn = 〈w, ρ

(
∇

(
σ2
ǫ − σ1

ǫ

))
〉N . (23)

Substracting (23) to (22), it yields:

〈ρ
(
∇

(
σ2
ǫ − σ1

ǫ

))
〉2N + ǫ|∇

(
σ2
ǫ − σ1

ǫ

)
|2m,Ω,Rn = 0. (24)

Thus |∇
(
σ2
ǫ − σ1

ǫ

)
|m,Ω,Rn = 0.

Taking into account the connectedness of Ω, we deduce that σ2
ǫ − σ1

ǫ is a polynomial of degree m.
Consequently, ∇

(
σ2
ǫ − σ1

ǫ

)
∈ Pm−1(Ω,Rn). With the hypothesis of unisolvence, it follows that:

∇σ1
ǫ = ∇σ2

ǫ .
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To complete the proof, if σǫ is a solution of (6) (equivalent to the variational problem (21)) then
σǫ ∈ C

1(Ω̄,R) and ∇σǫ ∈ Hm(Ω,Rn) verifies (8) (equivalent to the variational problem (9)) and
from Th. 2.4, it comes:

∇σǫ = uǫ.

�

3. A result of convergence

In the following, we consider classical convergence hypotheses (see [5] for more details).

Let D be a subset of R+∗ for which 0 is an accumulation point.
For any d ∈ D, let Ad be a set of N = N(d) distinct points from Ω̄ that contains a Pm−1-unisolvent
subset. We assume that

sup
x∈Ω

δ(x,Ad) = d, (25)

where δ is the Euclidean distance in R
n. Thus d is the radius of the biggest sphere included in Ω

that contains no point from Ad (Hausdorff distance).
Also d is bounded and

lim
d→0

sup
x∈Ω

δ(x,Ad) = 0. (26)

For any d ∈ D, let us denote by ρd the mapping defined by:

ρd :





Hm(Ω,Rn)→ (Rn)N

v 7→ ρd(v) =
(
(v(a))a∈Ad

)T
.

Introducing the norm || · ||Ad,m,Ω,Rn defined by:

||f ||Ad,m,Ω,Rn =
[
〈ρd(f)〉2N + |f |2m,Ω,Rn

] 1
2 ,

as shown in Lemma 2.2, the norm || · ||Ad,m,Ω,Rn is equivalent to the norm || · ||m,Ω,Rn in Hm(Ω,Rn).

To prove the convergence result, we need the following lemma.

Lemma 3.1. Let A0 = {b01, b02, · · · , b0ℵ} be a fixed Pm−1-unisolvent subset of Ω̄ (in this case,
ℵ = dim Pm−1).
By hypothesis, 0 ∈ D̄ and (26) holds so:

∀j = 1, · · · ,ℵ, ∃
(
ad0j

)
d∈D

,
(
∀d ∈ D, ad0j ∈ Ad

)
and

(
b0j = lim

d→0
ad0j

)
. (27)
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For any d ∈ D, let Ad
0 be the set

{
ad01, · · · , a

d
0ℵ

}
and let || · ||Ad

0 ,m,Ω,Rn be the mapping defined by:

∀f ∈ Hm(Ω,Rn),

||f ||Ad
0 ,m,Ω,Rn =



ℵ∑

j=1

〈f(ad0j)〉
2
n + |f |2m,Ω,Rn




1
2

.

Then, there exists η > 0 such that for any d ≤ η, the set Ad
0 is Pm−1-unisolvent and || · ||Ad

0 ,m,Ω,Rn

is a norm on Hm(Ω,Rn) uniformly equivalent over D∩]0, η] to the norm || · ||m,Ω,Rn.

Theorem 3.2. Assume that there exists a function f̂ ∈ Hm(Ω,Rn) such that for any d ∈ D:

ρd(f̂) = w = wd (we recall that w = wd is the given data set - a gradient vector set, that is, the
input of our problem), and ε = ε(d) ∈]0, ε0], ε0 > 0. For any d ∈ D, we denote by ud

ε the unique
solution of problem (8). Then under the above assumptions we have:

lim
d→0

||ud
ε − f̂ ||m,Ω,Rn = 0. (28)

Proof

The proof is made using compactness arguments and norm equivalences and can be found in [25].

4. Datasets stemming from registration processes

In the following applications, the resulting vector field uǫ is such that T (ϕ) with ϕ the defor-
mation defined by ϕ = Id+uǫ is close to R in terms of intensities. In the first example, we consider
the problem of warping a black disk to the letter C both defined on the same image domain (Fig.
1). The input of our problem is the discrete vector field obtained at an intermediate step of the
registration process. The given set of vectors is regularly distributed on the domain Ω and natu-

Figure 1: On the left, the reference image R. On the right, the template image T .

rally, the cardinal number of this set (6084) is related to the size of the studied image domain. The
triangulation of the domain Ω is made up of 10 × 10 equal squares and so Mh = 4 × 112 = 484.
The given set of vectors {wi}i=1,··· ,N is depicted in Fig. 2. Also, this figure is complemented by
the plots of each component of the vector field, Fig. 3. The finite element space Vh is constructed
on the triangulation from the Bogner-Fox-Schmit rectangle of class C1 and the corresponding ap-
proximant uh

ǫ is computed. The results are presented in Fig. 4-6. We have used a mesh refinement
for the visualization: each square has been subdivided into 15 × 15 equal squares. The relative

11



Figure 2: Plot of the given vector field {wi}i=1,··· ,N (every two rows and columns). The blue diamond indicates
the point to which the vector is attached.
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Figure 3: On the left, plot of the first component of the vector field {wi}i=1,··· ,N . On the right, plot of the second
component.
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Figure 4: On the left, plot of the first component of the obtained vector field. On the right, plot of the second
component.
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Figure 5: Plot of the obtained vector field (every four rows and columns). The blue diamond indicates the point to
which the vector is attached.

Figure 6: Alternative way of visualization of the vector field as a mesh.
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error is equal to 0.0138484627.

The second example is related to a medical application which aims at mapping mouse gene data
to an atlas. The input of our problem is the discrete vector field obtained at the end of the regis-
tration process. The given set of vectors is regularly distributed on the domain Ω and naturally,
the cardinal number of this set (40000) is related to the size of the studied image domain. The
triangulation of the domain Ω is made up of 15 × 15 equal squares and so Mh = 4 × 162 = 1024.
The given set of vectors {wi}i=1,··· ,N is depicted in Fig. 7. Also, this figure is complemented by the
plots of each component of the vector field, Fig. 8. The finite element space Vh is constructed on
the triangulation from the Bogner-Fox-Schmit rectangle of class C1 and the corresponding approx-
imant uh

ǫ is computed. The results are presented in Fig. 9-11. We have used a mesh refinement for
the visualization: each square has been subdivided into 20× 20 equal squares. The relative error
is equal to 0.0285239131.

Figure 7: Plot of the given vector field {wi}i=1,··· ,N (every three rows and columns). The blue diamond indicates
the point to which the vector is attached.
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Figure 8: On the left, plot of the first component of the vector field {wi}i=1,··· ,N . On the right, plot of the second
component.
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Figure 9: On the left, plot of the first component of the obtained vector field. On the right, plot of the second
component.

Figure 10: Plot of the obtained vector field (every four rows and columns). The blue diamond indicates the point
to which the vector is attached.

Figure 11: Alternative way of visualization of the vector field as a mesh.
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The last proposed example is drawn from the registration of a disk to a triangle. The input of
our problem is the discrete vector field obtained at the end of the registration process. The given
set of vectors is regularly distributed on the domain Ω and naturally, the cardinal number of this
set (2700) is related to the size of the studied image domain. The triangulation of the domain Ω is
made up of 12× 12 rectangles and so Mh = 4 × 132 = 676. The given set of vectors {wi}i=1,··· ,N

is depicted in Fig. 12. Also, this figure is complemented by the plots of each component of the
vector field, Fig. 13. The finite element space Vh is constructed on the triangulation from the
Bogner-Fox-Schmit rectangle of class C1 and the corresponding approximant uh

ǫ is computed. The
results are presented in Fig. 14-16. We have used a mesh refinement for the visualization: each
rectangle has been subdivided into 15× 15 rectangles. The relative error is equal to 0.0378234465.

Figure 12: Plot of the given vector field {wi}i=1,··· ,N (every two rows and columns). The blue diamond indicates
the point to which the vector is attached.
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Figure 13: On the left, plot of the first component of the vector field {wi}i=1,··· ,N . On the right, plot of the second
component.

5. Conclusion

In this paper, we have addressed the issue of vector field approximation. The problem is phrased
as a functional minimization problem for which we have provided existence and uniqueness of the
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Figure 14: On the left, plot of the first component of the obtained vector field. On the right, plot of the second
component.

Figure 15: Plot of the obtained vector field (every three rows and columns). The blue diamond indicates the point
to which the vector is attached.

Figure 16: Alternative way of visualization of the vector field as a mesh.
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solution. A convergence result has been established when the radius of the biggest sphere included
in Ω that contains no point from Ad tends to zero. The discretization stage is made using the
finite element method and is complemented by numerical experiments both on synthetic datasets
and on real data stemming in particular from image registration processes. These illustrate the
efficiency of the method that globally captures a good approximant.
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