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Abstract

Reservoir engineers have to predict the behavior of a hydrocarbon reservoir by building a
simulation model which can reproduce as best as possible the data collected on the field. These
data fall into two types: static data, which are invariable in time, and dynamic data, which evolve
according to fluid motions in the reservoir. In this paper, we focus on the integration of dynamic
data related to 4D inverted seismic data. Such seismic data constitute an invaluable source of
information on fluid displacement and geology over extensive areas of the reservoir. However,
incorporating them in the reservoir model through a matching process is a challenging task.
Classical formulations of the objective function, which computes the misfit between observed
data and responses computed by the reservoir model, are not adapted to 4D inverted seismic data.
For example, a least square based mismatch is not representative of the visual difference between
two seismic images. In this paper, we define a new formulation of the objective function based
on simplification of seismic data in order to extract relevant information. This simplification
involves filtering and segmentation techniques, as well as image comparison methods rooted in
image analysis, such as the local modified Haussdorff distance. We investigate the efficiency of
such techniques in the context of seismic data, and illustrate their potential on a synthetic history
matching reservoir example.

Keywords: History matching, filtering, segmentation, image comparison

1. Introduction

History matching is an inverse problem where some parameters are modified in order to build a
reliable reservoir model which can reproduce the field observed data. These data fall into two
types: static data, which are invariable in time, and dynamic data, which evolve in time according
to fluids motion in the reservoir. Traditionally, dynamic data consist of production data collected
at wells. Nowadays, an other type of data called time-lapse seismic data can be acquired. These
data are generated by using vibrations to capture a two-dimensional picture of rock layers be-
neath the surface at the same localisation but at different times. These data constitute a highly
informative spatial information. The geologists interpret these data to make an estimated picture
which can reveal the hydrocarbon motion under the surface without drilling.

Incorporating such data in a reservoir model calls for a specific workflow, which consists of a
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Figure 1: Illustration of the history matching loop.

chain of successive modelling steps. First, a geological model is built and populated with petro-
physical properties such as porosity and permeability. Then, this model is upscaled to a reservoir
grid used to perform a fluid flow simulation by resolving an hyperbolic equation system [3]. The
result of these equations provides some simulated production data. Seismic attribute variations
(velocity and acoustic impedances) can be derived from the computed pressure and saturation
variations through a petro-elastic modeling. Typically, it involves linear equations called the
Gassmann equations [16] to model fluid effects and the Hertz-Mindlin equations [19] to model
pressure effects. Outputs of the petro-elastic model are then usually filtered for consistency with
the typical seismic bandwidth. The resulting seismic attribute variations are called the simu-
lated seismic attributes. Finally, comparison between simulated and observed data is performed
through the evaluation of a so-called objective function. This objective function measures the
misfit between available data and data simulated by a given reservoir model. Figure 1 summa-
rizes the workflow used to build a reservoir model.

The history matching process is thus an inverse problem where an optimisation method is used
to adjust the unknown parameters in order to reduce the value of the objective function. If the
formulation of the objective function is adapted, at the end of the process the simulated data
produced by the matched model will be close to the available data. Consequently, the definition
of the objective function is crucial for this workflow. Currently, the objective function is based
on a least square formulation, denoted by OF ;s and given by :

1
OF ;g = z(d —d'CNd - d%

where d is the reference data vector, d* is the simulated data vector and C is the covariance
matrix, which represents the measurement uncertainties. This formulation encompasses both
production and seismic data: as a result, all data are treated the same way. This formulation
proved to be efficient for production data, in the sense that it is a good characterization of the
error between simulated and real data. Moreover, during the history matching process, the ob-
jective function can be reduced significantly. On the contrary, this formulation is not suitable
for seismic data. Indeed, the nature of inverted seismic data is totally different from production
data. First, production data are few and are represented by curves, whereas seismic data are
millions of points in a 3D cube with spatial information. Second, while the production data col-
lected on the field are spoiled only by measurement errors, the available seismic attributes, such
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Figure 2: Least square formulation for seismic data. Reference (left), simulated (middle) and non-informative map
(right). The value of the objective function between the reference and the simulation is 341, while it is about 120
between the reference and the non-informative map.

as P-impedances, have two types of incertitudes. Besides measurement errors observed during
the seismic survey, additional uncertainty comes from the inversion process, which transforms
a seismic reflection data into a quantitative rock-property describing the reservoir. Therefore,
seismic data are more uncertain than production data: it is pointless to try to match exactly each
cell of a seimic impedance cube as is done with a least square comparison. Let us illustrate this
fact with a simple example. In Figure 2, we display three seismic maps corresponding to a steam
injection scenario in a heavy oil reservoir. The map on the left is the reference data to be matched
and shows the growth of a steam chamber. The first simulated map displayed in Figure 2, mid-
dle, is the one obtained with an initial model before history matching. The last image on the
left corresponds to a scenario without steam injection. Visually, the initial model is much closer
to the reference data than the model without injection. Indeed, in this case the steam chamber
is reproduced by simulation. However, the value of the objective function computed with the
least square formulation between the reference data and the data produced by the initial model is
higher (about 341) than the misfit calculated between the reference and the same model without
injection (about 120). This example clearly illustrates that the formulation with the least square
method doest not characterize the error between two seismic inverted data.

Recently, Tillier et al. [24] proposed to replace the least square formulation with a new measure
based on image analysis tools. First, reference and simulated seismic data are filtered and clus-
tered in order to extract the relevant information from the images. Then, these simplified images
are compared with a modified local Hausdorff distance in order to capture spatial differences.
Finally, the total error is computed as the euclidean norm of the Hausdorff distances. They show
that this procedure yields a misfit measure which is able to discriminate seismic maps very ef-
ficiently on several reservoir cases [24], [25]. However, this new formulation consists of very
elementary tools. The filtering step calls for a simple median filter, while the classification step
is performed with the k-means algorithm, which does not account for spatial correlations in the
image.

In this paper, we go one step further by proposing state-of-the-art methods for both the filtering
and clustering steps. On the one hand, we investigate the potential of the NL means filter, which
was shown to perform very well on several examples [6]. Its efficiency still has to be studied in
the context of seismic data. On the other hand, we focus on segmentation methods based on ac-
tive contours without edges [11] in order to replace the k-means algorithm. Since segmentation

3



methods use spatial information to detect shapes inside an image, they are expected to behave
better than simple clustering. In the context of 4D seismic maps, we will generally extract two
or three regions of interest. As a result, we extend the modified local Hausdorff distance to deal
with more than two levels, in order to compare images with three target areas. The paper is orga-
nized as follows. In section 2, we first describe the new objective function and study the impact
of the new NL-means filtering and segmentation steps on the procedure. Section 3 is dedicated
to a synthetic resevoir case. We illustrate the potential of this new formulation with respect to
the least square approach.

2. Objective function adapted to 4D seismic data: simplification and dissimilarities of im-
ages

In this paper, according to the meshing of the reservoir, we choose to divide the three di-

mensional seismic map into several two dimensional seismic slices and consider each slice as an
image.
Since a seismic map contains a lot of information, we propose to first extract the most relevant
information and focus on it. Then, the following step is to use an appropriate metric to measure
the error between the relevant information derived from real seismic attributes and the one de-
rived from the numerical outputs. The proposed formulation then consists of the three following
steps:

1. Simplify images to extract the relevant information by filtering and segmentation. This
process will be applied on both observed and simulated 4D seismic images.

2. Measure a local dissimilarity between the two simplified images.

3. Define a global dissimilarity to include it into the objective function.

In what follows, we will first study the NL-means filter [6] and a variational segmentation tech-
nique [9]. These tools will provide an efficient simplification step. Then, we adapt the local
modified Haussdorft distance which was already proposed for step 2 by Tillier et al. [24]. In
order to account for more than two regions of interest, we use the distance transform for real
values proposed by Molchanov and Teran [20]. Finally, step 3 will only consist in computing the
L2 norm of the local Haussdorff distances and will not be detailed here.

2.1. Simplification of seismic attributes with filtering and image segmentation

2.1.1. Preliminary step: Smoothing images.

As mentioned in the introduction, inverted seismic attributes are noisy and are also tainted by
uncertainty due to the inversion process. Moreover, simulated seismic maps can also exhibit
small patterns which are somewhat irrelevant and difficult to interpret. In order to prepare the
segmentation step, we thus propose to clean up the data by filtering them.

The aim of filtering methods is to find the best estimation of an original image from its noisy
version. A filtering method is based on the following decomposition:

u = Dy(u) + n(Dy, u) (D

where u is the noisy image, Dy (1) is the estimated image, n(Dy, u) is the estimated noise affecting
the data and / is a filtering parameter. Among the several available local methods, some are based
on local smoothing filters (arithmetic average filter, Gaussian filter, median filter or filter based
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on calculus of variations [23]). For example, the arithmetic average filter replaces the value of
one pixel by an arithmetic average of its neighboring cells or patch, the size of the patch being

the parameter of the filter. Although computationally efficient, this filter is known to have serious

difficulties at preserving contours. The use of the median filter, which replaces the value of each

pixel by the median average value of its patch, makes it possible to lessen this effect. However, a
large amount of noise can not be removed by the median filter. Local filters generally share this

drawback.

Other filters worth mentioning call for thresholding techniques (Wiener-Fourier filter, Yaroslavsky
local adaptive DCT-based filters [26] or wavelet thresholding method [13]). Recently, Buades et

al. [6] introduced an efficient smoothing method known as the Non Local means filter (NL means

filter). The main idea, first used by Efros and Leung [14] for texture synthesis, is to take advan-

tage of self-similarities in images by comparing local neighbourhoods across the whole image.

In the case of 4D inverted seismic images, this approach seems to be promising: seismic images

are not structured such as natural pictures and consist of geological patterns or fluid displace-

ment over large areas of the image. Coming back to equation (1), the NL means estimate of the

denoised image is given by

Syer exp(=E N u(y)

Dy(up) = UG
o7 expl— LU0

2

where U(x) and U(y) are the neighborhood windows, or patches, with respectively x and y as the
central pixel. The distance between two patches is:

1
W) -UOl = < Z |uCx + i) = u(y + D) 3)

do sl
=5

where s is the size of patches. In practice, the filtering parameter 7 depends on the noise variance
of the image. This variance is unknown for a real picture u, but a possible estimation is given by
the empirical variance

1 —
W) = ) =W

xel

where [ is the set of all pixels of # and u = I%I > er u(@).

In order to investigate the behavior of the NL means filter on seismic images, we propose to
compare it with the arithmetic average and the median filter, which were already studied in this
setting by Tillier et al. [24]. In both examples we set the filtering parameter & to 0.03 and the
size of the patch to 7.

The first illustrative example deals with the steam chamber reservoir model presented in
the introduction. The noisy image is depicted in Figure 4, top left. Results obtained with the
three filters are given in the top row. As expected, the moving average filter exhibits over-
smoothing, hence producing a blurred image, while the median filter makes it possible to preserve
the steam chamber contours. The NL means filter (Figure 4 - line 1 column 3) also keeps intact
the contours. In addition, we provide in Figure 4, bottom row, the noise removed by each filter,
i.e. the difference between the noisy image and its denoised version. The image structure can
be observed in the noise removed by the arithmetic average filter, this explains why a lot of
information is lost in this case. On the contrary, the median filter removes a very small amount
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Figure 3: Comparison of three filters on a steam chamber reservoir case. First row: reference and filtered maps. Second
row: noise removal. From left to right: reference, arithmetic average filter, median filter and NL means filter.

of noise: structural information is preserved, but small irrelevant patterns are not cut off. Between
these two unwanted behaviors, the NL means filter produces a very clean image, where almost
all the noise has been removed while preserving the steam chamber.

The second example focuses on a reservoir model encompassing several channels, i.e. ge-
ological structures which are preferential ways for fluid-flow displacement. Here, objects are
numerous and contours have to be identified correctly since connectivity between channels is
crucial for fluid displacements. On the top left part of Figure 4, the reference image consists
of a noisy version of a synthetic seismic image. The initial map, containing normalized values
between 0 and 1, has been corrupted with a Gaussian white noise with standard deviation equal
to 0.03. Red areas correspond to channels with gas displacement and blue areas to channels with
water displacement. Once again, the arithmetic average filter over-smooths the channel objects,
and a lot of structural and connexity information is lost, as can be seen in the removed noise.
Channels are less blurred with the median filter, but many details are removed in the red diagonal
part of the image. Finally, the noise removed by the NL means filter looks like a white noise and
the channel structure is very well preserved.

These reservoir examples clearly illustrate the large improvement provided by the NL means
filter in the seismic data framework. This is the reason why we propose to include it into our
objective function formulation. From a computational perspective, let us mention that Buades et
al. advise to compute the weighted sum in equation (2) only on a subset of the image called the
search window, in order to reduce CPU time. However, since relevant information (geological
structures, fluid displacements) are observed on extensive areas of the image, we suggest to make
this computation on the full image.
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Figure 4: Comparison of three filters on a channelized reservoir case. First row: reference and filtered maps. Second
row: noise removal. From left to right: reference, arithmetic average filter, median filter and NL means filter.

2.2. Segmentation

Seismic maps usually contain a lot of information. As mentioned before, in order to match
the simulated map with the real data, we want to simplify both of them to only keep the main
features. Consequently, the number of data will be significantly reduced to compare only the
relevant information.

This step has to be done automatically without the operation of the user. Indeed, the history
mathcing process usually involves hundreds of calls to the objective function during the itera-
tions of the optimization algorithm. Previously in [24], statistical clustering methods such as the
k-means algorithm have been tested for the simplification of the data. However, the proposed
methods only deal with the absolute value of seismic attributes and do not incorporate informa-
tion on structures and objects. Here, we propose to improve this clustering step by applying a
segmentation based on variational methods, which accounts for spatial correlations in the image.
In the image processing community, segmentation is the decomposition of an image into dif-
ferent areas of interest. For example, watersheds transform [5] is a basic tool of mathematical
morphology for image segmentation. It is based on an analogy comparing images to topographic
relief, where contours are defined as the water meeting points in a scenario of flood of the relief.
This method uses the gradient of the image and can not be relevant when the edges in images
are not well defined. Deformable models consist of algorithms which generate curves that move
within images to find object boundaries by minimizing an energy function. Among the existing
methods, active geodesic contours (Caselles et al. [7], [8]) and level set methods developed by
Osher and Sethian [22] are the reference ones. Generally, they use an edge detector based on the
gradient of the image.

In our case, even after applying a denoising method, the edges of the objects contained in the
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seismic map are not accurate. As a result, gradient-based methods are not well suited for seis-
mic maps. The active contours without edges proposed by Vese et al. ([9], [10], [11]) makes
it possible to circumvent this limitation. This model uses a stopping term based on Mumford-
Shah segmentation technique and has several advantages. First, it detects edges with and without
gradient and second, the initial curve does not necessarily have to start around the objects to be
detected and instead can be placed anywhere in the image. Then, it gives a partition of the image
into two regions, the first region formed by the set of the detected objects and the second one
consisting of the background. In our case, the objects to be detected can be for instance channels,
steam chambers or any fluid displacement identified in the reservoir.

For illustration purposes, we first recall the reduced case introduced by Mumford and Shah [21].
Given a function 1, which in the context of image segmentation is the image to be segmented,
we are looking for its optimal piecewise-constant function approximation. This problem is called
the “minimum partition problem”. Mumford and Shah [21] propose to solve it by minimizing
the following functional:

FMS(K,u)=Zf luo — i +;szd(H1 @)

Q;

where K = U;0Q); is a set of boundaries, u = ¢; inside each component Q; of Q\K and H' is the
one-dimensional Haussdorff measure. In two dimensions ! is the length of the boundaries K.
Generalization to three dimensions involves H?, the surface area of K. This energy is minimized

U
with respect to the variable c¢; by setting it to the mean of the image over Q;, i.e. ¢; = % where

Q); represents a region where u is constant, and 9€); is the boundary of this region.

In order to minimize this energy over the set of piecewise-constant functions, Zhao et al. [27]
propose to use a variational level-set approach. The unknown boundaries Q2 are represented by
zero levels of a Lipschitz continuous function. Such a function ¢ : Q — R is used to divide the
domain Q in two open regions, defined respectively by {x € Q, #(x) < 0} and {x € Q, ¢(x) > 0}.
The edges of the objects to be identified in the image are then defined by {x € Q,¢(x) = 0}.
Finally, the energy can be minimized with this following restriction:

{u(x) = c1H($(x)) + c2H(=¢(x))}

where H denotes the Heaviside function. Based on the Mumford-Shah equation, Chan and Vese
[9] proposed a new model for active contours involving minimization of the following energy:

F(ci,¢2,C) = /uf (uo(x,y) — ¢1)* dx dy
inside(C)

+ 4 f (uo(x,y) — c2)” dx dy
outside(C)
+ u Length(C) + v Area(C) (®))

where C is an evolving curve in Q, ¢ > 0 and v > 0 are regularization parameters and A; and A,
are the weights assigned to each region.

Let us illustrate this model on the steam chamber example, where the object to be identi-
fied is precisely the steam chamber appearing in the middle of the image. Note first that the
pixel values have to be positive in order to properly compute ¢; and c;, the means inside our

8



target regions (steam chamber and the background). Consequently, original seimsic attributes
are linearly mapped to grey level pixels between O and 255. In Figure 5, left, we recall the im-
age obtained after NL means filtering. The result obtained after segmentation is given in Figure
5, right. Here, the steam chamber is clearly identified and separated from the non-informative
background. Note also that the injection point at the bottom of the image is extracted.

.

Figure 5: Chan and Vese segmentation on the steam chamber reservoir case. Left: Seismic map after NL means filtering.
Right: Segmentation result (0: background, 1: detected object) with A1 = 1, Ay =4, u = 4500, v = 0.

In this case, segmentation performs very well and makes it possible to extract the relevant
information, i.e. the steam chamber growth. However, in general, 4D seismic images exhibit
three types of impedance variations:

e regions with negative variations, which correspond to gas saturation or pressure increase
(e.g. steam chamber in previous example);

e regions with positive variations, involving pressure decrease or water saturation increase;
e regions with almost zero variation, where there is no fluid displacement.

Direct application of the previous segmentation methodology will then fail at retrieving these
three types of relevant regions. In order to represent more that two regions, a multiphase level-set
was introduced by Chan and Vese [10], where several functions ¢; are used. Another general-
ization was proposed by Vese and Chung [11], where they use the idea of multilayer techniques
for modeling epitaxial growth from [17] in order to represent several regions with fewer level-
set functions. Here, we focus on this method and consider only one level-set function with an
additional level. This model, which now divides the image into three regions, hinges upon the
minimization of the following energy:

F(c1, 2,63, 4) = fg | uo(x) — ¢1 I* H(=¢(x)) dx
+ fg | 10(x) — ¢ I H@(x)H(I  ¢) dx
. fg | to() — 3 [2 H(@(x) — ) dx

+u

f | VH(@$) | + f | VH($(x) D |] ©)
Q Q
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where c;, ¢, and c3 are the means over each region and u > 0 is a regularization parameter.
fQ | VH(¢) | and fQ | VH(¢(x) — I) | represent the length of the boundary between R;,R, and R»,
R3, respectively. The segmented image is finally given by:

u(x) = ciH(=¢(x)) + c2 H(¢p(x))H(l — ¢(x)) + c3H(p(x) - ]).

In order to write the associate Euler Lagrange equation and to minimize this energy with respect
to the level-set function ¢, the Heaviside function is approximated with a regularized version
H, € C'. According to [9], we retain the following regularization of H:

H.(x) = %(1 + %atan(g))

1 €

and its derivative is given by:

W =He= o

Minimizing the regularized energy with respect to ¢, ci, ¢, and c3 yields the associated Euler-
Lagrange equations, where the descent direction is parameterized by an artificial time 7 > O:

$(0, x) =¢o(x)
_ J, o () He(— (2, x)) dx

ci(t
Joy H(=0(t, x)) dx
er(f) = Joy w0 H(p(1, ) H(L = (¢, x)) dx
o, H(g(t, ))H(L = ¢(1, x)) dx
ity 2 OO )~ ) dx
Jo, He(9(1, x) — D dx
C;_(f =6€(¢)[' w=af=lu-cf He(1—¢)+,udiV(I 52 |)]

+6c(— 1) [H€(¢) lug—ca P = lug—c3 I +/"di"(| zz |)]

(0e(9) +| %;‘p' “DVé 5 _ 0 onsQ, 1> 0. )

Here, 7 is the exterior unit normal to 6Q. This energy is not convex; there is no guaranty to find
the optimal minimizer.

With this new formulation for segmentation on three regions, we can now investigate its ef-
ficiency on the channelized reservoir already presented. In this example, positive variations
correspond to gas displacement and negative ones to water movement. As in the steam cham-
ber example, some pre-treatment of the data is required for efficient computation of the means
over regions. The linear mapping proposed before is no longer suited, as positive and negative
variations do not share the same order of magnitude. Here, a fair balance between positive and
negative regions is achieved through histogram equalization [1]: original data are transformed so
as to be distributed as close as possible to the uniform distribution on [0, 255]. The seismic image
after NL means filtering and histogram equalization is given in Figure 6, left. The corresponding
image after three-class segmentation is depicted in Figure 6, right. The regions identified by seg-
mentation perfectly correspond to the expected areas, meaning that all fluid displacements are
correctly extracted from the orginal seismic map.
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Figure 6: Multilayer level set segmentation on the channelized reservoir case. Left: Seismic map after NL means
filtering and histogram equalization. Right: Segmentation result (0: first detected region, 1: second detected region, 2:
background).

2.3. Image comparison and computation of the objective function

In the context of history matching, the previous segmentation step yields two segmented
images in two or three regions: one for the reference 4D inverted seismic image and one for the
image simulated by the reservoir model. Now, the goal is to establish the differences between
these two simplified images and compute an objective function characterizing their mismatch. In
a previous work [24], a computation of a Local Dissimilarity Map (LDM) has been efficiently
used to compare two binary images. We extend here this formulation to three classes. In this
section, we first recall the main ingredients to compute the LDM between two binary images.
Then, we extend this method to compute the difference between images encompassing three
classes. A global dissimilarities index is finally computed to obtain the value of the objective
function between two images.

2.3.1. Local Dissimilarity Map

The Haussdorff distance is known to have an efficient application in image matching [12] or
face recognition [18]. Given two non-empty sets of points A = (ay, ...,a,) € R%,B = (by,...by) €
RR? and an underlying distance d, the HausdorfF distance between A and B is given by

Dy(A,B) = max(h(A, B), i(B, A))

where h(A, B) = max,ca (minyep d(a, b)). In image processing applications, this distance can be
viewed as a dissimilarity measure between two binary images A and B. The Hausdorff distance
has good properties, but it is quite sensitive to noise since it accounts for the most distant points
in A and B. Several modifications of the Hausdorff distance have been proposed to improve it.
The interested reader is referred to Zhao [28] for some overview of these modified distances.
However, all of them are global and do not take into account local dissimilarities. To consider
such a local aspect, Baudrier et al. [4] introduced the local dissimilarity map (LDM), which
compares the two images locally through a sliding window centered on each considered pixel.
The authors also propose a criterion to determine, for each pixel, the optimal size of the window.
Practically, the LDM has an efficient formulation through the so-called distance transform. The
distance transform of a given set associates to every point its distance to the nearest point in
this set. More precisely, for binary images, the distance transform at one pixel is the distance
between this pixel and the nearest black pixel (if the white color is the background and the black
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color is the information of the binary image). Any metric could be used to measure the distance
between two points, the most classical choice being the Euclidean distance. Using this distance
transform, the LDM between two binary images A and B, at a pixel x, is given by

LDMy p(x) =| A(x) — B(x) | max(dts(x), dtz(x)) ®)

where dt4(x) and dtp(x) are the distance transform of image A and B at pixel x, respectively. For
binary images, this expression rewrites as follows:

LDM, 5(x) = A(x)dts(x) + B(x)dtg(x).

The definition of the LDM (8) can be directly applied to grey level images. However, while the
definition of the distance transform is unique for binary images, this is no longer the case when
dealing with grey level ones. Extensions of the distance transform for grey images are either
achieved through an extended concept of distance between pixels, or with a new background
definition. The grey-weighted distance transform and the weighted distance transform on curve
space are two examples of such distance transform extending distances between pixels. Both
distances are studied by Fouard and Gedda [15]. Besides, an approach based on an extension of
the concept of background is proposed by Arlandis [2]. Here, we focus on the distance transform
for real-valued functions proposed by Molchanov and Teran [20]. The main idea is to consider
a grey level image I defined on R? as a binary volume defined on R? x R. Introduction of this
additional dimension leads to the definition of the hypograph of image I given by:

hypol = {(x,7) € R*, I(x) > 1}.

This set consists of binary images obtained with all possible thresholds applied to image I. The
original distance transform is then computed for each binary image included in hypo I, and the
new distance transform is finally given by their weighted sum over the hypograph. For instance, if
I encompasses grey level pixels in [0, 1], the v-weighted distance transform is defined as follows:

sup /
(_l(x,I)zf ' d(x, I,)v(dt)

nfl

where v is a finite measure on [0,1] and 7, = {x € R%,1 > t}. Similarly, if T is discretized on
[0,255] and has values between a and b, the v-weighted distance transform becomes:

b
- 1
d(x, 1) = 755 Z d(x, 7w,

for some weights w;. In both formulations above, d is a distance between a point and a set,
classically given by d(x, F) = inf{p(x,y),y € F} for some point x and a set F. Here, p is chosen
as the Euclidean distance, but any distance could be used. This new distance transform is then
used in equation (8) to compute the LDM between the simulated and the reference segmented
images.

Finally, the LDM is summarized in a scalar objective function through L2-norm averaging.

2.4. Summary

Finally, the new formulation adapted to 4D seismic data consists of the following steps:
12



1. Apply the NL means filter on real seismic attributes and the ones derived from the re-
sponses of the given reservoir model.
2. Extract relevant information from both maps using

o Chan and Vese segmentation method [9] for two regions
e Vese and Chung segmentation method [11] for three regions

Note that preliminary transformation of the data may be needed before segmentation (lin-
ear mapping, histogram equalization).

3. Compute the LDM between the segmented images with the appropriate distance transform
(depending on the number of classes).

4. The final scalar objective function is obtained by computing the L2 norm of the LDM.

3. Application on an history matching case

4. Conclusion

13
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