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Abstract

We study a spline-based approximation of vector fields in the conservative case. This problem
appears for instance when approximating current or wind velocity fields, the data deriving in those
cases from a potential (pressure for the wind, etc..). In the modelling, we introduce a minimization
problem on an Hilbert space for which the existence and uniqueness of the solution are provided.
A convergence result in the introduced Sobolev space is established using norm equivalence and
compactness arguments, as well as an approximation error estimate of the involved smoothing
Dm-splines.
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1. Introduction

The problem of vector field approximation emerges in a wide range of fields such as: motion
control, computer vision, geometrical analysis, geometrical design, analysis of acoustic and/or
electromagnetic waves, as well as in geophysics, medical imaging, fluid mechanics and so on... Many
different approaches have been introduced to solve each specific problem occuring in the above fields
of investigation. One can mention for instance: finite element approximation (see Dzhabrailov et al.
[14]), PDE-based methods (see Amodei and Benbourhim [1]), spline and Rational Basis Function
approximations (see Awanou and Lai [6], Dodu and Rabut [11], Benbourhim and Bouhamidi [7]-[8],
Ettl-Lowitsch et al. [15, 17, 18], Zhou et al. [25]...).

The originality of this work consists:

• in considering that the vector field derives from a potential (conservative vector field): it
occurs for instance in meteorology (winds derive from temperature potentials), oceanography
(currents derive from pression potentials), image processing...
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• of a rigorous study of existence-uniqueness of the solution of the problem phrased as an
energy minimization,

• in establishing a convergence result (while many approaches only give algorithms without
mathematical study) and providing an approximation error estimate.

From the best of our knowledge, our approach is the first one of this kind. Moreover, we propose
a method easy to implement and parallelize, using classical tools like the least-square method and
the finite element method (for the discretization).

More precisely, in this work, we do not want to compute a potential that could generate the
vector field data. We only want to get a global approximation of the vector field dataset on a
bounded domain, taking into account in the modelling that this approximation derives from a
potential. Furthermore, contrary to interpolation methods, we prefer to fit the vector field dataset
in the case of realistic data (when the number of vectors is large or when the data are corrupted
by noise). To achieve this, we introduce a minimization problem defined as a regularized least-
square problem formulated on a Sobolev space of potentials (see subsection 2.1). Obviously, this
problem has an infinite number of solutions, but we derive from it a problem expressed in terms
of the gradient vectors. We prove that the associated problem in terms of vectors has a unique
solution which is the corresponding approximation of the vector field dataset (subsection 2.2). In
subsection 2.3, we give a convergence result when the number of vectors increases to infinity. In
Section 3, we give the discretization complemented by an approximation error estimate of the
involved smoothing Dm-splines. We then give numerical results in Section 4.

Let Ω be a non-empty connected bounded open subset of R
n with Lipschitz boundary. Let

A =
{
ai

}
i=1,··· ,N

be a set of N points of Ω̄ which contains a Pm−1-unisolvent subset. Let also{
wi

}
i=1,··· ,N

be a set of N vectors of R
n that corresponds to the vector field dataset.

We aim at finding a function Φ : Ω̄ → R smooth enough such that for i = 1, · · · , N ,

∇Φ(ai) ≃ wi ∈ R
n.

Let us denote by ρ the operator defined by:

ρ :

{
Hm(Ω, Rn) → (Rn)N

v 7→ ρ(v) = (v(a1), · · · , v(aN ))T .
(1)

Let us assume that m > n
2 so that the following Sobolev ’s embeddings hold:

Hm(Ω, Rn) 	 C0(Ω̄, Rn) (2)

Hm+1(Ω, R) 	 C1(Ω̄, R) (3)

One sets ∀ξ ∈ (Rn)N and ∀η ∈ (Rn)N ,

〈ξ, η〉N =

N∑

i=1

〈ξi, ηi〉n,

where 〈·, ·〉n denotes the Euclidean scalar product in R
n and ∀ξ ∈ (Rn)N , 〈ξ〉N = 〈ξ, ξ〉

1

2

N .
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2. Modelling

2.1. The fitting model

We first introduce a regularized least-square problem defined on a space of potentials (real-
valued functions) to fit the vector field dataset. For any ε > 0, we introduce the functional Jε

defined as follows:

Jε :

{
Hm+1(Ω, R) → R

v 7→ 〈ρ(∇v) − w〉2N + ε|v|2m+1,Ω,R,
(4)

where w = (w1, · · · , wN )T ∈ (Rn)
N

is the vector field dataset and | · |m+1,Ω,R, the semi-norm on
Hm+1(Ω, R).

This kind of approach is related to the smoothing Dm−spline for surface approximation introduced
by Arcangéli [4] (see also Duchon [12] for a general introduction or Gout [16], and López de Silanes
and Arcangéli [19, 20] for convergence results). We consider the following fitting problem using
potentials:

{
Search for σε ∈ Hm+1(Ω, R) such that

∀v ∈ Hm+1(Ω, R), Jε(σε) ≤ Jε(v),
(5)

where Jε is defined in (4). Obviously, the minimization problem (5) does not have a unique
solution, the potential function σε being defined up to a constant.

Remark 2.1. An alternative model could be introduced to circumvent the lack of uniqueness of the
potential function by including a few interpolation constraints in the modelling. Indeed, it would
guarantee uniqueness of the solution expressed in terms of the potential function. In this case,
the problem is phrased as a functional minimization problem on a convex subset K (or a vector
space if we retain only some positions for which the potential function is zero) of the Hilbert space
Hm+1(Ω, R) as follows: {

Search for σǫ ∈ K such that
∀v ∈ K, Jǫ(σǫ) ≤ Jǫ(v),

with K =
{
v ∈ Hm+1(Ω, R), ∀i ∈ {1, · · · ,M} , v(bi) = βi

}
and βi given at bi for all i ∈ {1, · · · ,M}.

Existence and uniqueness of the solution are obtained by applying Stampacchia’s theorem (after
rewriting the functional to be minimized and using norm equivalence arguments resulting from
Nec̆as theorem application). The introduction of Lagrange’s multipliers allows to obtain the varia-
tional formulation of the problem on the whole space Hm+1(Ω, R) instead of a variational inequality.
The main hindrance of this modelling comes from the fact that σǫ ∈ Hm+1(Ω, R). In practice m = 2
in order to have H3(Ω, R) 	 C1(Ω̄, R), yielding σǫ ∈ H3(Ω, R). For instance, if we consider as
generic finite element the C2 Bogner-Fox-Schmit element, there are 9 basis functions per node,
leading to block matrices of size 81 × 81 to compute the stiffness matrix, which can turn out to be
tricky from a numerical viewpoint. The idea of reformulating the problem in terms of the gradient
vector field itself avoids this issue.
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So, in order to overcome the lack of uniqueness, we introduce the following problem expressed
in terms of the gradients of the potentials: as ε is a positive arbitrary parameter and as |.|m+1,Ω,R

and |∇.|m,Ω,Rn are equivalent in Hm+1(Ω, R), we derive from problem (5), the following problem
of minimization:

{
Search for σε ∈ Hm+1(Ω, R) such that ∀v ∈ Hm+1(Ω, R),
〈ρ(∇σε) − w〉2N + ε|∇σε|2m,Ω,Rn ≤ 〈ρ(∇v) − w〉2N + ε|∇v|2m,Ω,Rn .

(6)

This formulation leads to the following problem associated to problem (6). To state this new
problem, we first define the following functional denoted by Fε:

Fε :

{
Hm(Ω, Rn) → R

f 7→ 〈ρ(f) − w〉2N + ε|f |2m,Ω,Rn ,
(7)

and we consider the following problem stated by:

{
Search for uε ∈ Hm(Ω, Rn) such that

∀v ∈ Hm(Ω, Rn), Fε(uε) ≤ Fε(v).
(8)

This formulation is motivated by the following theorem (in the proof, we use the connectedness of
Ω and the unisolvence property):

Theorem 2.2. If σ1
ε and σ2

ε are two distinct solutions of problem (6) then:

∇σ1
ε = ∇σ2

ε = uε, (9)

where uε is the unique solution of problem (8).

2.2. Existence and uniqueness results

We first give the following variational problem (which is equivalent to (8)):

{
Search for uε ∈ Hm(Ω, Rn) such that

∀v ∈ Hm(Ω, Rn), 〈ρ(uε), ρ(v)〉N + ε(uε, v)m,Ω,Rn = 〈w, ρ(v)〉N .
(10)

We now give a lemma that will be of interest in the following.

Lemma 2.3. The mapping defined by:

|| · ||A,m,Ω,Rn :





Hm(Ω, Rn) → R

f 7→ ||f ||A,m,Ω,Rn =

(
〈ρ(f)〉2N + |f |2m,Ω,Rn

) 1

2

=

( N∑

i=1

〈f(ai)〉2n + |f |2m,Ω,Rn

) 1

2 (11)

is a Hilbert norm equivalent to the norm ||f ||m,Ω,Rn in Hm(Ω, Rn) (Hm(Ω, Rn) is endowed with
the usual norm denoted by || · ||m,Ω,Rn and the associated semi-norm denoted by | · |m,Ω,Rn).
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Proof .
Let us take f such that ||f ||A,m,Ω,Rn = 0. It implies that |f |m,Ω,Rn = 0 and taking into account
the connectedness of Ω, it yields f ∈ Pm−1(Ω, Rn).
As the set A contains a Pm−1-unisolvent subset, we deduce that f ≡ 0.
It is now clear that || · ||A,m,Ω,Rn is a norm on Hm(Ω, Rn) associated with a scalar product.
We now prove the equivalence of the norm || · ||A,m,Ω,Rn with the norm || · ||m,Ω,Rn . First, we have:
∀f ∈ Hm(Ω, Rn), ∀ai ∈ A, i = 1, · · · , N ,

〈f(ai)〉n ≤ ||f ||C0(Ω̄,Rn) ≤ c||f ||Hm(Ω,Rn) (Sobolev′s embedding),

so

||f ||A,m,Ω,Rn ≤ (1 + c2N)
1

2 ||f ||m,Ω,Rn .

Let us take k = m and p = 2 in Nec̆as’ theorem (Chapter 2, section 7.1 from [23]) and let us take
ρ as functional fi. Then, using the property of unisolvence of the set A, we obtain from Nec̆as’
theorem that there exists a positive constant c1 such that:

||f ||m,Ω,Rn ≤ 1

c1

[
|f |2m,Ω,Rn +

N∑

i=1

〈f(ai)〉2n

] 1

2

=
1

c1
||f ||A,m,Ω,Rn ,

which concludes the proof.
�

Using Lax-Milgram lemma and norm equivalence results, we can now establish the following the-
orem:

Theorem 2.4. Variational problem (10) admits a unique solution.

2.3. Convergence result

In the following, we consider classical convergence hypotheses (see [4] for more details).

Let D be a subset of R
+∗ for which 0 is an accumulation point.

For any d ∈ D, let Ad be a set of N = N(d) distinct points from Ω̄ that contains a Pm−1-unisolvent
subset. We assume that

sup
x∈Ω

δ(x,Ad) = d, (12)

where δ is the Euclidean distance in R
n. Thus d is the radius of the biggest sphere included in Ω

that contains no point from Ad (Hausdorff distance).
Also d is bounded and

lim
d→0

sup
x∈Ω

δ(x,Ad) = 0. (13)
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For any d ∈ D, let us denote by ρd the mapping defined by:

ρd :





Hm(Ω, Rn) → (Rn)N

v 7→ ρd(v) =
(
(v(a))a∈Ad

)T
.

Introducing the norm || · ||Ad,m,Ω,Rn defined by:

||f ||Ad,m,Ω,Rn =
[
〈ρd(f)〉2N + |f |2m,Ω,Rn

] 1

2 ,

as shown in Lemma 2.3, the norm || · ||Ad,m,Ω,Rn is equivalent to the norm || · ||m,Ω,Rn in Hm(Ω, Rn).

To prove the convergence result, we need the following lemma.

Lemma 2.5. Let A0 = {b01, b02, · · · , b0ℵ} be a fixed Pm−1-unisolvent subset of Ω̄ (in this case,
ℵ = dim Pm−1).
By hypothesis, 0 ∈ D̄ and (13) holds so:

∀j = 1, · · · ,ℵ, ∃
(
ad
0j

)
d∈D

,
(
∀d ∈ D, ad

0j ∈ Ad
)

and

(
b0j = lim

d→0
ad
0j

)
. (14)

For any d ∈ D, let Ad
0 be the set

{
ad
01, · · · , ad

0ℵ

}
and let || · ||Ad

0
,m,Ω,Rn be the mapping defined by:

∀f ∈ Hm(Ω, Rn),

||f ||Ad
0
,m,Ω,Rn =




ℵ∑

j=1

〈f(ad
0j)〉2n + |f |2m,Ω,Rn




1

2

.

Then, there exists η > 0 such that for any d ≤ η, the set Ad
0 is Pm−1-unisolvent and || · ||Ad

0
,m,Ω,Rn

is a norm on Hm(Ω, Rn) uniformly equivalent over D∩]0, η] to the norm || · ||m,Ω,Rn .

Proof

The Sobolev’s embedding gives that:

∃C1 > 0, ∀d ∈ D, ∀f ∈ Hm(Ω, Rn), ||f ||Ad
0
,m,Ω,Rn ≤ C1||f ||m,Ω,Rn .

The constant C1 is independent of d and depends on ℵ which is the dimension of Pm−1.

Let us now find a constant C2 independent of d such that the inequality ||f ||m,Ω,Rn ≤ C2||f ||Ad
0
,m,Ω,Rn

holds.

For f ∈ Hm(Ω, Rn),

1

2

ℵ∑

j=1

〈f (b0j)〉2n = 1
2

ℵ∑

j=1

〈f (b0j) − f
(
ad
0j

)
+ f

(
ad
0j

)
〉2n,

≤
ℵ∑

j=1

〈f (b0j) − f
(
ad
0j

)
〉2n +

ℵ∑

j=1

〈f
(
ad
0j

)
〉2n. (15)
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The open subset Ω having a Lipschitz-continuous boundary and m being such that m > n
2 , the

space Hm(Ω, Rn) satisfies the Sobolev’s Hölder embedding theorem (continuous injection), namely:

∃λ ∈]0, 1], Hm(Ω, Rn) 	 C0,λ(Ω̄, Rn).

Thus f ∈ C0,λ(Ω̄, Rn) and ∃C > 0, ∀j = 1, · · · ,ℵ, ∀d ∈ D,

〈f (b0j) − f
(
ad
0j

)
〉2n ≤ ||f ||2C0,λ(Ω̄,Rn)〈b0j − ad

0j〉2λ
n ≤ C2||f ||2m,Ω,Rn〈b0j − ad

0j〉2λ
n . (16)

Besides, from (14) it comes: ∀j = 1, · · · ,ℵ,

∀βj > 0, ∃ηβj
> 0, ∀d ∈ D,

(
d ≤ ηβj

⇒ 〈ad
0j − b0j〉n ≤ βj

)
.

Then ∀j = 1, · · · ,ℵ,

∀βj > 0, ∃ηβj
> 0, ∀d ∈ D,

(
d ≤ ηβj

⇒ 〈f (b0j) − f
(
ad
0j

)
〉2n ≤ C2||f ||2m,Ω,Rnβ2λ

j

)
.

Let β > 0 and let us take βj = β, ∀j = 1, · · · ,ℵ and η = min (ηβ1
, · · · , ηβℵ

) then

∀d ∈ D,


d ≤ η ⇒

ℵ∑

j=1

〈f (b0j) − f
(
ad
0j

)
〉2n ≤ C2β2λℵ||f ||2m,Ω,Rn


 .

This implies that:

∀β > 0, ∃η > 0,∀d ∈ D,∀f ∈ Hm(Ω, Rn),
d ≤ η ⇒ 1

2

ℵ∑

j=1

〈f (b0j)〉2n + |f |2m,Ω,Rn − C2β2λℵ||f ||2m,Ω,Rn ≤ ||f ||2Ad
0
,m,Ω,Rn


 .

As previously shown, the mapping f ∈ Hm(Ω, Rn) 7→


 1

2

ℵ∑

j=1

〈f (b0j)〉2n + |f |2m,Ω,Rn




1

2

is a norm on

Hm(Ω, Rn) equivalent to the norm || · ||m,Ω,Rn so:

∀β > 0, ∃η > 0,∀d ∈ D,∀f ∈ Hm(Ω, Rn),(
d ≤ η ⇒

(
C ′2 − C2β2λℵ

)
||f ||2m,Ω,Rn ≤ ||f ||2Ad

0
,m,Ω,Rn

)
.

By choosing β adequately, the norm equivalence is obtained.
�

Theorem 2.6. Assume that there exists a function f̂ ∈ Hm(Ω, Rn) such that for any d ∈ D:

ρd(f̂) = w = wd (we recall that w = wd is the given data set - a gradient vector set, that is, the
input of our problem), and ε = ε(d) ∈]0, ε0], ε0 > 0. For any d ∈ D, we denote by ud

ε the unique
solution of problem (8). Then under the above assumptions we have:

lim
d→0

||ud
ε − f̂ ||m,Ω,Rn = 0. (17)
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Proof 2.5.

The proof is divided into four steps that we detail hereafter.

First step: We start by proving that the sequence
(
ud

ε

)
d∈D∩]0,η]
ε∈]0,ε0]

is bounded in Hm(Ω, Rn) so that

one can extract a subsequence
(
udl

εl

)
l∈N

with lim
l→+∞

dl = 0 (since 0 is an accumulation point of D)

and εl ∈]0, ε0], ∀l ∈ N (-we assume that ε = ε(d), so εl = ε(dl)-) that weakly converges to an
element of Hm(Ω, Rn) denoted by f∗.

Second step: In the second step of the proof, we prove that f∗ = f̂ .

Third step: Then we aim at proving that the sequence
(
udl

εl

)
l∈N

strongly converges to f̂ in Hm(Ω, Rn).
The Rellich-Kondrašov compact embedding theorem gives that:

∀r, r′ ∈ R, r > r′, Hr(Ω, Rn)⊂Hr′

(Ω, Rn) (compact injection).

In our case, it means that the sequence
(
udl

εl

)
l∈N

that weakly converges to f̂ in Hm(Ω, Rn), strongly

converges to f̂ in Hm−1(Ω, Rn).
Therefore, as

||udl
εl
− f̂ ||2m,Ω,Rn = ||udl

εl
− f̂ ||2m−1,Ω,Rn + |udl

εl
− f̂ |2m,Ω,Rn ,

we just need to prove that

lim
l→∞

|udl
εl
− f̂ |m,Ω,Rn = 0.

One has:

|udl
εl
− f̂ |2m,Ω,Rn = |udl

εl
|2m,Ω,Rn + |f̂ |2m,Ω,Rn − 2(udl

εl
, f̂)m,Ω,Rn ,

|udl
εl
− f̂ |2m,Ω,Rn ≤ 2|f̂ |2m,Ω,Rn − 2(udl

εl
, f̂)m,Ω,Rn ,

∀α ∈ N
n, |α| = m, ∂αudl

εl
weakly converges to ∂αf̂ in L2(Ω, Rn). So taking as test function f̂ , it

follows that lim
l→+∞

(udl
εl

, f̂)m,Ω,Rn = |f̂ |2m,Ω,Rn . Consequently,

lim
l→∞

|udl
εl
− f̂ |m,Ω,Rn = 0 (18)

and finally

lim
l→∞

||udl
εl
− f̂ ||m,Ω,Rn = 0. (19)

Fourth step: Let us assume that ||ud
ε − f ||m,Ω,Rn does not tend to 0 when d tends to 0.

It means that there exists a real number α > 0 and two sequences (dk)k∈N and (εk)k∈N such that
dk→0 when k → +∞ and εk = ε(dk) and

∀k ∈ N, ||udk
εk

− f̂ ||m,Ω,Rn > α. (20)

8



Following the same steps as previously done, there exists a subsequence of (udk
εk

)k∈N that strongly

converges to f̂ in Hm(Ω, Rn). This last point is in contradiction with (20).
�

3. Discretization

3.1. Introduction of the notations

In this part, we give a discretization of the variational problem (10). We choose here a finite
element space and we need the following notations.

• ∆ is the dimension of Pm−1, space of n-variable polynomials with total degree less than
m − 1.

• Let H be a bounded subset of R
∗
+ for which 0 is an accumulation point.

• Let Ω̃ be a bounded polyhedral open subset of R
n containing Ω.

• Let m′ be an integer such that m′ > m. We recall that m > n
2 .

• For any h ∈ H, let T̃h be a triangulation of ¯̃Ω by n-simplices or n-rectangles K with diameter

hK ≤ h and let
(
Ṽh

)n

be a finite-element-type space constructed on T̃h, finite-dimensional

subspace of Hm(Ω̃, Rn). We assume that the family
(
T̃h

)

h∈H
is regular.

• ∀h ∈ H, let Ωh be the open set defined as the interior of the union of elements K ∈ T̃h such
that K ∩ Ω̃ 6= ∅. It can be seen that ∀h ∈ H, Ω ⊂ Ωh ⊂ Ω̃ and lim

h→0
mes (Ωh\Ω) = 0.

• For any h ∈ H, let (Vh)
n

be the space of restrictions to Ωh of functions in
(
Ṽh

)n

. It is a

finite dimensional subspace of Hm(Ωh, Rn) with dimension M = M(h).

We consider the variational formulation:




Find ud
ε h ∈ (Vh)

n
such that

∀vh ∈ (Vh)
n

,〈
ρd

(
ud

ε h

)
, ρd (vh)

〉
N=N(d)

+ ε
(
ud

ε h, vh

)
m,Ωh,Rn =

〈
wd, ρd (vh)

〉
N

,
(21)

which is a discretisation of problem (10) and which admits a unique solution ud
ε h. We aim to

establish an error estimate for the solution ud
ε h of problem (10). We mainly use results from

Duchon ([13]) and Apprato and Lopez de Silanes ([21]). We first recall two results from Duchon
([13]). For any t ∈ R

n, and for R > 0, we denote by B (t, R) the closed ball centered at t and with
radius R. We have the following propositions (see Duchon [13] for the proofs):

Proposition 3.1. Let Ω be an open set of R
n with Lipschitz boundary. Then there exist constants

M > 1,M1 > 1 and λ0 > 0 such that, for any λ ∈ ]0, λ0], there exists Tλ ⊂ Ω such that:




i) ∀t ∈ Tλ, B (t, λ) ⊂ Ω
ii) Ω ⊂ ∪

t∈Tλ

B (t,Mλ)

iii)
∑

t∈Tλ

1B(t,Mλ) ≤ M1

9



where 1E is the characteristic function of the set E. �

Proposition 3.2. There exist R > 0 (depending on n and m) and (for any M ≥ 1 and any integer
l such that l ≤ m) C > 0 (depending on M , m, n and l) satisfying: for any d > 0 and any t ∈ R

n,
the ball B (t, Rd) contains ∆ balls β1, β2, ..., β∆ of radius d such that:

|u|l,B(t,MRd) ≤ Cdm−l |u|m,B(t,MRd)

for all u ∈ Hm(B (t,MRd)) that vanishes at at least one point of each ball βi, i ∈ {1, · · · ,∆}. �

The proof shows that the ball B(t, Rd) results from the mapping of a ball B(â, R) by an affine
transformation.

Let
{
γ0
1 , γ0

2 , · · · , γ0
∆

}
be a Pm−1-unisolvent set. The set of Pm−1-unisolvent ∆-tuples being an

open set in (Rn)
∆

, there exists (see Duchon ([13])) δ > 0 such that {γ1, γ2, ..., γ∆} is still Pm−1-
unisolvent if:

∀i = 1, · · · ,∆,
∣∣γi − γ0

i

∣∣ ≤ δ.

By applying an homothety with ratio
1

δ
and setting α̂i =

1

δ
γ0

i , we obtain ∆ balls B (α̂i, 1): the

product

∆∏

i=1

B (α̂i, 1) is a compact set of (Rn)
∆

made up of Pm−1-unisolvent ∆-tuples. The set

∆⋃

i=1

B (α̂i, 1) is bounded and thus included in a ball B (â, R).

3.2. Estimation of the approximation error f̂ − ud
ε h|Ω

Let f̂ ∈ Hm′

(Ω, Rn), m′ > m and let ud
ε h|Ω (ud

ε h in the sequel) be the solution of problem (21)

with wd = ρd
(
f̂
)
.

For any t ∈ TRd ∈ Ω, we define the mapping Ft : x 7→ t + d(x − â), which is affine bijective
and which maps the ball B(â,MR) into the ball B(t,MRd). Let {â1, â2, · · · , â∆} be a subset of
B (â, R) such that âi ∈ B (α̂i, 1) and Ft (âi) = ad

i ∈ Ad, for i = 1, · · · ,∆. This is made possible
since the mapping Ft maps the ball B (α̂i, 1) into a ball of radius d and since d is defined by (12).
Note that the set

{
ad
1, · · · , ad

∆

}
is Pm−1-unisolvent. This property results from the closing remarks

of subsection 3.1.

Let us set vε = f̂ − ud
ε h and ṽε = P vε, where P is the m-extension operator of Hm(Ω, Rn) into

Hm(Rn, Rn).
For any t ∈ TRd, let Πt be the Pm−1-Lagrange interpolation operator such that
for ṽε ∈ Hm(B(t,MRd), Rn),

Πt ṽε ∈ Pm−1 and Πt ṽε(a
d
i ) = ṽε(a

d
i ), i = 1, · · · ,∆.

We have the following propositions (see Lopez de Silanes and Apprato ([21]) for the adaptation of
the proofs to our problem):

10



Proposition 3.3. There exist positive constants R, λ0, θ and C such that for all d ≤ min

(
λ0

R
, θ

)
,

for all ε and for all h, one has:

∀l = 0, · · · ,m,
∑

t∈TRd

|Πtṽε|2l,B(t,MRd),Rn ≤ C2dn−2lε.

Proposition 3.4. There exist positive constants R, λ0, η and C such that for all d ≤ min

(
λ0

R
, η

)
,

for all ε and for all h, one has:

∀l = 0, · · · ,m,
∑

t∈TRd

|ṽε − Πtṽε|2l,B(t,MRd),Rn ≤ C2|vε|2m,Ω,Rnd2(m−l).

Theorem 3.5. Let f̂ ∈ Hm′

(Ω, Rn), m′ > m and let ud
ε h be the solution of (21) with wd = ρd(f̂).

Then there exist positive constants R, λ0, θ, η and C such that for all d ≤ min

(
λ0

R
, θ, η

)
, for all

ε and for all h, one has:

∀l = 0, · · · ,m, |f̂ − ud
ε h|l,Ω,Rn ≤ C

[
|f̂ − ud

ε h|m,Ω,Rndm−l + d
n
2
−lε

1

2

]
.

As a consequence, when ud
ε h converges to f̂ in Hm(Ω, Rn) (which is the case under some additional

assumptions), one has:

∀l = 0, · · · ,m − 1, |f̂ − ud
ε h|l,Ω,Rn = o(dm−l) + O(d

n
2
−lε

1

2 ),

|f̂ − ud
ε h|l,Ω,Rn = o(1) + O(d

n
2
−lε

1

2 ) since |f̂ − ud
ε h|l,Ω,Rn ≤ C

[
||f̂ − ud

ε h||m,Ω,Rn + d
n
2
−lε

1

2

]
.

�

This error estimate is only significant when the term dn/2−lε1/2 tends to zero.
Let us note that Theorem 3.5 only gives a convergence result based on the density (d) of the

given data samples. Of course, it is also possible to link the finite element parameter h with a
convergence result, and therefore to link both d and h in a theoretical convergence result.

In effect, from Theorem 3.5, it is possible to obtain error estimates (depending on h) on∣∣∣f̂ − ud
ǫh

∣∣∣
l,Ω,Rn

: l = 0, ...,m. To do that, we need the following hypotheses:

∃C > 0,∃Θ > 0,∀d ∈ D,

(
d ≤ Θ ⇒ N(d) ≤ C

dn

)
. (22)

This hypothesis implies an asymptotic distribution of the data on Ω (see Arcangeli et al. [4]).

The generic finite elements (K,PK ,ΣK) of
(
Ṽh

)

h∈H
must satisfy

PK ⊃ Pm′−1(Ω) (23)

and

11



{
∀v ∈ Hm′

(Ω̃, Rn),∃ (vh)h∈H ⊂
(
Ṽh

)n

,∀h ∈ H, ∀l = 0, ...,m,

|v − vh|l,Ω,Rn ≤ Chm′−l |v|m′,eΩ,Rn .
(24)

Let us note that inequation (24) is needed to establish the convergence of the approximation

but it does not require the usual regularity hypothesis of the finite element method: Hm′

(Ω̃, Rn) →֒
Cs(Ω̃, Rn). Of course, hypothesis (24) requires that the triangulation is regular (see Ciarlet [9]).
These hypotheses (23-24) are satisfied in the usual finite element framework (see Clément [10],
Strang [24]).

We also consider
˜̂
f ∈ Hm′

(Ω̃, Rn) a m′ − extension of f̂ on Ω̃ (existing since Ω has a Lipschitz
boundary):

˜̂
f |Ω = f̂ in Hm′

(Ω, Rn), (25)

with Hm′

(Ω, Rn) 	 C0(Ω, Rn).
Then we have the following theorem:

Theorem 3.6. We keep the hypotheses of Theorem 3.5, and we suppose satisfied the hypotheses
(22-24). Then, there exists C > 0 such that: for any d ≤ min

(
λ0

R ,Θ, η
)
, for any ε > 0, and for

any h ∈ H, we have:

∣∣∣f̂ − ud
ǫh

∣∣∣
l,Ω,Rn

≤ C

[
hm′−mdm−l−n/2

√
ε

+
(
hm′−m +

√
2
) ∣∣∣∣

˜̂
f

∣∣∣∣
m′,eΩ,Rn

dm−l + d−l+n/2ε1/2

]
,

where
˜̂
f is introduced in (25).

Remark 3.7. Let us note that we could use the relation between d and h to find a non-uniform
triangulation adapted to the given data. But in this paper, we assume that we have no a priori
knowledge of the dataset distribution. Therefore, a uniform triangulation seems to be the best
tradeoff (see [4]).

4. Experimental results.

We conclude the paper by presenting several numerical experiments on both synthetic datasets
and real data. The experiments have been performed on a 2.21-GHz Athlon with 1.00 GB of RAM.

In this part, we give a discretization of the variational problem (10). In the following, Ω is a
rectangle, and we limit ourselves to the case n = 2 and m = 2 so that the Sobolev’s embedding
H2(Ω, R2) 	 C0(Ω̄, R2) holds.
We keep the notations introduced in Sections 2 and 3. We solve (10) on a finite element space

(Vh)
2 ⊂ H2

(
Ω, R2

)
whose generic finite element is the C1 rectangular Bogner-Fox-Schmit (BFS)

element.
If (K,PK ,ΣK) is the generic C1 BFS element, the domain Ω is triangulated by means of the
rectangles K.
It can be proved that problem (10) uncouples with respect to each component in R

2.

12



Let (vq)q=1,2 be the components of v ∈ H2
(
Ω, R2

)
and (wq

i )q=1,2 be the components of wi ∈ R
2,

∀i ∈ {1, · · · , N}. Problem (10) can therefore be stated by:





Search for uǫ = (uq
ǫ)q=1,2 ∈ H2(Ω, R2) such that

∀v = (vq)q=1,2 ∈ H2(Ω, R2),

∀q = 1, 2,

N∑

i=1

uq
ǫ(ai)v

q(ai) + ǫ(uq
ǫ , v

q)2,Ω,R =
N∑

i=1

wq
i v

q(ai).

(26)

We solve (26) in Vh for q = 1, 2. Let Mh be the dimension of Vh and
{
Ph

j

}
j=1,··· ,Mh

be the

basis functions. If we denote by uh,q
ǫ the solution of problem (26) approximated in (Vh)2, we can

decompose uh,q
ǫ into the basis

{
Ph

j

}
j=1,··· ,Mh

:





∀q = 1, 2,

∃
(
αq

j

)
j=1,··· ,Mh

∈ R,

uh,q
ǫ =

Mh∑

j=1

αq
jP

h
j .

(27)

For q = 1, 2, taking successively vq = Ph
l , l = 1, · · · ,Mh in (26), the studied problem is rephrased

by:





Search for αq ∈ R
Mh such that,

∀l = 1, · · · ,Mh,

N∑

i=1

Mh∑

j=1

αq
j Ph

j (ai)P
h
l (ai) + ǫ

Mh∑

j=1

αq
j

(
Ph

j , Ph
l

)
2,Ω,R

=

N∑

i=1

wq
i P

h
l (ai).

(28)

Denoting by Ah and Rh the matrices defined by:

Ah =
(
Ph

j (ai)
)
1≤i≤N, 1≤j≤Mh

∈ MN×Mh
(R),

Rh =
((

Ph
j , Ph

i

)
2,Ω,R

)

1≤i≤Mh, 1≤j≤Mh

∈ MMh×Mh
(R),

we are led to solve two uncoupled sparse linear subsystems that can be written in the form:

((
Ah

)T
Ah + ǫRh

)
αq =

(
Ah

)T
wq, ∀q = 1, 2, (29)

with wq ∈ R
N , ∀q = 1, 2. It can be easily demonstrated that these systems admit a unique solution.

The matrix that intervenes in both systems is symmetric, positive definite, and independent of q.
Only the second member differs in both systems.
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In each test, the parameter ǫ has been set to 10−6.
Also, in order to provide a quantitative measure of the degree of approximation, we have computed
for each example the relative error χ defined as follows:

χ =




N∑

i=1

〈uh
ǫ (ai) − wi〉22
N∑

i=1

〈wi〉22




1

2

. (30)

We now propose several examples to illustrate the efficiency of the proposed method.

4.1. Experimental tests on synthetic datasets

In the first experiment, we are concerned with the function f defined on Ω = (0, 1) × (0, 1) by

f(x, y) = exp
(
− (3x − 1)

2 − (3y − 1)
2
)
. To apply our method, we have generated a fixed set of

points A = {a1, · · · , aN} regularly distributed on Ω̄ and have set: ∀i = 1, · · · , N , wi = ∇f(ai).
The set A consists of 1681 points. The triangulation of the domain Ω is made up of 8 × 8 equal
squares and so Mh = 4 × 92 = 324. The fixed set of points A is depicted on Fig. 1, left column,
and the given vector field {wi}i=1,··· ,N on Fig. 1, right column. The reference frame is centred on
the bottom left corner. The x-direction corresponds to the column direction while the y-direction
corresponds to the row direction and points upwards. Also, this figure is complemented by the

Figure 1: On the left, the regularly distributed fixed set of points A. On the right, the given vector field. Note that
the Matlab function used to display the field scales the arrows to fit within the grid.

plots of each component of the vector field, Fig. 2. The finite element space Vh is constructed
on the triangulation from the Bogner-Fox-Schmit rectangle of class C1 and the corresponding
approximant uh

ǫ related to A is computed. The results are presented in Fig. 3–4 . We have used a
mesh refinement for the visualization: each square has been subdivided into 10× 10 equal squares.
As shown, the approximant proves to be satisfactory: the relative error is equal to 0.0003946990.
To measure the accuracy of the method, we have then successively removed (randomly) 25%, 50%,
75% and 85% of the data and have computed the relative error only on the missing data. The
obtained results are displayed in Table 1.
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Figure 2: On the left, plot of the first component of the vector field {wi}i=1,··· ,N . On the right, plot of the second
component.

Figure 3: On the left, plot of the first component of the obtained vector field. On the right, plot of the second
component.

Figure 4: Plot of the obtained vector field.
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Test 1 on synthetic dataset

Percentage of remaining data Relative error
75 0.000471
50 0.000590
25 0.002217
15 0.004729

Table 1: Relative error when some data are randomly removed. (Fixed triangulation).

We now propose to illustrate numerically the theoretical convergence result provided in Theorem

3.5. To do that, we consider ε(d) = d5. The theoretical error related to
∣∣∣f̂ − ud

ǫh

∣∣∣
0,Ω,R2

should be

of order O(d7/2).

d ε Error % of data
0.0442 1.68 10-7 9.8281 10-4 100
0.0630 9.913 10-7 8.7284 10-4 75
0.0718 1.9115 10-6 0.0014 50
0.0954 7.887 10-6 0.0099 25
0.1063 1.3548 10-5 0.0165 15
0.1978 3.0276 10-4 0.1496 5
0.3815 0.0081 0.6248 1

The linear regression associated with the data X = log(d) and Y = log(error) gives as
slope: 3.42. This coefficient is very close to the coefficient given by Theorem 3.6 : 3.5.
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In the second experiment, we focus on Franke’s function defined on Ω = (0, 1) × (0, 1) by:

f(x, y) =0.75 exp
(
−0.25 (9x − 2)

2 − 0.25 (9y − 2)
2
)

+ 0.75 exp
(
− (9x + 1)

2
/49 − (9y + 1)

2
/10

)

+0.5 exp
(
−0.25 (9x − 7)

2 − 0.25 (9y − 3)
2
)
− 0.2 exp

(
−(9x − 4)2 − (9y − 7)

2
)

.

As previously done, we have generated a fixed set of points A = {a1, · · · , aN} regularly distributed
on Ω̄ and have set ∀i = 1, · · · , N , wi = ∇f(ai). The set A consists of 1681 points. The triangulation
of the domain Ω is made up of 8 × 8 equal squares and so Mh = 4 × 92 = 324. The fixed set of
points A is depicted on Fig. 5, left column, and the given vector field {wi}i=1,··· ,N on Fig. 5, right
column. The reference frame is centred on the bottom left corner. The x-direction corresponds to
the column direction while the y-direction corresponds to the row direction and points upwards.

Figure 5: On the left, the regularly distributed fixed set of points A. On the right, the given vector field. Note that
the Matlab function used to display the field scales the arrows to fit within the grid.

Also, this figure is complemented by the plots of each component of the vector field, Fig. 6. The
finite element space Vh is constructed on the triangulation from the Bogner-Fox-Schmit rectangle
of class C1 and the corresponding approximant uh

ǫ related to A is computed.

Figure 6: On the left, plot of the first component of the vector field {wi}i=1,··· ,N . On the right, plot of the second
component.

The results are presented in Fig. 7–8. We have used a mesh refinement for the visualiza-
tion: each square has been subdivided into 20 × 20 equal squares. The relative error is equal to
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0.0035175393. To measure the accuracy of the method, we have then successively removed (ran-
domly) 25%, 50%, 75% and 85% of the data and have computed the relative error only on the
missing data. The obtained results are displayed in Table 2.

Figure 7: On the left, plot of the first component of the obtained vector field. On the right, plot of the second
component.

Figure 8: Plot of the obtained vector field every 3 rows and columns.

Test 2 on synthetic dataset

Percentage of remaining data Relative error
75 0.004265
50 0.004455
25 0.008983
15 0.028743

Table 2: Relative error when some data are randomly removed. (Fixed triangulation).
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4.2. Datasets of wind velocity fields

We focus on data of wind velocity fields that have been acquired in the Mozambique Channel.
The Mozambique Channel is a portion of the Indian Ocean located between the island of Mada-
gascar and Southeast Africa (see Fig. 9). These data have been measured by the satellite ERS2.
They have been smoothed and monthly averaged by the CERSAT laboratory (IFREMER-France).
No data have been recorded on the land so we have set them to 0. In the first experiment, the
data were acquired in January. In January, the monsoon is present and induces a north wind
in the north part of the channel. The south-east wind present in the south part of the channel
corresponds to trade winds (see [22] for more details). The data are regularly distributed on the
domain Ω. The set A consists of 528 points. The triangulation of the domain Ω is made up of
15 × 15 rectangles and so Mh = 4 × 162 = 1024. The given set of vectors {wi}i=1,··· ,N is depicted
in Fig. 10.

Figure 9: Depiction of the Mozambique Channel.

Also, this figure is complemented by the plots of each component of the vector field, Fig. 11. The
finite element space Vh is constructed on the triangulation from the Bogner-Fox-Schmit rectangle
of class C1 and the corresponding approximant uh

ǫ is computed. The results are presented in Fig.
12-13. We have used a mesh refinement for the visualization: each rectangle has been subdivided
into 20 × 20 rectangles. The relative error is equal to 0.0001650361 which is considered as a very
good result in this context. We removed 25% of the data (randomly) and computed the relative
error at all data locations. It reached 0.076156. For higher percentages, as the number of data is
rather small, we do not get as good results as for the synthetic data: the relative error is in 10−1.

The second example concentrates upon the same kind of data. The processed data were acquired
in August. In August, the monsoon does not exist and the wind field is dominated by trade winds.
The set A consists of 528 points. The triangulation of the domain Ω is made up of 15×15 rectangles
and so Mh = 4 × 162 = 1024. The given set of vectors {wi}i=1,··· ,N is depicted in Fig. 14. Also,
this figure is complemented by the plots of each component of the vector field, Fig. 15. The finite
element space Vh is constructed on the triangulation from the Bogner-Fox-Schmit rectangle of class
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Figure 10: Plot of the given vector field {wi}i=1,··· ,N .

Figure 11: On the left, plot of the first component of the vector field {wi}i=1,··· ,N . On the right, plot of the second
component.
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Figure 12: On the left, plot of the first component of the obtained vector field. On the right, plot of the second
component.

Figure 13: Plot of the obtained vector field (every six rows and columns). The blue diamond indicates the point to
which the vector is attached.
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Figure 14: Plot of the given vector field {wi}i=1,··· ,N .

C1 and the corresponding approximant uh
ǫ is computed. The results are presented in Fig. 16-17.

We have used a mesh refinement for the visualization: each rectangle has been subdivided into
20 × 20 rectangles. The relative error is equal to 0.0002522852.

Figure 15: On the left, plot of the first component of the vector field {wi}i=1,··· ,N . On the right, plot of the second
component.
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[20] M.C. López de Silanes, R. Arcangéli, Sur la convergence des Dm-splines d’ajustement pour
des données exactes ou bruitées, (French) [On the convergence of fitting Dm-splines for exact
or noisy data], Rev. Mat. Univ. Complut. Madrid, 4(2-3), 279–294, 1991.

[21] M.C. Lopez de Silanes, D. Apprato, Estimations de l’erreur d’approximation sur un domaine
borné de Rn par Dm splines d’interpolation et d’ajustement discrètes, Numerische Mathematik
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