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Let p be a prime, and let Mp(n) denote the bit complexity of multiplying two polynomials
in Fp[X] of degree less than n. For n large compared to p, we establish the bound Mp(n)=

O(n log n 8log
�n log p), where log∗ is the iterated logarithm. This is the �rst known Fürer-

type complexity bound for Fp[X], and improves on the previously best knownboundMp(n)=

O(n logn log logn log p).
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1. Introduction

Given a ring R, a basic problem in complexity theory is to find an upper bound for the cost of
multiplying two polynomials in R[X ] of degree less than n. Several complexity models may be
considered. In algebraic complexity models, such as the straight-line program model [9, Chapter 4],
we count the number of ring operations in R, denoted MR(n). In this model, the best currently
known bound MR(n) = O(n log n log log n) was obtained by Cantor and Kaltofen [10]. More
precisely, their algorithm performs O(n log n log log n) additions and subtractions and O(n log n)
multiplications in R. Their bound may be viewed as an algebraic analogue of the Schönhage–
Strassen result for integer multiplication [32] and generalises previous work by Schönhage [31].
These algorithms all rely on suitable incarnations of the fast Fourier transform (FFT) [12]. For
details we refer the reader to [17, Chapter 8].

In this paper we are mainly interested in the case that R is the finite field Fp=Z/pZ for some
prime p. The standard bit complexity model based on deterministic multitape Turing machines [26]
is more realistic in this setting, as it takes into account the dependence on p. We write Mp(n)
for the bit complexity of multiplying two polynomials in Fp[X ] of degree less than n. Two basic
approaches are known for obtaining good asymptotic bounds for Mp(n).

If n is not too large compared to p, then one may use Kronecker substitution, which converts
the problem to integer multiplication by packing the coefficients into large integers. Let I(n) denote
the bit complexity of n-bit integer multiplication. Throughout the paper, we make the customary
assumption that I(n)/n is increasing, and for convenience we define I(x) := I(dxe) for x2R, x> 0.
According to our recent sharpening [18] of Fürer’s bound [15], we may take

I(n) = O(n log n 8log
�n), (1.1)

where log�x denotes the iterated logarithm for x2R, i.e.,

log�x := min fk 2N: log�kx 6 1g, (1.2)

log�k := log � ���
k�
� log.
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If log n=O(log p), then Kronecker substitution yields Mp(n) =O(I(n log p)) (see section 2.6), so
we have

Mp(n) = O
¡

n log p log (n log p) 8log
�(n log p)

�

.

However, Kronecker substitution leads to inferior bounds when n is large compared to p, due
to coefficient growth in the lifted product in Z[X ]. In this situation the best existing method is
the algebraic Schönhage–Strassen algorithm (i.e., the Cantor–Kaltofen algorithm). In the Turing
model this yields the bound

Mp(n) = O(n logn log log n log p+n logn I(log p)).

The first term dominates for large enough n, say for log log p 8log
� p=O(log logn), and we get simply

Mp(n) = O(n logn log log n log p). (1.3)

Since Fürer’s breakthrough result, there has been a gap between what is known for integer
multiplication and for multiplication in Fp[X ]. Namely, it has remained an open question whether
the factor log log n appearing in (1.3) can be improved to Klog�n for some K > 1. It seems that
Fürer’s construction does not work in Fp[X].

1.1. Our contributions

The main result of this paper is a new algorithm that completely closes the gap mentioned above.

Theorem 1.1. The bound

Mp(n) = O
¡

n log p log(n log p) 8log
�(nlog p)

�

holds uniformly for all n > 2 and all primes p.

The bound follows immediately via Kronecker substitution if logn=O(log p). The bulk of the
paper concerns the reverse case where n is large compared to p. For example, if log log p=O(logn),
the bound becomes simply

Mp(n) = O(n logn 8log
�n log p).

As promised, this replaces the factor log log n in (1.3) by 8log
�n.

The basic idea of the new algorithm is as follows. We first construct a special extension Fp�

of Fp, where � is exponentially smaller than n, and for which p�¡1 has many small divisors. These
divisors are themselves exponentially smaller than n, yet they are so numerous that their product
is comparable to n. We now convert the given multiplication problem in Fp[X ] to multiplication
in Fp�[Y ], by cutting up the polynomials into small pieces, and we then multiply in Fp�[Y ] by
using FFTs over Fp�. Applying the Cooley–Tukey method to the small divisors of p� ¡ 1, we
decompose the FFTs into transforms of exponentially shorter lengths (not necessarily powers of
two). We use Bluestein’s method to convert each short transform to a convolution over Fp�, and
then use Kronecker substitution (from bivariate to univariate polynomials) to convert this to
multiplication in Fp[X ]. These latter multiplications are then handled recursively. We continue
the recursion until n is comparable to p, at which point we switch to using Kronecker substitution
(from polynomials to integers).

In many respects this approach is very similar to the algorithm for integer multiplication
introduced in [18], but there are various additional technical issues to address. We recommend [18]
as a gentle introduction to the main ideas.

We also prove the following conditional result.

Theorem 1.2. Assume Conjectures 8.1, 8.3 and 8.5. Then the bound

Mp(n) = O
¡

n log p log(n log p) 4log
�(nlog p)

�

holds uniformly for all n > 2 and all primes p.
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Of these conjectures, Conjecture 8.3 seems to be in reach for specialists in analytic number
theory; Conjecture 8.5 is at least as hard as Artin’s conjecture on primitive roots, but may be
tractable under the generalised Riemann hypothesis (GRH); and Conjecture 8.1 is almost as strong
as the Lenstra–Pomerance–Wagstaff conjecture on the distribution of Mersenne primes, and seems
to be inaccessible at present.

1.2. Outline of the paper

The paper is structured as follows. In section 2, we start with a survey of relevant basic techniques:
discrete Fourier transforms (DFTs) and FFTs, Bluestein’s chirp transform, and Kronecker sub-
stitution. Most of this material is repeated from [18, Section 2] for the convenience of the reader;
however, sections 2.5 and 2.6 differ substantially.

In section 3, we recall basic complexity results for arithmetic in finite fields. In particular, we
consider the construction of irreducible polynomials in Fp[X ], algorithms for finding roots of unity
in Fp�, and the cost of arithmetic in Fp� and Fp�[Y ].

In section 4, we show how to construct special extensions of Fp whose multiplicative group has
a large subgroup of highly smooth order, i.e., is divisible by many small integers. The main tool
is [2, Theorem 3].

Section 5 gives complexity bounds for functions that satisfy recurrence inequalities involving
postcompositions with “logarithmically slow” functions. The prototype of such an inequality is
T (n) 6 KT (logn)+L, where K and L are constants. The definitions and theorems are duplicated
from [18, Section 5]; for the proofs, see [18].

To minimise the constant K in the bound Mp(n)=O(n lognK log�n log p) (for n large relative
to p), we need one more tool: in section 6, we present a polynomial analogue of the Crandall–Fagin
convolution algorithm [13]. This allows us to convert a cyclic convolution over Fp of length n,
where n is arbitrary, into a cyclic convolution over Fp� of somewhat smaller length N , where N is
prescribed and where �� 2 n/N . (We can still obtain K = 16 without using this Crandall–Fagin
analogue, but we do not know how to reach K=8 without it.)

Section 7 is devoted to the proof of Theorem 1.1. Section 8 gives the proof of Theorem 1.2, and
discusses the three number-theoretic hypotheses of that theorem.

The last section offers some final notes and suggested directions for generalisation. We first
quickly dispense with the bit complexity of multiplication in Fq[X] for prime powers q, and in
(Z/m Z)[X] for arbitrary integers m > 1. We then sketch some algebraic complexity bounds for
polynomial multiplication over Fp-algebras and (Z /m Z)-algebras, especially in the straight-
line program model. Our techniques also give rise to new strategies for polynomial evaluation-
interpolation over Fq. This may for instance be applied to the efficient multiplication of polynomial
matrices over Fq. Although we have not implemented any of our algorithms yet, we conclude by
a few remarks on their expected efficiency in practice.

Notations. We use Hardy’s notations f � g for f = o(g), and f � g for f =O(g) and g=O(f).
The “soft-Oh” notation f(n) = Õ(g(n)) means that f(n) = g(n) (log(3 + g(n)))O(1) (see [17,
Chapter 25, Section 7] for details). The symbol R> denotes the set of non-negative real numbers,
and N denotes f0, 1, 2, ...g. For a ring R and n2N, we write R[X ]n := fP 2R[X ]: degP <ng.

We will write lgn := dlogn/ log 2e. In expressions like log log p or lg lg p, we tacitly assume that
the function is adjusted so as to take positive values for small primes such as p=2.

Acknowledgments. We would like to thank Karim Belabas for directing us to the paper [2], and
Igor Shparlinski for answering some analytic number theory questions.

2. Survey of classical tools

This section recalls basic facts on Fourier transforms and related techniques used in subsequent
sections. For more details and historical references we refer the reader to standard books on the
subject such as [3, 9, 17, 30].

2.1. Arrays and sorting

In the Turing model, we have available a fixed number of linear tapes. An n1 � ��� � nd array
Mi1,...,id of b-bit elements is stored as a linear array of n1 ��� nd b bits. We generally assume that the
elements are ordered lexicographically by (i1, ..., id), though this is just an implementation detail.
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What is significant from a complexity point of view is that occasionally we must switch repre-
sentations, to access an array (say 2-dimensional) by “rows” or by “columns”. In the Turing model,
we may transpose an n1� n2 matrix of b-bit elements in time O(b n1n2 lgmin (n1, n2)), using the
algorithm of [7, Appendix]. Briefly, the idea is to split the matrix into two halves along the “short”
dimension, and transpose each half recursively.

We will also require more complex rearrangements of data, for which we resort to sorting.
Suppose that X is a totally ordered set, whose elements are represented by bit strings of length b,
and suppose that we can compare elements of X in time O(b). Then an array of n elements of X
may be sorted in time O(b n lg n) using merge sort [22], which can be implemented efficiently on
a Turing machine.

2.2. Discrete Fourier transforms

Let R be a commutative ring with identity and let n > 1. An element !2R is said to be a principal
n-th root of unity if !n=1 and

X

k=0

n¡1

(!i)k=0 (2.1)

for all i2f1, ..., n¡1g. In this case, we define the discrete Fourier transform (or DFT) of an n-tuple
a=(a0, ..., an¡1)2Rn with respect to ! to be DFT!(a) = â=(â0, ..., ân¡1)2Rn where

âi := a0+ a1!
i+ ���+ an¡1!

(n¡1)i.

That is, âi is the evaluation of the polynomial A(X) := a0+ a1X + ���+ an¡1X
n¡1 at !i.

If ! is a principal n-th root of unity, then so is its inverse !¡1=!n¡1, and we have

DFT!¡1(DFT!(a)) = na.

Indeed, writing b :=DFT!¡1(DFT!(a)), the relation (2.1) implies that

bi=
X

j=0

n¡1

âj!
¡ji=

X

j=0

n¡1
X

k=0

n¡1

ak!
j(k¡i)=

X

k=0

n¡1

ak
X

j=0

n¡1

!j(k¡i)=
X

k=0

n¡1

ak (n �i,k)=nai,

where �i,k=1 if i= k and �i,k=0 otherwise.

Remark 2.1. In all of the new algorithms introduced in this paper, we actually work over a field,
whose characteristic does not divide n. In this setting, the concept of principal root of unity
coincides with the more familiar primitive root of unity .

2.3. The Cooley–Tukey FFT

Let ! be a principal n-th root of unity and let n=n1n2 where 1<n1<n. Then !n1 is a principal
n2-th root of unity and !n2 is a principal n1-th root of unity. Moreover, for any i12f0, ..., n1¡ 1g
and i22f0, ..., n2¡ 1g, we have

âi1n2+i2 =
X

k1=0

n1¡1
X

k2=0

n2¡1

ak2n1+k1!
(k2n1+k1)(i1n2+i2)

=
X

k1=0

n1¡1

!k1i2

 

X

k2=0

n2¡1

ak2n1+k1 (!
n1)k2i2

!

(!n2)k1i1. (2.2)

If A1 and A2 are algorithms for computing DFTs of length n1 and n2, we may use (2.2) to construct
an algorithm A1�A2 for computing DFTs of length n as follows.

For each k1 2 f0, ..., n1 ¡ 1g, the sum inside the brackets corresponds to the i2-th coefficient
of a DFT of the n2-tuple (a0n1+k1, ..., a(n2¡1)n1+k1) 2 Rn2 with respect to !n1. Evaluating these
inner DFTs requires n1 calls to A2. Next, we multiply by the twiddle factors !k1i2, at a cost of n
operations in R. (Actually, fewer than n multiplications are required, as some of the twiddle factors
are equal to 1. This optimisation, while important in practice, has no asymptotic effect on the
algorithms discussed in this paper.) Finally, for each i22f0, ..., n2¡1g, the outer sum corresponds
to the i1-th coefficient of a DFT of an n1-tuple in Rn1 with respect to !n2. These outer DFTs
require n2 calls to A1.

4 Faster polynomial multiplication over finite fields



Denoting by FR(n) the number of ring operations needed to compute a DFT of length n, and
assuming that we have available a precomputed table of twiddle factors, we obtain

FR(n1n2) 6 n1FR(n2)+n2FR(n1) +n.

For a factorisation n=n1 ��� nd, this yields recursively

FR(n) 6
X

i=1

d
n

ni
FR(ni) + (d¡ 1)n. (2.3)

The corresponding algorithm is denoted A1 � ��� � Ad. The � operation is neither commutative
nor associative; the above expression will always be taken to mean (���((A1�A2)�A3)����)�Ad.

The above discussion requires several modifications in the Turing model. Assume that elements
of R are represented by b bits.

First, for A1 � A2, we must add a rearrangement cost of O(b n lg min (n1, n2)) to efficiently
access the rows and columns for the recursive subtransforms (see section 2.1). For the general case
A1� ��� �Ad, the total rearrangement cost is bounded by O(

P

i
b n lg ni) =O(b n lg n).

Second, we will sometimes use non-algebraic algorithms to compute the subtransforms, so it
may not make sense to express their cost in terms of FR. The relation (2.3) therefore becomes

F(n) 6
X

i=1

d
n

ni
F(ni) + (d¡ 1)nmR+O(b n lg n), (2.4)

where F(n) is the (Turing) cost of a transform of length n over R, and where mR is the cost of
a single multiplication in R.

Finally, we point out that A1�A2 requires access to a table of twiddle factors !i1i2, ordered
lexicographically by (i1, i2), for 0 6 i1 < n1, 0 6 i2 < n2. Assuming that we are given as input
a precomputed table of the form 1, !, ..., !n¡1, we must show how to extract the required twiddle
factor table in the correct order. We first construct a list of triples (i1, i2, i1 i2), ordered by (i1, i2),
in time O(n lgn); then sort by i1 i2 in time O(n lg2n) (see section 2.1); then merge with the given
root table to obtain a table (i1, i2, !i1i2), ordered by i1 i2, in time O(n (b+ lg n)); and finally sort
by (i1, i2) in time O(n lg n (b+ lg n)). The total cost of the extraction is thus O(n lg n (b+ lg n)).

The corresponding cost for A1 � ��� � Ad is determined as follows. Assuming that the table
1, !, ..., !n¡1 is given as input, we first extract the subtables of (n1 ��� ni)-th roots of unity for
i= d¡ 1, ..., 2 in time O((n1 ��� nd+ ���+n1n2) (b+ lg n)) =O(n (b+ lg n)). Extracting the twiddle
factor table for the decomposition (n1 ��� ni¡1)� ni then costs O(n1 ��� ni lg n (b+ lg n)); the total
over all i is again O(n lg n (b+ lg n)).

Remark 2.2. An alternative approach is to compute the twiddle factors directly in the correct
order. When working over C, as in [18, Section 3], this requires a slight increase in the working
precision. Similar comments apply to the root tables used in Bluestein’s algorithm in section 2.5.

2.4. Fast Fourier multiplication

Let ! be a principal n-th root of unity in R and assume that n is invertible in R. Consider
two polynomials A = a0 + ��� + an¡1 X

n¡1 and B = b0 + ��� + bn¡1 X
n¡1 in R[X]. Let

C = c0+ ���+ cn¡1X
n¡1 be the polynomial defined by

c :=
1

n
DFT!¡1(DFT!(a)DFT!(b)),

where the product of the DFTs is taken pointwise. By construction, we have ĉ = â b̂, which
means that C(!i) = A(!i) B(!i) for all i 2 f0, ..., n ¡ 1g. The product S = s0 + ��� + sn¡1X

n¡1

of A and B modulo Xn ¡ 1 also satisfies S(!i) = A(!i) B(!i) for all i. Consequently, ŝ = â b̂,
s=DFT!¡1(ŝ)/n= c, whence C =S.

For polynomials A, B 2R[X ] with degA<n and degB <n, we thus obtain an algorithm for
the computation of AB modulo Xn¡ 1 using at most 3 FR(n) +O(n) operations in R. Modular
products of this type are also called cyclic convolutions. If deg (A B) < n, then we may recover
the product A B from its reduction modulo Xn ¡ 1. This multiplication method is called FFT
multiplication .
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If one of the arguments (say B) is fixed and we want to compute many products AB (or cyclic
convolutions) for different A, then we may precompute DFT!(b), after which each new product
AB can be computed using only 2FR(n)+O(n) operations in R.

2.5. Bluestein’s chirp transform

We have shown above how to multiply polynomials using DFTs. Inversely, it is possible to reduce
the computation of DFTs — of arbitrary length, not necessarily a power of two — to polynomial
multiplication [5], as follows.

Let ! be a principal n-th root of unity and consider an n-tuple a2Rn. First consider the case
that n is odd. Let

fi :=!(i
2¡i)/2, fi

0 := !(i
2+i)/2, gi :=!(¡i

2¡i)/2.

Note that (i2¡ i)/2 and (i2+ i)/2 are integers, and that

gi+n=!(¡(i+n)
2¡(i+n))/2=!(¡i

2¡i)/2 !n(¡i¡(n+1)/2)= gi.

Let F := f0 a0+ ���+ fn¡1 an¡1X
n¡1,G := g0+ ���+ gn¡1X

n¡1 and C := c0+ ���+cn¡1Xn¡1�F G
modulo Xn¡ 1. Then

fi
0 ci=

X

j=0

n¡1

fi
0 (fj aj) gi¡j=

X

j=0

n¡1

!(i
2+i)/2!(j

2¡j)/2 !(¡(i¡j)
2¡(i¡j))/2 aj=

X

j=0

n¡1

!ij aj= âi.

In other words, the computation of a DFT of odd length n reduces to a cyclic convolution product
of the same length n, together with O(n) additional operations in R. Notice that the polynomial
G is fixed and independent of a in this product.

Now suppose that n is even. In this case we require that 2 be invertible in R, and that !n/2=¡1.
Let � := (¡1)n/2, and put

fi := !i
2

, fi
0 :=!i

2+i, gi := !¡i
2

+!¡i
2¡i.

Then

gi+n

2

=�
¡

!¡i
2¡!¡i2¡i

�

, gi+n= gi,

and
1
2

�

gi+� gi+n

2

�

= !¡i
2

,

1
2

�

gi¡� gi+n

2

�

= !¡i
2¡i.

As above, let F := f0 a0 + ��� + fn¡1 an¡1 X
n¡1, G := g0 + ��� + gn¡1 X

n¡1 and C :=
c0+ ���+ cn¡1X

n¡1�FG modulo Xn¡ 1. Then for i2
�

0, ...,
n

2
¡ 1
	

we have

1

2
fi

�

ci+� ci+n

2

�

=
1

2
fi
X

j=0

n¡1

fj aj

�

gi¡j+� gi¡j+n

2

�

=
X

j=0

n¡1

!i
2

!j
2

!¡(i¡j)
2

aj=
X

j=0

n¡1

!2ij aj= â2i,

and similarly

1
2
fi
0
�

ci¡� ci+n

2

�

=
X

j=0

n¡1

!i
2+i!j

2

!¡(i¡j)
2¡(i¡j) aj=

X

j=0

n¡1

!(2i+1) j aj= â2i+1.

Again, the DFT reduces to a convolution of length n, together withO(n) additional operations inR.
The only complication in the Turing model is the cost of extracting the fi, fi

0 and gi in the
correct order. For example, consider the fi in the case that n is odd. Given as input a precomputed
table 1, !, !2, ..., !n¡1, we may extract the fi in time O(n lgn (b+ lg n)) by applying the strategy
from section 2.3 to the pairs (i, 1

2
(i2¡ i)mod n) for 0 6 i < n. The other sequences are handled

similarly. For the gi in the case that n is even, we also need to perform O(n) additions in R;
assuming that additions in R have cost O(b), this is already covered by the above bound.
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Remark 2.3. Bluestein’s original formulation used the weights fi :=!i
2/2, gi :=!¡i

2/2. This has
two drawbacks in our setting. First, it requires the presence of 2 n-th roots of unity, which may not
exist in R. Second, if n is odd, it leads to negacyclic convolutions, rather than cyclic convolutions.
The variants used here avoid both of these problems.

Remark 2.4. It is also possible to give variants of the new multiplication algorithms in which
Bluestein’s transform is replaced by a different method for converting DFTs to convolutions, such
as Rader’s algorithm [29].

2.6. Kronecker substitution

Multiplication in Fp[X ] may be reduced to multiplication in Z using the classical technique of
Kronecker substitution [17, Corollary 8.27]. More precisely, let n>0 and suppose that we are given
two polynomials A, B 2Fp[X] of degree less than n. Let Ã, B̃ 2Z[X ] be lifts of these polynomials,
with coefficients Ai and Bi satisfying 0 6 Ai, Bi < p. Then for the product C̃ = Ã B̃ we have
0 6 Ci<np2, and the coefficients of C̃ may be read off the integer product C̃(2N)= Ã(2N) B̃(2N)
where N := 2 lg p+ lg n. We deduce the coefficients of C := AB by dividing each Ci by p. This
shows that Mp(n)=O(I(n (lg p+ lgn))+n I(lg p)). Using the assumption that I(n)/n is increasing,
we obtain

Mp(n) = O(I(n (lg p+ lg n))).

If we also assume that lgn=O(lg p), i.e., that the degree is not too large, then this becomes simply

Mp(n) = O(I(n lg p)). (2.5)

A second type of Kronecker substitution reduces bivariate polynomial multiplication to the
univariate case. Indeed, let n > 1 and � > 1, and suppose that A, B 2 Fp[X, Z], where degX A,

degXB <n and degZA, degZB <�. We may then recover C :=AB from the univariate product
C(Y 2�, Y )=A(Y 2�, Y )B(Y 2�, Y ) in Fp[Y ]. Note that A(Y 2�, Y ) and B(Y 2�, Y ) have degree less
than 2n�, so the cost of the bivariate product is Mp(2n�)+O(n� lg p).

The same method works for computing cyclic convolutions: to multiply A, B 2 Fp[X, Z] /
(Xn ¡ 1), the same substitution leads to a product in Fp[Y ] / (Y

2n� ¡ 1). The cost is thus
Mp
0 (2n�)+O(n� lg p), where Mp

0 (d) denotes the cost of a multiplication in Fp[X ]/(X
d¡ 1).

3. Arithmetic in finite fields

Let p be a prime and let � > 1. In this section we review basic results concerning arithmetic in Fp�

and Fp�[Y ].
We assume throughout that Fp� is represented as Fp[Z]/P for some irreducible monic polyno-

mial P 2Fp[Z] of degree �. Thus an element ofFp� is represented uniquely by its residue modulo P ,
i.e., by a polynomial F 2Fp[Z] of degree less than �.

Lemma 3.1. Let p be a prime and let � > 1. We may compute a monic irreducible polynomial

P 2Fp[Z] of degree � in time Õ(�4 p1/2).

Proof. See [33, Theorem 3.2]. �

The above complexity bound is very pessimistic in practice. Better complexity bounds are
known if we allow randomised algorithms, or unproved hypotheses. For instance, assuming GRH,
the bound reduces to (� log p)O(1) [1].

We now consider the cost of arithmetic in Fp�, assuming that P is given. Addition and sub-
traction in Fp� have cost O(� lg p). For multiplication we will always use the Schönhage–Strassen
algorithm. Denote by Sp(�) the cost of multiplying polynomials inFp[Z]� by this method, i.e., using
the polynomial variant [31] for the polynomials themselves, followed by the integer version [32] to
handle the coefficient multiplications. Then we have

Sp(�) = O(� lg� lg lg � lg p lg lg p lg lg lg p).
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Of course, we could use the new multiplication algorithm recursively for these products, but it turns
out that Schönhage–Strassen is fast enough, and leads to a simpler complexity analysis in section 7.
Let Dp(�) denote the cost of dividing a polynomial in Fp[Z]2� by P , returning the quotient and
remainder. Using Newton’s method [17, Chapter 9] we have Dp(�) =O(Sp(�)). Thus elements of
Fp� may be multiplied in time O(Sp(�)).

Let N > 1 be a divisor of p�¡ 1. To compute a DFT over Fp� of length N , we must first have
access to a primitive N -th root of unity in Fp�. In general it is very difficult to find a primitive root
of Fp�, as it requires knowledge of the factorisation of p�¡ 1. However, to find a primitive N -th
root, Lemma 3.3 below shows that it is enough to know the factorisation of N . The construction
relies on the following existence result.

Lemma 3.2. Let ` be a positive integer such that p`>c1 r
4 (log r+1)4 �2, where r is the number of

distinct prime divisors of p�¡1, and where c1>0 is a certain absolute constant. Then there exists
a monic irreducible polynomial Θ2Fp[Z] of degree ` such that Θ modulo P is a primitive root of
unity for Fp�=Fp[Z]/P.

Proof. This is [34, Theorem 1.1]. �

Lemma 3.3. Assume that N divides p�¡ 1 and that the factorisation of N is given. Then we may

compute a primitive N-th root of unity in Fp[Z]/P in time Õ(�9 p).

Proof. Testing whether a given � 2 Fp� is a primitive N -th root of unity reduces to checking
that �N = 1 and �N/s=/ 1 for every prime divisor s of N . According to Lemma 3.2, it suffices to
apply this test to � := (Θ mod P )(p

�¡1)/N for Θ 2 Fp[Z] running over all monic polynomials of
degree ` := dlog(c1 r4 (log r+1)4 �2)/ log pe, where r=O(� lg p) is as in the lemma. The number of
candidates is at most p` 6 c r4 (log r+1)4 �2 p= Õ(�6 p), and each candidate can be tested in time
Õ(r lgN (� lg p)) = Õ(�3 lg3 p) using binary exponentiation. �

Of course, we can do much better if randomised algorithms are allowed, since �(p
�¡1)/N is

reasonably likely to be a primitive N -th root for randomly selected �.
Finally, we consider polynomial multiplication over Fp�. Let n > 1, and let A, B 2 Fp�[X ]n.

Let Ã, B̃ 2 Fp[X, Z] be their natural lifts, i.e., of degree less than � with respect to Z. The
bivariate product C̃ := Ã B̃ may be computed using Kronecker substitution (section 2.6) in time
Mp(2 n �)+O(n � lg p). Writing C̃=

P

i=0
2n¡2

C̃i(Z)X
i, to recover AB we must divide each C̃i by P .

Denoting by Mp�(n) the complexity of the original multiplication problem, we obtain

Mp�(n) = Mp(2n�)+O(nDp(�))

= Mp(2n�)+O(n Sp(�)).

As in section 2.6, the same method may be used for cyclic convolutions. IfMp�
0 (n) denotes the cost

of multiplication in Fp�[X]/(X
n¡ 1), then we get

Mp�
0 (n) = Mp

0 (2n�)+O(n Sp(�)).

Remark 3.4. In the other direction, we can also reduce multiplication in Fp[X ] to multiplication
in Fp�[Y ] by splitting the inputs into chunks of size b� / 2c. This leads to the bound Mp(n) 6
Mp�(dn/b�/2ce)+O(n lg p) for n > �. A variant of this procedure is developed in detail in section 6.

4. Preparing for DFTs of large smooth orders

The aim of this section is to prove the following theorem, which allows us to construct “small”
extensions Fp� of Fp containing “many” roots of unity of “low” order. Recall that a positive integer
is said to be y-smooth if all of its prime divisors are less than or equal to y.

Theorem 4.1. There exist computable absolute constants c3>c2>0 and n02N with the following
properties. Let p be a prime and let n > n0. Then there exists an integer � in the interval

(lg n)c2lg lg lgn<�< (lg n)c3lg lg lgn,
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and a (� + 1)-smooth integer M > n, such that M j p� ¡ 1. Moreover, given p and n, we may
compute � and the prime factorisation of M in time O((lg n)lg lgn).

The proof depends on a series of preparatory lemmas. For � > 2, define

H� :=
Y

q prime,
q¡1j�

q.

For example, H36=1919190=2 �3 � 5 � 7 � 13 � 19 � 37 and H37=2. Note that H� is always squarefree
and (� + 1)-smooth. We are interested in finding � for which H� is unusually large; that is, for
which � has many divisors d such that d+1 happens to be prime. Most of the heavy lifting is done
by the following remarkable result.

Lemma 4.2. Define �0(k) := min
�

� 2 N: H� > k
p
	

. There exist computable absolute constants

c5>c4> 0 such that for any integer k > 100 we have

(log k)c4log log log k<�0(k)< (log k)c5log log log k.

Proof. This is part of [2, Theorem 3]. (The threshold k
p

could of course be replaced by any fixed
power of k. It is stated this way in [2] because that paper is concerned with primality testing.) �

The link between H� and Fp� is as follows.

Lemma 4.3. Let p be a prime and let � > 2. Then there exists a (� + 1)-smooth integer M >
H�/(�+1) such that M j p�¡ 1.

Proof. We take M :=H�/p if p divides H�, and otherwise M :=H�. In the former case we must
have p 6 �+1, so in both casesM > H�/(�+1). To see that M j p�¡1, consider any prime divisor
q=/ p of H�. Then q¡ 1 j�, so q j p�¡ 1 by Fermat’s little theorem. �

Remark 4.4. The integer M constructed in Lemma 4.3 only takes into account the structure of
H�, and ignores p�¡ 1 itself. In practice, p�¡ 1 will often have small factors other than those in
H�, possibly including repeated factors (which are never detected byH�). For example,H6=2 �3 �7,
but 196¡ 1=23 � 33 � 5 � 73 � 127. In an implementation, one should always incorporate these highly
valuable “accidental” factors into M . We will ignore them in our theoretical discussion.

Next we give a simple sieving algorithm that tabulates approximations of logH� for all � up
to a prescribed bound.

Lemma 4.5. Let m > 2. In time O(m2), we may compute integers `1, ..., `m with

j`�¡ logH�j 6 1, (1 6 � 6 m). (4.1)

Proof. Initialise a table of `� with `� := 0 for �=1, ..., m. Since logH� 6
P

q 6 �+1 log q=O(�),
it suffices to set aside O(lgm) bits for each `�.

For each integer q = 2, ..., m, perform the following steps. First test whether q is prime,
discarding it if not. Using trial division, the cost is q1/2+o(1), so m3/2+o(1)=O(m2) overall. Now
assume that q is found to be prime. Using a fast algorithm for computing logarithms [8], compute an
integer Lq such that jLq¡2r log q j 6 1, where r := 1+ lgm, in time O

¡

(lgm)1+o(1)
�

. Scan through
the table, replacing `� by `�+Lq for those � divisible by q¡1, i.e., every (q¡1)-th entry, in time
O(m lgm). The total cost for each prime q is O(m lgm), and there are O(m/ lgm) primes, so the
overall cost is O(m2). At the end, we divide each `� by 2r, yielding the required approximations
satisfying (4.1). �

Proof of Theorem 4.1. We are given p and n as input. Applying Lemma 4.2 with k := n3, we
find that for large enough n there exists some � with

(log (n3))c4log log log (n
3)<�< (log (n3))c5log log log (n

3)
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and such that H� > n3/2. Choose any positive c2<c4 log 2 and any c3>c5 log 2. Since

log log(n3) log log log(n3) � (log 2) log lg n lg lg lg n,

we have

(lg n)c2lg lg lgn< (log(n3))c4log log log(n
3)<�< (log(n3))c5log log log(n

3)< (lgn)c3lg lg lgn

for large n. Using Lemma 4.5, we may find one such � in time O(m2), where m := (lgn)c3lg lg lgn.
Let M be as in Lemma 4.3. Then M divides p�¡ 1, and

M >
H�

�+1
>

n3/2

m+1
> n

for large n. We may compute the prime factorisation of M by simply enumerating the primes
q 6 � + 1, q =/ p, and checking whether q ¡ 1 divides � for each q. This can be done in time
O(�2) =O(m2). �

The main multiplication algorithm depends on a reduction of a “long” DFT to many “short”
DFTs. It is essential to have some control over the long and short transform lengths. The following
result packages together the prime divisors of the abovementioned M , to obtain a long transform
length N near a given target L, and short transform lengths Ni near a given target S.

Theorem 4.6. Let p, n, �, M be as in Theorem 4.1. Let L and S be positive integers such that
�<S <L<M. Then there exist (�+1)-smooth integers N1, ..., Nd with the following properties:

a) N :=N1 ���Nd divides M (and hence divides p�¡ 1).
b) L 6 N 6 (�+1)L.

c) S 6 Ni 6 S3 for all i.

Given �, S, L, and the prime factorisation of M, we may compute such N1, ..., Nd (and their

factorisations) in time Õ(�3).

Proof. Let M =N1 ���Ns be the prime decomposition of M . Taking d minimal with N1 ���Nd > L,
we ensure that (a) and (b) are satisfied. At this stage we have Ni 6 �+1 6 S for all i. As long as
the tuple (N1, ..., Nd) contains an entry Ni with Ni< S, we pick the two smallest entries Ni and
Nj and replace them by a single entry Ni Nj. Clearly, this does not alter the product N of all
entries, so (a) and (b) continue to hold. Furthermore, as long as there exist two entries Ni and Nj

with Ni<S and Nj <S, new entries NiNj will always be smaller than S2. Only at the very last
step of the loop, the second smallest entry Nj might be larger than S. In that case, the product
of the entry Ni with Ni<S with Nj is still bounded by S �S2=S3. This shows that condition (c)
is satisfied at the end of the loop.

Determining d requires at most s=O(�) multiplications of integers less than M . There are at
most s iterations of the replacement loop. Each iteration must scan through at most s integers of
bit size O(logM) =O(�) and perform one multiplication on such integers. �

5. Logarithmically slow recurrence inequalities

Let Φ:(x0,1)!R be a smooth increasing function, for some x02R. We say that Φ�: (x0,1)!R>

is an iterator of Φ if Φ� is increasing and if

Φ�(x) = Φ�(Φ(x)) + 1 (5.1)

for all sufficiently large x.
For instance, the standard iterated logarithm log� defined in (1.2) is an iterator of log. An

analogous iterator may be defined for any smooth increasing function Φ: (x0,1)! R for which
there exists some � > x0 such that Φ(x) 6 x¡ 1 for all x>�. Indeed, in that case,

Φ�(x) := min fk 2N: Φ�k(x) 6 �g
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is well-defined and satisfies (5.1) for all x > �. It will sometimes be convenient to increase x0 so
that Φ(x) 6 x¡ 1 is satisfied on the whole domain of Φ.

We say that Φ is logarithmically slow if there exists an `2N such that

(log�` �Φ � exp�`)(x) = log x+O(1) (5.2)

for x!1. For example, the functions log(2 x), 2 logx, (logx)2 and (logx)log log x are logarithmically
slow, with `=0, 1, 2, 3 respectively.

Lemma 5.1. Let Φ: (x0,1)!R be a logarithmically slow function. Then there exists � > x0 such
that Φ(x) 6 x¡ 1 for all x>�. Consequently all logarithmically slow functions admit iterators.

In this paper, the main role played by logarithmically slow functions is to measure size reduction
in multiplication algorithms. In other words, multiplication of objects of size n will be reduced to
multiplication of objects of size n0, where n0 6 Φ(n) for some logarithmically slow function Φ(x).
The following result asserts that, from the point of view of iterators, such functions are more or
less interchangeable with log x.

Lemma 5.2. For any iterator Φ� of a logarithmically slow function Φ, we have

Φ�(x) = log�x+O(1).

The next result is our main tool for converting recurrence inequalities into actual asymptotic
bounds for solutions.

Proposition 5.3. Let K > 1, B > 0 and ` 2 N. Let x0 > exp�`(1), and let Φ: (x0,1)! R be
a logarithmically slow function such that Φ(x) 6 x¡ 1 for all x>x0. Then there exists a positive
constant C (depending on x0, Φ, K, B and `) with the following property.

Let � > x0 and L > 0. Let S �R, and let T : S !R> be any function satisfying the following
recurrence. First, T (y) 6 L for all y2S, y 6 �. Second, for all y2S, y>�, there exist y1, ..., yd2S
with yi 6 Φ(y), and weights 
1, ..., 
d > 0 with

P

i

i=1, such that

T (y) 6 K

�

1+
B

log�` y

�

X

i=1

d


iT (yi)+L.

Then we have T (y) 6 CLK log� y¡log�� for all y 2S, y >�.

6. The Crandall–Fagin algorithm

Consider the problem of computing the product of two n-bit integers modulom :=2n¡1. The naive
approach is to compute their ordinary 2n-bit product and then reduce modulo m. The reduction
cost is negligible because of the special form of m. If n is divisible by a high power of two, one
can save a factor of two by using the fact that FFTs naturally compute cyclic convolutions.

An ingenious algorithm of Crandall and Fagin [13] allows for the gain of this precious factor of
two for arbitrary n. Their algorithm is routinely used in the extreme case where n is prime, in the
large-scale GIMPS search for Mersenne primes (see http://www.mersenne.org/).

A variant of the Crandall–Fagin algorithm was a key ingredient of our algorithm for integer
multiplication that conjecturally achieves the bound I(n)=O(n logn 4log

�n) [18, Section 9]. In this
section we present yet another variant, for computing products in Fp[X]/(X

n¡ 1).

6.1. The Crandall–Fagin reduction for polynomials

Let n, N and � be positive integers with 1 6 N 6 n and � > 2 dn /N e. Our aim is to reduce
multiplication in Fp[X] / (X

n ¡ 1) to multiplication in Fp�[Y ] / (Y
N ¡ 1). In the applications in

subsequent sections, N will be a divisor of p�¡1 with many small factors, so that we can multiply
efficiently in Fp�[Y ]/(Y N ¡ 1) using FFTs over Fp�.
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Suppose that Fp� is represented as Fp[Z]/P , for some irreducible P 2Fp[Z] of degree �. The
reduction relies on the existence of an element � 2 Fp� such that �N = Z. (This is the analogue
of the real N -th root of 2 appearing in the usual Crandall–Fagin algorithm, which was originally
formulated over C.) It is easy to see that such � may not always exist; for example, there is no
cube root of Z in F16=F2[Z]/(Z

4+Z +1). Nevertheless, the next result shows that if � is large
enough, then we can always find some modulus P for which a suitable � exists.

Proposition 6.1. Suppose that p�/2 >N. Then we may compute an irreducible polynomial P 2
Fp[Z] of degree �, and an element � 2Fp�=Fp[Z]/P such that �N =Z, in time Õ(�9 p).

Proof. We first observe that if � 2Fp� is a primitive root, then �N cannot lie in a proper subfield
of Fp�. (This property is independent of P .) Indeed, if �N 2 Fp` for some proper divisor ` of �,
then everyN -th power in Fp� lies in Fp`. This contradicts the fact that the number of N -th powers
in Fp� is at least 1+ (p�¡ 1)/N > p�/N > p�/2 > p`.

Now we give an algorithm for computing P and �. We start by using Lemma 3.1 to compute
an irreducible P̃ 2 Fp[U ] of degree � in time Õ

¡

�4 p1/2
�

, and we temporarily represent Fp� as
Fp[U ]/P̃ .

Using Lemma 3.2, we may construct a list of Õ(�6 p) candidates for primitive roots of Fp� (see

the proof of Lemma 3.3). For each candidate �, we compute �N and its powers 1, �N , ..., �(�¡1)N.
If these are linearly dependent over Fp then �N belongs to a proper subfield (and so, as shown
above, � is not actually a primitive root). Thus we must eventually encounter some � for which
they are linearly independent. We take P to be the minimal polynomial of this �N, which may be
computed by finding a linear relation among 1, �N , ..., ��N . Let ': Fp[Z] /P ! Fp[U ] / P̃ be the
isomorphism that sends Z to �N. The matrix of ' with respect to the standard bases 1, Z , ...,
Z�¡1 and 1,U , ..., U�¡1 is given by the coefficients of 1, �N , ..., �(�¡1)N. The inverse of this matrix
yields the matrix of '¡1:Fp[U ]/ P̃!Fp[Z]/P . We then set �='¡1(�), so that �N='¡1(�N)=Z.

For each candidate �, the cost of computing the necessary powers of � is Õ((�+ lgN) � lg p)=
Õ(�2 lg2 p), and the various linear algebra steps require time Õ(�3 lg p) using classical matrix
arithmetic. �

In the remainder of this section, we fix some P and � as in Proposition 6.1, and assume that Fp�

is represented as Fp[Z]/P . Suppose that we wish to compute the product of u, v2Fp[X] /(X
n¡1).

The presentation here closely follows that of [18, Section 9.2]. We decompose u and v as

u=
X

i=0

N¡1

uiX
ei, v=

X

i=0

N¡1

viX
ei, (6.1)

where

ei := dn i/N e,
ui, vi 2 Fp[X ]ei+1¡ei.

Notice that ei+1¡ ei takes only two possible values: bn/N c or dn/N e.
For 0 6 i <N , let

ci := Nei¡n i, (6.2)

so that 0 6 ci <N . For any 0 6 i1, i2 <N , define �i1,i2 2 Z as follows. Choose � 2 f0, 1g so that
i := i1+ i2¡�N lies in the interval 0 6 i <N , and put

�i1,i2 := ei1+ ei2¡ ei¡�n.
From (6.2), we have

ci1+ ci2¡ ci=N (ei1+ ei2¡ ei)¡n (i1+ i2¡ i) =N�i1,i2.

Since the left hand side lies in the interval (¡N, 2N), this shows that �i1,i2 2 f0, 1g. Now, since
ei1+ ei2= ei+ �i1,i2 (mod n), we have

u v =
X

i1=0

N¡1
X

i2=0

N¡1

ui1 vi2X
ei1+ei2 =

X

i=0

N¡1

wiX
ei (modXn¡ 1),
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where

wi :=
X

i1+i2=i (modN)

X�i1,i2ui1 vi2.

Since ui12Fp[X ]dn/N e and similarly for vi2, we have wi2Fp[X ]2dn/N e. Note that we may recover
u v from w0, ..., wN¡1 in time O(n lg p), by a standard overlap-add procedure (provided that
N =O(n/ lgn)).

Now, regarding ui and vi as elements of Fp� by sending X to Z, define polynomials U , V 2
Fp�[Y ]/(Y

N¡1) by Ui := �ci ui and Vi := �ci vi for 0 6 i<N , and letW =W0+ ���+WN¡1 Y
N¡1 :=

UV be their (cyclic) product. Then

w̃i := �¡ciWi=
X

i1+i2=i (modN)

�¡ciUi1 Vi2=
X

�ci1+ci2¡ciui1 vi2=
X

Z�i1,i2 ui1 vi2

coincides with the reinterpretation of wi as an element of Fp�. Moreover, we may recover wi
unambiguously from w̃i, as � > 2 dn/N e and wi 2 Fp[X]2dn/N e. Altogether, this shows how to
reduce multiplication in Fp[X ]/(X

n¡ 1) to multiplication in Fp�[Y ]/(Y
N ¡ 1).

Remark 6.2. The pair (ei+1, ci+1) can be computed from (ei, ci) in O(lg n) bit operations, so
we may compute the sequences e0, ..., eN¡1 and c0, ..., cN¡1 in time O(N lg n). Moreover, since
ci+1¡ ci takes on only two possible values, we may compute the sequence �c0, ..., �cN¡1 using O(N)
multiplications in Fp�.

7. The main algorithm

Consider the problem of computing t > 1 products u1 v, ..., ut v with u1, ..., ut, v2Fp[X ]/(X
n¡1),

i.e., t products with one fixed operand. Denote the cost of this operation by Cp,t(n). Our algorithm
for this problem will perform t+1 forward DFTs and t inverse DFTs, so it is convenient to introduce
the normalisation

Cp(n) := sup
t> 1

Cp,t(n)
2 t+1

.

This is well-defined since clearly Cp,t(n) 6 tCp,1(n). Roughly speaking, Cp(n) may be thought of
as the notional cost of a single DFT.

The problem of multiplying two polynomials in Fp[X ] of degree less than k may be reduced to
the above problem by using zero-padding, i.e., taking n := 2 k and t := 1. Since Cp,1(n) 6 3Cp(n),
we obtain Mp(k) 6 3C(2 k)+O(k lg p). Thus it suffices to obtain a good bound for Cp(n).

The next theorem gives the core of the new algorithm for the case that n is large relative to p.

Theorem 7.1. There exist x0 > 2 and a logarithmically slow function Φ: (x0,1)! R with the
following property. For all integers n>x0, there exist integers n1, ..., nd 6 Φ(n), and weights 
1, ...,

d > 0 with

P

i

i=1, such that

Cp(n)
n lg p lg (n lg p)

6
�

8+O

�

1
lg lgn

��

X

i=1

d


i
Cp(ni)

ni lg p lg(ni lg p)
+O(1), (7.1)

uniformly for n>max (x0, p2).

Proof. We wish to compute t > 1 products u1 v, ..., ut v with u1, ..., ut, v 2Fp[X ]/(X
n ¡ 1), for

some sufficiently large n. We assume throughout that p2<n.

Choose parameters. Using Theorem 4.1, we obtain integers � and M with

(lg n)c2lg lg lgn<�< (lg n)c3lg lg lgn,

and so thatM > n,M j p�¡1, andM is (�+1)-smooth. We choose long and short target transform

lengths L := dn/�3e and S := �(lg lg n)
2

. For large enough n we then have �<S <L<n 6 M , so we
may apply Theorem 4.6. This yields (�+1)-smooth integers N1, ..., Nd, with known factorisations,
such that N := N1 ��� Nd divides p� ¡ 1 and lies in the range L 6 N 6 (� + 1) L, and such that
S 6 Ni 6 S3 for all i. Finally we set � := d2 dn/N e/�e �, so that N also divides p�¡1, and we put
ni := 2Ni�. All of these parameters may be computed in time O((lg n)lg lg n)=O(n).
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For large n, we observe that the following estimates hold. First, we have

n

�3
6 N 6

2n
�2
.

Since log�� lg lgn lg lg lg n, it follows that

log2N =

�

1+O

�

1
lg lg n

��

lg n,

and also that log �� lg lg n lg lg lg n. We have N�=2n+O(N�)= 2n+O(n/�), so

N� =

�

2+O

�

1

lg n

��

n.

To estimate d, note that N > Sd and log S� (lg lgn)3 lg lg lg n, so

d = O

�

lg n
(lg lg n)3 lg lg lg n

�

.

Since p 6 n we have

lg (n lg p) =

�

1+O

�

1
lg lg n

��

lg n, (7.2)

and as ni > Ni > S > (lgn)lg lgn, we similarly obtain

lg (ni lg p) =

�

1+O

�

1
lg lg n

��

lg ni. (7.3)

Crandall–Fagin reduction. Let us check that the hypotheses of section 6.1 are satisfied, to enable
the reduction to multiplication inFp�[Y ]/(Y N¡1). We certainly have 1 6 N 6 n and � > 2 dn/N e.
For Proposition 6.1, observe that � > �2 � lg n� lg N , so p�/2 > 2�/2 > N for large n. Thus we
obtain an irreducible P 2Fp[Z] of degree �, and an element �2Fp�=Fp[Z]/P such that �N=Z,

in time Õ(�9 p)= Õ(�27 n1/2)=O(n). Each multiplication in Fp� has cost O(Sp(�)) (see section 3).
Computing the sequences ei and ci costs O(N lgn)=O(n lgn), and computing the sequence �ci

costs O(N Sp(�)). The initial splitting and final overlap-add phases require time O(t n lg p), and
the multiplications by �ci and �¡ci cost O(tN Sp(�)).

Long transforms. The factorisation of N is known, and N divides p�¡ 1, so by Lemma 3.3 we
may compute a primitive N -th root of unity ! 2Fp� in time Õ(�9 p) =O(n).

We will multiply in Fp�[Y ]/(Y
N ¡ 1) by using DFTs with respect to !. The table of roots 1,

!, ..., !N¡1 may be computed in time O(N Sp(�)). In a moment, we will describe an algorithm Ai

for computing a “short” DFT of length Ni with respect to !i := !N/Ni; we then use the algorithm
A :=A1���� �Ad for the main transform of length N (see section 2.3). The corresponding twiddle
factor tables may be extracted in time O(N lgN (� lg p+ lgN))=O(n lg n lg p).

Let D denote the complexity of A, and for t0 > 1 let Di,t0 denote the cost of performing t0

independent DFTs of length Ni using Ai. Then by (2.4) we have

D 6
X

i=1

d

Di,N/Ni+O(dN Sp(�))+O((� lg p)N lgN).

The last term is simply O(n lg n lg p).

Bluestein conversion. We now begin constructing Ai, assuming that t0 > 1 independent trans-
forms are sought. We first use Bluestein’s algorithm (section 2.5) to convert each DFT of length Ni

to a multiplication in Fp�[X]/(X
Ni¡ 1). We must check that 2 is invertible in Fp� if Ni is even;

indeed, if Ni is even, then so is p�¡1, so p=/ 2. The Bluestein conversion contributesO(t0Ni Sp(�))
to the cost of Ai.

We must also compute a suitable table of roots, once at the top level. We first extract the
table 1, !i, ..., !i

Ni¡1 from the top level table in time O(N� lg p) =O(n lg p), and then sort them
into the correct order (and perform any necessary additions) in time O(Ni lgNi (� lg p+ lgN)) =
O(S3 lgNi � lg p) =O(lgNi (n lg p)). Over all i the cost is O(lgN (n lg p))=O(n lg n lg p).
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Kronecker substitution. We finally convert each multiplication in Fp�[X]/(X
Ni¡ 1) to a mul-

tiplication inFp[X] /(X
ni¡1) using Kronecker substitution (see section 2.6). The latter multiplica-

tions have cost Cp,t0(ni), since one argument is fixed. After the multiplications, we must also
perform t0 Ni divisions by P to recover the results in Fp�[X ] / (X

Ni ¡ 1), at cost O(t0 Ni Sp(�)).
Consolidating the estimates for the Bluestein conversion and Kronecker substitution, we have

Di,t0 6 Cp,t0(ni)+O(t0NiSp(�)).

6 (2 t0+1)Cp(ni)+O(t0NiSp(�)).

For t0=N /Ni > N /S3� lg lgn, this becomes

Di,N/Ni 6 (2+O(1/ lg lgn)) (N /Ni)Cp(ni)+O(N Sp(�)).

Conclusion. Summing over i yields

D 6
�

2+O

�

1
lg lg n

��

X

i=1

d
N

Ni
Cp(ni)+O(dN Sp(�))+O(n lg n lg p).

Since

dN Sp(�) = O

�

lgn
(lg lg n)3 lg lg lg n

N� lg � lg lg � lg p lg lg p lg lg lg p

�

= O

�

n lg n lg p
(lg lg lg n)2

lg lg n

�

= O(n lg n lg p)

and
N

Ni
=
2N�

2Ni�
=

�

4+O

�

1
lg n

��

n

ni
,

this becomes

D 6
�

8+O

�

1

lg lg n

��

X

i=1

d
n

ni
Cp(ni)+O(n lg n lg p).

Let 
i := logNi/logN , so that
P

i

i=1. Since

lg ni= log2Ni+O(log �) =

�

1+O

�

log �
log S

��

log2Ni=

�

1+O

�

1
lg lgn

��

log2Ni

and lg n=(1+O(1/ lg lgn)) log2N , we get

D 6
�

8+O

�

1
lg lg n

��

X

i=1

d


i
n lg n
ni lg ni

Cp(ni)+O(n lg n lg p).

To compute the desired t products, we must execute t + 1 forward transforms, and t inverse
transforms. Each product also requires O(N) pointwise multiplications in Fp� and O(N) multipli-
cations by 1/N . These have cost O(N Sp(�)), which is absorbed by the O(n lgn lg p) term. Thus
we obtain

Cp,t(n) 6 (2 t+1)D+O(t n lg n lg p).

Dividing by (2 t + 1) n lg n lg p, taking suprema over t > 1, and using (7.2) and (7.3), yields the
bound (7.1).

Finally, since

ni=O(S3�3) =O
¡

(lg n)3c3lg lg lgn((lg lg n)
2+1)

�

=O
¡

(lgn)(lg lgn)
3�

,

we have log ni=O((log log n)4) and hence log log log ni 6 log log log log n+C for some constant C
and all large n. We may then take Φ(x) := exp�3(log�4x+C). �

Now we may prove the main theorem announced in the introduction.
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Proof of Theorem 1.1. For n > 2 define

Tp(n) :=
Cp(n)

n lg p lg(n lg p)
.

It suffices to prove that Tp(n)=O(8log
�(nlg p)), uniformly in n and p.

Let x0 and Φ(x) be as in Theorem 7.1. Increasing x0 if necessary, we may assume that Φ(x) 6
x¡ 1 for x>x0, and that x0 > exp (exp (1)).

Let �p :=max (x0, p2) for each p. We will consider the regions n 6 �p and n>�p separately. First

consider the case n 6 �p. There are only finitely many primes p< (x0)
1/2, so we may assume that

p2 > x0 and that n 6 �p= p2. In this region we use Kronecker substitution: by (2.5) and (1.1) we have

Mp(n)=O(I(n lg p))=O
¡

n lg p lg (n lg p) 8log
�(nlg p)

�

,

and since

Cp(n) = sup
t> 1

Cp,t(n)
2 t+1

6 sup
t> 1

tCp,1(n)
2 t+1

=O(Cp,1(n)) =O(Mp(n)),

we get Tp(n)=O(8log
�(n lg p)) uniformly for n 6 �p. In fact, this even shows that Tp(n)=O(8log

� p)
uniformly for n 6 �p.

Now consider the case n > �p. Here we invoke Theorem 7.1 to obtain absolute constants B,
L> 0 such that for every n>�p, there exist n1, ..., nd 6 Φ(n) and 
1, ..., 
d such that

Tp(n) 6 8

�

1+
B

log log n

�

X

i=1

d


iTp(ni)+L.

Set Lp :=max (L,max26 n6 �pTp(n)). Applying Proposition 5.3 with ` := 2, K := 8, S := f2, 3, ...g,
we find that Tp(n) =O(Lp 8

log�n¡log��p) uniformly for n > �p. Since log� �p= log� p+O(1) and

Lp=O(8log
� p), we conclude that Tp(n)=O(8log

�n)=O(8log
� (nlg p)) uniformly for n>�p. �

8. Conjecturally faster multiplication

Recall that in [18] we established the bound I(n)=O(n lgnK log�n) withK=8 for the complexity of
integer multiplication. We also proved that this can be improved to K=4, assuming the following
slight weakening of the Lenstra–Pomerance–Wagstaff conjecture on the distribution of Mersenne
primes [28, 35] (see [18, Section 9] for further discussion).

Conjecture 8.1. Let �m(x) be the number of Mersenne primes less than x. Then there exist
constants 0<a<b such that for all x> 3,

a log log x<�m(x)<b log log x.

The source of the (conjectural) speedup is as follows. The K = 8 algorithm of [18, Section 6]
computes DFTs over C, and so we encounter the “short product obstruction”. Namely, to compute
the product of two real numbers with p significant bits using FFT algorithms, we are forced to
compute a full product of two p-bit integers, and then truncate the result to p bits. To achieve
K = 4, we replaced the coefficient ring C by the finite field Fp[i], where p= 2q ¡ 1 is a Mersenne
prime. Multiplication modulo 2q ¡ 1 is a “cyclic product” rather than a short product, and this
saves a factor of two at each recursion level.

The aim of this section is to outline a credible strategy for achieving the same improvement,
from K = 8 to K = 4, in the context of multiplication in Fp[X ], at least under certain plausible
number-theoretic hypotheses.

Consider the problem of multiplying polynomials in Fp[X] of degree less than n. In the Kro-
necker substitution region, i.e., for lg n = O(lg p), we can of course achieve K = 4 if we assume
Conjecture 8.1.

Now consider the region where n is much larger than p. In the algorithm of section 7, we reduced
the multiplication problem to computing products in Fp�[Y ]/(Y

Ni¡1), where Fp�=Fp[Z]/P for
some monic irreducible P 2Fp[Z] of degree �, and where Ni is a “short” transform length. These
multiplications were in turn converted to multiplications in Fp[X ] / (X

2�Ni ¡ 1) via Kronecker
substitution. It is exactly this factor of two in zero-padding that we wish to avoid.
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Taking our cue from the integer case, we observe that if the modulus P is of a particularly
special form, then this factor of two can be eliminated. Indeed, suppose that

P (Z)=
Z�+1¡ 1
Z ¡ 1 =Z�+ ���+Z +1.

Then Fp�[Y ] / (Y
Ni ¡ 1) is isomorphic to Fp[Y , Z] / (Y

Ni ¡ 1, Z� + ��� + 1), which is a quotient
of Fp[Y , Z] / (Y

Ni ¡ 1, Z�+1 ¡ 1). Assuming further that gcd(Ni, � + 1) = 1, the latter ring is
isomorphic to Fp[X ]/(X

(�+1)Ni¡1). In other words, we can reduce a cyclic convolution over Fp�

of length Ni to a cyclic convolution over Fp of length (�+1)Ni��Ni, rather than length 2�Ni.
This saves a factor of two at this recursion level; if we can manage something similar at every
recursion level, we reduce K from 8 to 4.

The essential question is therefore how to choose � so that P =Z�+ ��� + Z + 1 is irreducible
over Fp. The following lemma gives a simple number-theoretic characterisation of such �.

Lemma 8.2. Let � > 2. The polynomial P =Z�+ ��� +Z + 1 is irreducible over Fp if and only if
�+1 is prime and p is a primitive root modulo �+1.

Proof. If ` is a nontrivial factor of � + 1, then Z�+1 ¡ 1 is divisible by Z` ¡ 1, so P has the
nontrivial factor Z`¡1+ ���+Z +1. On the other hand, suppose that �+1 is prime. If �+1= p,
then P = (Zp ¡ 1)/(Z ¡ 1) = (Z ¡ 1)p¡1 is not irreducible; otherwise, the number of irreducible
factors of P over Fp is exactly �/m, wherem is the order of p in (Z/(�+1)Z)� [36, Theorem 2.13
and Proposition 2.14] (this last statement is sometimes called the “cyclotomic reciprocity law”). �

A first attempt to reach K = 4 might run as follows. First choose � as in the proof of The-
orem 7.1, so that Fp� has many roots of unity of smooth order. Then use the same multiplication
algorithm as before, but now working over Fp� = Fp[Z] / (Z� + ��� + 1), where � is the smallest
positive multiple of � such that q := �+1 is prime and such that p is a primitive root modulo q.

Unfortunately this plan does not quite work, for reasons that we now explain.
First, if p j�, there may be a trivial obstruction to the existence of suitable �. For example, if

p=5 and 5 j�, then for any q=1(mod �) we have (5/ q)= (q/5)=1 by quadratic reciprocity, so 5
cannot be a primitive root modulo q. The only way to avoid this seems to be to insist that � not
be divisible by p in the first place. Therefore we propose the following strengthening of Lemma 4.2.

Conjecture 8.3. Define

�0(k, p) :=

(

min
�

�2N:X� > k
p

, p - �
	

p odd ,

min
�

�2N:X� > k
p

, 8 - �
	

p=2.

There exist computable absolute constants c5
0 > c4

0 > 0 such that for any integer k > 100 and any
prime p we have

(log k)c4
0 log log log k<�0(k, p)< (log k)c5

0 log log log k.

It seems likely that this conjecture should be accessible to specialists in analytic number theory.
Experimentally, the “missing” factor p does not seem to have much effect on the propensity of
H� to have many divisors d such that d+1 is prime. We could not find a quick way to prove the
conjecture directly from Lemma 4.2.

The second problem is more serious. A special case of Artin’s conjecture on primitive roots
(see [25] for a survey) asserts that for any prime p, there are infinitely many primes q for which p

is a primitive root modulo q. Unfortunately, there is not even a single prime p for which Artin’s
conjecture is known to hold! Therefore, in general we cannot prove existence of a suitable �.

However, we do have the following result of Lenstra, which states that the only obstruction to
the existence of � is the trivial one noted above, provided we are willing to accept GRH.

Lemma 8.4. Assume GRH. Assume that p - � if p is odd, or that 8 - � if p= 2. Then there exist
infinitely many primes q=1 (mod �) such that p is a primitive root modulo q.

Proof. This is a special case of [23, Theorem 8.3]. (For a description of exactly which number
fields are supposed to satisfy GRH for this result to hold, see [23, Theorem 3.1].) �
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The third problem is that existence of � is not enough; we also need a bound on its size, as
a function of � and p. The literature provides little guidance on this question. Under the hypotheses
of Lemma 8.4 (including GRH), it is known that the number of primes q<x such that q=1(mod�)
and for which p is a primitive root modulo q grows as

C
x

log x
+O

�

x log log x
log2x

�

(8.1)

for some positive C (see for example [24, Theorem 2]). Both C and the implied big-O constant
depend on � and p. While the value of C is reasonably well understood, we could not find in the
literature a similarly precise description of the implied constant, so we have been unable to derive
a bound for �.

In the interests of getting our conjectural algorithm off the ground, we make the following guess.
Define q0(�, p) to be the smallest prime q such that q= 1 (mod �) and such that p is a primitive
root modulo q (assuming that such q exists).

Conjecture 8.5. There exists a constant � 2 N and a logarithmically slow function Ψ(x) with
the following property. Suppose that p - � if p is odd, or that 8 - � if p = 2, and suppose that
log�� > �+ log� p. Then q0(�, p) 6 expΨ(�).

We have deliberately given an absurdly weak formulation of this conjecture, so as to provide
the largest possible target for analytic number theorists. For example, it would be enough to prove
that q0(�, p) 6 exp ((log�)100) for all � > exp (exp (exp (exp p))). We suspect that the conjecture is
accessible under GRH; presumably a proof would require analysing the implied constant in (8.1).

Remark 8.6. The reason we need � to be large compared to p is that it is easy to construct,
using the Chinese remainder theorem, a prime p which fails to be a primitive root modulo q for
all primes q up to a prescribed bound.

Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1. We will only give a sketch,
highlighting the main differences.

In the region lgn=O(lg p), we use Kronecker substitution together with [18, Theorem 2], which
states that I(n)=O(n lg n 4log

�n) under Conjecture 8.1.
Now assume that lg p=O(lg n). We will pursue a strategy similar to Theorem 7.1, recursing

from n down to an exponentially smaller Φ(n). Assume that we wish to compute t > 1 products
in Fp[X]/(X

n¡ 1) with one fixed operand.
Using an appropriate modification of Theorem 4.1, in which the use of Lemma 4.2 is replaced

by Conjecture 8.3, we find integers � and M such that (lgn)c4
0 lg lg lgn<�< (lgn)c5

0 lg lg lgn, p - � (or
8 - � if p=2), M > n, M j p�¡ 1, and M is (�+1)-smooth.

Now we wish to apply Conjecture 8.5 to construct suitable �. However, that conjecture requires
that log� � > � + log� p. If we have instead log� � < � + log� p, we simply use the algorithm of
Theorem 7.1. This yields the expansion factorK=8, but only for O(1) recursion levels (depending
on �), since log� �= log� n+O(1). So it is permissible to assume that log� � > � + log� p, losing
only a constant factor in the main complexity bound for the last few recursion levels.

Applying Conjecture 8.5 and Lemma 8.2, we obtain a positive multiple � of �, such that �+1
is prime, �< expΨ(�), and P :=Z�+ ���+1 is irreducible in Fp[Z]. We will take Fp[Z]/P as our
model for Fp�; note that M j p�¡ 1.

Notice that �<Ψ0(n) for some logarithmically slow function Ψ0(x). Indeed, there exists `2N

and C,C 0> 0 such that Ψ(�) 6 exp�`(log�(`+1)(�) +C) and log log log � 6 log log log log n+C 0 for
large n. Increasing ` if necessary, we get � < exp Ψ(�) 6 exp�(`+1)(log�(`+2)(n) + C 00), the latter
being a logarithmically slow function of n.

In the proof of Theorem 7.1, we selected the transform length N first, and then chose � to
fine-tune the total bit size. Here we have less control over �, so we must use a different strategy.
Choose target long and short transform lengths L := dn/(�2�)e and S := �(lg lg n)

2lg lg �. Applying
Theorem 4.6, we obtain (� + 1)-smooth integers N1, ..., Nd such that N := N1 ��� Nd divides
p� ¡ 1 and S 6 Ni 6 S3 for each i, and such that n / (�2 �) 6 N 6 2 n / (� �) for large n. Let
�0 := d2 n/(N�)e > �, and let � be the smallest prime greater than �0+1 and different to �+1.
By [4] we have � 6 �0+O((�0)0.525) 6 (1+O(1/ lg lgn)) �0, so �N�=(2+O(1/ lg lgn))n.
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We now apply the Crandall–Fagin algorithm to reduce multiplication in Fp[X ] / (X
n ¡ 1) to

multiplication in Fp�[Y ]/(Y �N ¡ 1). The prerequisite � > 2 dn/�N e is satisfied (since � is even).
Instead of using Proposition 6.1 to construct � 2 Fp� satisfying ��N = Z, we may simply take
� := Z(�N )

¡1mod (�+1). The required modular inverse exists, as � and � + 1 are distinct primes,
and gcd(N, �+1)=1 since N is (�+1)-smooth.

We now take advantage of the isomorphism Fp�[Y ] / (Y
�N ¡ 1) =� R[Y ] / (Y N ¡ 1), where

R :=Fp�[U ]/(U �¡ 1). We multiply in R[Y ]/(Y N ¡ 1) by using DFTs over R: one DFT of length
N over R reduces to � DFTs of length N over Fp�. The latter are handled by decomposing into
short transforms of length Ni, which are in turn converted to multiplications in Fp�[Y ]/(Y

Ni¡1)
via Bluestein’s algorithm. Finally — and this is where all the hard work pays off — each such
multiplication reduces to a multiplication in Fp[X]/(X

(�+1)Ni¡ 1), since gcd(Ni, �+1)=1. The
multiplications in R itself are handled using the algebraic Schönhage–Strassen algorithm.

We omit the rest of the complexity argument, which is essentially the same as that of The-
orem 7.1 and Theorem 1.1. We mention only that S was chosen sufficiently large that the
multiplications in R and in Fp� make a negligible contribution overall. �

9. Notes and generalisations

In this section we outline some directions along which the results in this paper can be extended.
We also provide some hints concerning the practical usefulness of the new ideas. Our treatment is
more sketchy and we plan to provide more details in a forthcoming paper.

9.1. Multiplication of polynomials over Fpκ

Recall that Mp�(n) denotes the cost of multiplying polynomials in Fp�[X ] of degree less than n,
where we assume that some model Fp[Z]/P for Fp� has been fixed in advance.

Theorem 9.1. We have

Mp�(n) = O
¡

n� lg p lg (n� lg p) 8log
�(n�lg p)

�

,

uniformly for all n,� > 1 and all primes p. Assuming Conjectures 8.1, 8.3 and 8.5, we may replace
K =8 by K=4.

Indeed, we saw in section 3 that

Mp�(n) = Mp(2n�)+O(nDp(�)),

where Dp(�) denotes the cost of dividing a polynomial of degree less than 2 � by P . Having
established the bound Mp(n) =O(n lg p lg(n lg p) 8log

�(nlg p)), it is now permissible to assume that
Mp(n)/n is increasing, so the usual argument for Newton iteration shows that Dp(�)=O(Mp(�)).
Using again that Mp(n)/n is increasing, we obtain nDp(�)=O(Mp(n�)).

9.2. Multiplication of polynomials over Z/pαZ
For any prime p and any integer � > 1, denote by Mp,�(n) the bit complexity of multiplying
polynomials in (Z/p�Z)[X ]n.

Theorem 9.2. We have

Mp,�(n) = O
¡

n� lg p lg (n� lg p) 8log
�(n�lg p)

�

,

uniformly for all n,� > 1 and all primes p. Assuming Conjectures 8.1, 8.3 and 8.5, we may replace
K =8 by K=4.

For lg n=O(� lg p) we may simply use Kronecker substitution. For � lg p=O(lg n) we must
modify the algorithm of section 7. Recall that in that algorithm we reduced multiplication in
Fp[X ]/(X

n¡1) to multiplicationFp�[Y ]/(Y
N¡1), where N is a transform length dividing p�¡1.

Our task is to define a ring R, analogous to Fp�, so that multiplication in (Z/p�Z)[X ]/(Xn¡ 1)
can be reduced to multiplication in R[Y ]/(Y N ¡ 1).
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Let � be the natural projection Z/ p� Z! Fp, and write � also for the corresponding map
(Z/ p� Z)[Z]! Fp[Z]. Let P 2 Fp[Z] be any monic irreducible polynomial of degree �, and let
P̃ 2 (Z/p�Z)[Z] be an arbitrary lift via �, also monic of degree �. Then P̃ is irreducible, and we
will take R := (Z/p�Z)[Z]/P̃ .

Any primitive N -th root of unity ! 2 Fp� has a unique lift to a principal N -th root of unity
!̃2R. (This can be seen, for example, by observing that !̃ must be the image in R of a Teichmüller
lift of ! in the p-adic field whose residue field is Fp�.) Given !, we may compute !̃ efficiently using
fast Newton lifting [11, Section 12.3].

Moreover, if we choose P and � 2Fp�=Fp[Z]/P as in Proposition 6.1, so that �N = Z, then

fast Newton lifting can also be used to obtain �̃ 2R such that �̃N =Z in R.

9.3. Multiplication of polynomials over Z/m Z

For any m > 1, denote by Mm(n) the bit complexity of multiplying polynomials in (Z/mZ)[X ]n.

Theorem 9.3. We have

Mm(n) = O
¡

n lgm lg (n lgm) 8log
�(nlgm)

�

,

uniformly for all n,m > 1. Assuming Conjectures 8.1, 8.3 and 8.5, we may replace K=8 by K=4.

We use the isomorphism Z /m Z =�
Q

i
(Z / pi

�i Z), where m = p1
�1 ��� pl�l is the prime

decomposition of m. The cost of converting between the Z/mZ and
Q

i
(Z/pi

�iZ) representations
is O(I(lgm) lg l) =O(I(lgm) lg lgm) [17, Section 10.3]. By Theorem 9.2 we get

Mm(n) = O
¡

n lgm lg (n lgm) 8log
�(nlgm)+n I(lgm) lg lgm

�

.

The first term dominates if n > m. If n<m we may simply use Kronecker substitution.

9.4. Complexity bounds for straight-line programs

Until now we have considered only complexity bounds in the Turing model. The new techniques
also lead to improved bounds in algebraic complexity models. In what follows, A is always a com-
mutative ring with identity.

For the simplest case, first assume that A is an Fp-algebra for some prime p. In the straight-
line program model [9, Chapter 4], we count the number of additions and subtractions in A, the
number of scalar multiplications (multiplications by elements of Fp), and the number of nonscalar
multiplications (multiplications in A). As pointed out in the introduction, the best known bound
for the total complexity was previouslyO(n lgn lg lgn), which was achieved by the Cantor–Kaltofen
algorithm.

Theorem 9.4. Let A be an Fp-algebra. We may multiply two polynomials in A[X] of degree less

than n using O(n lg n 8log
�n) additions, subtractions, and scalar multiplications, and O(n 4log

�n)
nonscalar multiplications. These bounds are uniform over all primes p and all Fp-algebras A.

The idea of the proof is to use the same algorithm as in section 7, but instead of switching
to Kronecker substitution when we reach n � p, we simply recurse all the way down to n = 1.
The role of the extension Fp� is played by A 
Fp

Fp�=�A[Z] /P , where P 2Fp[Z] is monic and
irreducible of degree � (here we have used the fact that Fp[X ] may be viewed as a subring of A[X],
since A contains an identity element and hence a copy of Fp). Thus we reduce multiplication
in A[X]/(Xn¡ 1) to multiplication in (A
Fp

Fp�)[Y ]/(Y
N ¡ 1). The latter multiplication may

be handled by DFTs over A 
Fp
Fp�, since any primitive N -th root of unity in Fp� corresponds

naturally to a principal N -th root of unity in A
Fp
Fp�.

The O(n lgn 8log
�n) bound covers the cost of the DFTs, which are accomplished entirely using

additions, subtractions and scalar multiplications. Nonscalar multiplications are needed only for
the pointwise multiplication step. To explain the O(n 4log

�n) bound, we observe that at each
recursion level the total “data size” grows by a factor of four: one factor of two arises from the
Crandall–Fagin splitting, and another factor of two from the Kronecker substitution.
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Note that in the straight-line program model, we give a different algorithm for each n. Thus
all precomputed objects, such as the defining polynomial P and the required roots of unity, are
obtained free of cost (they are built directly into the structure of the algorithm). The uniformity
in p follows from the fact that the bounds for � and M in Theorem 4.1 are independent of p,
although of course the algorithm will be different for each p. For each fixed p, we may use the
same straight-line program for all Fp-algebras A.

Assuming Conjectures 8.3 and 8.5, the bounds may be improved to respectively O(n lgn 4log
�n)

and O(n 2log
�n). However, in this case we lose uniformity in p, due to the issue raised in Remark 8.6.

Theorem 9.4 can be generalised to (Z/p�Z)-algebras, along the same lines as section 9.2. It is
also possible to handle (Z/mZ)-algebras for any integer m > 1, i.e., rings of finite characteristic,
but we cannot proceed exactly as in section 9.3, because the straight-line model has no provision
for a “reduction modulo p�” operation. Instead, we use a device introduced in [10]. Suppose that
m= p1

�1 ��� pl�l and that A is now a (Z/mZ)-algebra. For each i we may construct a straight-line
program Mi that takes as input polynomials f , g 2 B[X ] of degree less than n, where B is any
(Z/ pi

�i Z)-algebra, and computes f g. By replacing every constant in Z/ pi
�i Z by a compatible

constant in Z/mZ, we obtain a straight-line programMi
0 that takes as input f , g2A[X ] of degree

less than n, and computes hi 2 A[X] such that hi ¡ f g 2 pi
�i A[X ]. By the Chinese remainder

theorem we may choose ei2Z/mZ such that ei=0 (modm/pi
�i) and ei=1 (mod pi

�i) for each i.
The linear combination

P

i
ei hi is then equal to f g in A[X]. We conclude that we may multiply

polynomials in A[X] using O(n lg n 8log
�n) additions, subtractions and scalar multiplications (by

elements of Z/mZ), and O(n 4log
�n) nonscalar multiplications (i.e., multiplications in A). These

bounds are not uniform in m, but for each m they are uniform over all (Z/mZ)-algebras.

9.5. Other algebraic models

If we wish to take into account the cost of precomputations, and give a single algorithm that works
uniformly for all p and n, we may use a more refined complexity model such as the BSS model [6].
In this model, amachine over A is, roughly speaking, a Turing machine in which the tape cells hold
elements of A. Actually, we need a multi-tape version of the model described in [6]. The machine
can perform arithmetic operations on elements of A in unit time, but can also manipulate data
such as index variables in the same way as a Turing machine, and must deal with data layout in
the same way as a Turing machine. In this model we obtain similar bounds to Theorem 9.4, but
without uniformity in p. Alternatively, we could obtain bounds uniform in p if we added extra
terms to account for the precomputations.

Another point of view in Theorem 9.4 is that we have described a new evaluation-interpo-
lation strategy for polynomials over an Fp-algebra A. We refer the reader to [21, Sections 2.1–
2.4] for classical examples of evaluation-interpolation schemes, and [16] for algorithms specific
to finite fields. Such schemes are characterised by two quantities: the evaluation/interpolation
complexity E(n) and the number N(n) of evaluation points. The new algorithms yield the bounds
E(n)=O(n lgn 8log

�n) and N(n)=O(n 4log
�n), and these can be used to prove complexity bounds

for problems more general than polynomial multiplication. For example, we can multiply r � r

matrices with entries in A[X ]n using O(r2 n lg n 8log
�n + r! n 4log

�n) ring operations, where ! is
an exponent of matrix multiplication. One of the main advantages of our algorithms is that N(n)
is almost linear, contrary to synthetic FFT methods [10, 31] derived from Schönhage–Strassen
multiplication [32], which achieve only N(n)=O(n lg n).

In the setting of bilinear complexity [9, Chapter 14], the new algorithms do not improve asymp-
totically on the best known bounds. For example, it is known [27] that for any n there exist
F2-linear maps ai, bi: F2[X ]n ! F2 and polynomials ci 2 F2[X]2n for i 2 f1, ..., k(n)g, with
k(n) = (189 / 22 + o(1)) n, such that u v =

P

i=1
k(n)

ai(u) bi(v) ci for all u, v 2 F2[X]n. The new
method yields the asymptotically inferior bound k(n)=O(n 4log

�n). Nevertheless, these bounds are
asymptotic and do not take into account that our new algorithm would rather work over (say)F260

instead of F2. In practice, the new method might therefore outperform the bilinear algorithms
from [27].
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9.6. Implementations

The new complexity bounds have a quite theoretic flavour: in practice, slowly growing functions
such as log log n and 8log

�n really behave as constants. Furthermore, for concrete applications, it
would be more relevant to redefine log� as

log�n := min fk 2N: log�kn 6 64g.

With this definition, we observe that log�n 6 1 for all feasible values of n in the foreseeable future.
Nevertheless, we think that variants of the ideas in this paper could still be useful in practice.

Let us briefly sketch how an efficient multiplication algorithm over F2 could be implemented.
Various modern processors offer a special instruction for the multiplication of two polynomials in
F2[X ]64. The practical translation of the results from section 4 is to work over the field F260 =
F2[Z] / P where P := Z60 + ��� + Z + 1. This has two advantages. First, if we represent ele-
ments of F260 by their residues modulo Z61 ¡ 1, i.e., using a redundant representation, then
each multiplication in F260 requires a single hardware multiply instruction, followed by simple
shift and XOR instructions. Second, there exist primitive roots of unity of high smooth order
N =260¡ 1=32 � 52 � 7 � 11 � 13 � 31 � 41 � 61 � 151 � 331 � 1321.

Transforms of small prime lengths p jN over F260 can be implemented using specialised codelets,
similar to those implemented in FFTW3 [14]. Roughly speaking, the constant factor of a radix-p
DFT is p/ log p. In our case, (13/ log 13)/(2/ log 2) � 1.8, so specialised codelets should remain
reasonably efficient for p 6 13. Consequently, through the mere use of such small radices, we obtain
efficient algorithms for computing DFTs of lengths dividing 32 � 52 � 7 � 11 � 13= 225225. To handle
larger primes, we may use any algorithm for converting DFTs to convolutions. Rather than use
Bluestein’s algorithm as in the theoretical portion of the paper, it is more economical in this case
to use Rader’s algorithm, which reduces a DFT of length p to a cyclic convolution of length p¡ 1,
together with O(p) additions in F260 (see also Remark 2.4).

More precisely, consider the remaining transform lengths p=31, 41, 61, 151, 331 and 1321. We
have 30=2 � 3 � 5, 40=23 � 5, 60=22 � 3 � 5, 150=2 � 3 � 52, 330=2 � 3 �5 � 11 and 1320=23 � 3 � 5 � 11, so
in each case, the DFT reduces to a two-dimensional convolution of size 2i�d, where d is a divisor
of 225225 and 1 6 i 6 3. Such a convolution in turn reduces to 2i+1 DFTs of length d together with
d convolutions of length 2i. The latter cannot be handled using DFTs over F260, since there are no
roots of unity of order 2, 4 or 8, but in any case they are all very short convolutions and could be
performed directly, or by using Karatsuba’s algorithm.

Transforms of other lengths dividing N may be reduced to these cases via the Cooley–Tukey
algorithm. Finally, to handle arbitrary input lengths efficiently, we may use a mixed-radix gener-
alisation of the truncated Fourier transform [19, 20].

We also reemphasise the fact that DFTs of this kind can be used as an evaluation-interpolation
technique. This approach is for instance attractive for the multiplication of polynomial matrices
over F2.

We have not yet implemented any of these algorithms. We expect that much fine-tuning will
be necessary to make them most effective in practice. We intend to report on this issue in a future
work.
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