Faster polynomial multiplication over finite fields - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2014

Faster polynomial multiplication over finite fields

David Harvey
  • Function : Author
  • PersonId : 958313
Grégoire Lecerf
MAX

Abstract

Let p be a prime, and let M_p(n) denote the bit complexity of multiplying two polynomials in F_p[X] of degree less than n. For n large compared to p, we establish the bound M_p(n)=O(n log n 8^(log^∗ n) log p), where log^∗ is the iterated logarithm. This is the first known Fürer-type complexity bound for F_p[X], and improves on the previously best known bound M_p(n)=O(n log n log log n log p).
Fichier principal
Vignette du fichier
ffmul3.pdf (472.4 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01022757 , version 1 (15-07-2014)
hal-01022757 , version 2 (11-02-2015)

Identifiers

  • HAL Id : hal-01022757 , version 2

Cite

David Harvey, Joris van der Hoeven, Grégoire Lecerf. Faster polynomial multiplication over finite fields. 2014. ⟨hal-01022757v2⟩
492 View
1758 Download

Share

Gmail Facebook X LinkedIn More