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Abstract. We present a new algorithm based on binary quadratic forms
to factor integers of the form N = pq2. Its heuristic running time is expo-
nential in the general case, but becomes polynomial when special (arith-
metic) hints are available, which is exactly the case for the so-called NICE
family of public-key cryptosystems based on quadratic fields introduced
in the late 90s. Such cryptosystems come in two flavours, depending
on whether the quadratic field is imaginary or real. Our factoring al-
gorithm yields a general key-recovery polynomial-time attack on NICE,
which works for both versions: Castagnos and Laguillaumie recently ob-
tained a total break of imaginary-NICE, but their attack could not apply
to real-NICE. Our algorithm is rather different from classical factoring
algorithms: it combines Lagrange’s reduction of quadratic forms with a
provable variant of Coppersmith’s lattice-based root finding algorithm for
homogeneous polynomials. It is very efficient given either of the following
arithmetic hints: the public key of imaginary-NICE, which provides an
alternative to the CL attack; or the knowledge that the regulator of the
quadratic field Q(

√
p) is unusually small, just like in real-NICE.

Keywords: Public-key Cryptanalysis, Factorisation, Binary Quadratic
Forms, Homogeneous Coppersmith’s Root Finding, Lattices.

1 Introduction

Many public-key cryptosystems require the hardness of factoring large integers
of the special form N = pq2, such as Okamoto’s Esign [Oka90], Okamoto and
Uchiyama’s encryption [OU98], Takagi’s fast RSA variants [Tak98], and the large
family (surveyed in [BTV04]) of cryptosystems based on quadratic fields, which
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was initiated by Buchmann and Williams’ key exchange [BW88], and which
includes NICE1 cryptosystems [HPT99,PT99,PT00,JSW08] (whose main feature
is a quadratic decryption). These moduli are popular because they can lead
to special functionalities (like homomorphic encryption) or improved efficiency
(compared to RSA). And no significant weakness has been found compared to
standard RSA moduli of the form N = pq: to the best of our knowledge, the only
results on pq2 factorisation are [PO96, Per01, BDH99]. More precisely, [PO96,
Per01] obtained a linear speed-up of Lenstra’s ECM, and [BDH99, Sect. 6] can
factor in time Õ(N1/9) when p and q are balanced. Furthermore, computing
the “squarefree part” of an integer (that is, given N ∈ N as input, compute
(r, s) ∈ N2 such that N = r2s with s squarefree) is a classical problem in
algorithmic number theory (cf. [AM94]), because it is polynomial-time equivalent
to determining the ring of integers of a number field [Chi89].

However, some of these cryptosystems actually provide additional informa-
tion (other than N) in the public key, which may render factorisation easy. For
instance, Howgrave-Graham [How01] showed that the public key of [Oka86] dis-
closed the secret factorisation in polynomial time, using the gcd extension of Cop-
persmith’s root finding method [Cop97]. Very recently, Castagnos and Laguillau-
mie [CL09] showed that the public key in the imaginary version [HPT99,PT99,
PT00] of NICE allowed to retrieve the secret factorisation in polynomial time.
And this additional information in the public key was crucial to make the com-
plexity of decryption quadratic in imaginary-NICE, which was the main claimed
benefit of NICE. But surprisingly, the attack of [CL09] does not work against
REAL-NICE [JSW08], which is the version of NICE with real (rather than imagi-
nary) quadratic fields, and which also offers quadratic decryption. In particular,
the public key of REAL-NICE only consists of N = pq2, but the prime p has
special arithmetic properties.
Our Results. We present a new algorithm to factor integers of the form
N = pq2, based on binary quadratic forms (or equivalently, ideals of orders of
quadratic number fields). In the worst case, its heuristic running time is exponen-
tial, namely Õ(p1/2). But in the presence of special hints, it becomes heuristically
polynomial. These hints are different from the usual ones of lattice-based factor-
ing methods [Cop97,BDH99,How01] where they are a fraction of the bits of the
secret prime factors. Instead, our hints are arithmetic, and correspond exactly
to the situation of NICE, including both the imaginary [HPT99, PT99, PT00]
and real versions [JSW08]. This gives rise to the first general key-recovery
polynomial-time attack on NICE, using only the public key.

More precisely, our arithmetic hints can be either of the following two:

i. The hint is an ideal equivalent to a secret ideal of norm q2 in an imaginary
quadratic field of discriminant−pq2: in NICE, such an ideal is disclosed by the
public key. This gives an alternative attack of NICE, different from [CL09].

ii. The hint is the knowledge that the regulator of the quadratic field Q(
√
p) is

unusually small, just like in REAL-NICE. Roughly speaking, the regulator is a
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real number which determines how “dense” the units of the ring of integers
of the number field Q(

√
p) are. This number is known to lie in the large

interval
[
log
(

1
2 (
√
p− 4 +

√
p)
)
,
√

1
2p
(

1
2 log p+ 1

)]
. But for infinitely many

p (including square-free numbers of the form p = k2 + r, where p > 5, r|4k
and −k < r ≤ k, see [Deg58]), the regulator is at most polynomial in log p.
For these unusually small regulators, our algorithm heuristically runs in time
polynomial in the bit-length of N = pq2, which gives the first total break of
REAL-NICE [JSW08]. We stress that although such p’s are easy to construct,
their density is believed to be arbitrary small.

Interestingly, our algorithm is rather different from classical factoring algo-
rithms. It is a combination of Lagrange’s reduction of quadratic forms with a
provable variant of Coppersmith’s lattice-based root finding algorithm [Cop97]
for homogeneous polynomials. In a nutshell, our factoring method first looks for
a reduced binary quadratic form f(x, y) = ax2 + bxy + cy2 representing prop-
erly q2 with small coefficients, i.e. there exist small coprime integers x0 and y0
such that q2 = f(x0, y0). In case i., such a quadratic form is already given. In
case ii., such a quadratic form is found by a walk along the principal cycle of
the class group of discriminant pq2, using Lagrange’s reduction of (indefinite)
quadratic forms. Finally, the algorithm finds such small coprime integers x0 and
y0 such that q2 = f(x0, y0), by using the fact that gcd(f(x0, y0), pq2) is large.
This discloses q2 and therefore the factorisation of N . In both cases, the search
for x0 and y0 is done with a new rigorous homogeneous bivariate variant of Cop-
persmith’s method, which might be of independent interest: by the way, it was
pointed out to us that Bernstein [Ber08] independently used a similar method
in the different context of Goppa codes decoding.

Our algorithm requires “natural” bounds on the roots of reduced quadratic
forms of a special shape. We are unable to prove rigorously these bounds, which
makes our algorithm heuristic (like many factoring algorithms). But we have
performed many experiments supporting such bounds, and the algorithm works
very well in practice.
Factorisation and Quadratic Forms. Our algorithm is based on quadratic
forms, which share a long history with factoring (see [CP01]). Fermat’s factoring
method represents N in two intrinsically different ways by the quadratic form
x2 + y2. It has been improved by Shanks with SQUFOF, whose complexity is
Õ(N1/4) (see [GW08] for a detailed analysis). Like ours, this method works
with the infrastructure of a class group of positive discriminant, but is different
in spirit since it searches for an ambiguous form (after having found a square
form), and does not focus on discriminants of a special shape. Schoof’s factoring
algorithms [Sch82] are also essentially looking for ambiguous forms. One is based
on computation in class groups of complex quadratic orders and the other is
close to SQUFOF since it works with real quadratic orders by computing a
good approximation of the regulator to find an ambiguous form. Like SQUFOF,
this algorithm does not takes advantage of working in a non-maximal order
and is rather different from our algorithm. Both algorithms of [Sch82] runs in
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Õ(N1/5) under the generalised Riemann hypothesis. McKee’s method [McK99]
is a speedup of Fermat’s algorithm (and was presented as an alternative to
SQUFOF) with a heuristic complexity of Õ(N1/4) instead of Õ(N1/2).

SQUFOF and other exponential methods are often used to factor small num-
bers (say 50 to 100 bits), for instance in the post-sieving phase of the Number
Field Sieve algorithm. Some interesting experimental comparisons can be found
in [Mil07]. Note that the currently fastest rigorous deterministic algorithm actu-
ally has exponential complexity: it is based on a polynomial evaluation method
(for a polynomial of the form x(x− 1) · · · (x−B+ 1) for some bound B) and its
best variant is described in [BGS07]. Finally, all sieve factoring algorithms are
somewhat related to quadratic forms, since their goal is to find random pairs
(x, y) of integers such that x2 ≡ y2 mod N . However, these algorithms factor
generic numbers and have a subexponential complexity.
Road Map. The rest of the paper is organised as follows. The first section
recalls facts on quadratic fields and quadratic forms, and present our heuristic
supported by experiments. The next section describes the homogeneous Copper-
smith method and the following exhibits our main result: the factoring algorithm.
The last section consists of the two cryptanalyses of cryptosystems based on real
quadratic fields (REAL-NICE) and on imaginary quadratic fields (NICE).

2 Background on Quadratic Fields and Quadratic Forms

2.1 Quadratic Fields

Let D 6= 0, 1 be a squarefree integer and consider the quadratic number field
K = Q(

√
D). If D < 0 (resp. D > 0), K is called an imaginary (resp. a real)

quadratic field. The fundamental discriminant ∆K of K is defined as ∆K = D
if D ≡ 1 (mod 4) and ∆K = 4D otherwise. An order O in K is a subset of K
such that O is a subring of K containing 1 and O is a free Z-module of rank
2. The ring O∆K of algebraic integers in K is the maximal order of K. It can
be written as Z + ωKZ, where ωK = 1

2 (∆K +
√
∆K). If we set f = [O∆K : O]

the finite index of any order O in O∆K , then O = Z + fωKZ. The integer f
is called the conductor of O. The discriminant of O is then ∆f = f2∆K . Now,
let O∆ be an order of discriminant ∆ and a be a nonzero ideal of O∆, its norm
is N(a) = |O∆/a|. A fractional ideal is a subset a ⊂ K such that da is an ideal
of O∆ for d ∈ N. A fractional ideal a is said to be invertible if there exists
an another fractional ideal b such that ab = O∆. The ideal class group of O∆ is
C(O∆) = I(O∆)/P (O∆), where I(O∆) is the group of invertible fractional ideals
of O∆ and P (O∆) the subgroup consisting of principal ideals. Its cardinality is
the class number of O∆ denoted by h(O∆). A nonzero ideal a of O∆, a is said
to be prime to f if a + fO∆ = O∆. We denote by I(O∆, f) the subgroup of
I(O∆) of ideals prime to f . The group O?∆ of units in O∆ is equal to {±1} for
all ∆ < 0, except when ∆ is equal to −3 and −4 (O?−3 and O?−4 are respectively
the group of sixth and fourth roots of unity). When ∆ > 0, then O?∆ = 〈−1, ε∆〉
where ε∆ > 0 is called the fundamental unit. The real number R∆ = log(ε∆) is
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the regulator of O∆. The following important bounds on the regulator of a real
quadratic field can be found in [JLW95]:

log
(

1
2

(
√
∆− 4 +

√
∆)
)
≤ R∆ <

√
1
2
∆

(
1
2

log∆+ 1
)
. (1)

The lower bound is reached infinitely often, for instance with ∆ = x2 + 4 with
2 - x. Finally, this last proposition is the heart of both NICE and REAL-NICE.

Proposition 1 ([Cox99, Proposition 7.20] [Wei04, Theorem 2.16]). Let
O∆f be an order of conductor f in a quadratic field K.

i. If A is an O∆K -ideal prime to f , then A ∩ O∆f is an O∆f -ideal prime to f
of the same norm.

ii. If a is an O∆f -ideal prime to f , then aO∆K is an O∆K -ideal prime to f of
the same norm.

iii. The map ϕf : I(O∆f , f)→ I(O∆K , f), a 7→ aO∆K is an isomorphism.

The map ϕf from Proposition 1 induces a surjection ϕ̄f : C(O∆f ) � C(O∆K )
which can be efficiently computed (see [PT00]). In our settings, we will use a
prime conductor f = q and consider ∆q = q2∆K , for a fundamental discriminant
∆K . In that case, the order of the kernel of ϕ̄q is given by the classical analytic
class number formula (see for instance [BV07])

h(O∆q )
h(O∆K )

=
{
q − (∆K/q) if ∆k < −4,
(q − (∆K/q))R∆K/R∆q if ∆k > 0. (2)

Note that in the case of real quadratic fields, ε∆q = εt∆K for a positive integer
t, hence R∆q/R∆K = t and t | (q − (∆K/q)).

2.2 Representation of the Classes

Working with ideals modulo the equivalence relation of the class group is essen-
tially equivalent to work with binary quadratic forms modulo SL2(Z) (cf. Section
5.2 of [Coh00]). Moreover, quadratic forms are more suited to an algorithmic
point of view. Every ideal a of O∆ can be written as a = m

(
aZ + −b+

√
∆

2 Z
)

with m ∈ Z, a ∈ N and b ∈ Z such that b2 ≡ ∆ (mod 4a). In the remainder,
we will only consider primitive integral ideals, which are those with m = 1.
This notation also represents the binary quadratic form ax2 + bxy + cy2 with
b2 − 4ac = ∆. This representation of the ideal is unique if the form is normal
(see below). We recall here some facts about binary quadratic forms.

Definition 1. A binary quadratic form f is a degree 2 homogeneous polynomial
f(x, y) = ax2 +bxy+cy2 where a, b and c are integers, and is denoted by [a, b, c].
The discriminant of the form is ∆ = b2 − 4ac. If a > 0 and ∆ < 0, the form is
called definite positive and indefinite if ∆ > 0.

Let M ∈ SL2(Z) with M =
(
α β
γ δ

)
, and f = [a, b, c], a binary quadratic form,

then f.M is the equivalent binary quadratic form f(αx+ βy, γx+ δy).
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Definite Positive Forms. Let us first define the crucial notion of reduction.

Definition 2. The form f = [a, b, c] is called normal if −a < b ≤ a. It is called
reduced if it is normal, a ≤ c, and if b ≥ 0 for a = c.

The procedure which transforms a form f = [a, b, c] into a normal one consists
in setting s such that b+2sa belongs to the right interval (see [BV07, (5.4)]) and
producing the form [a, b+2sa, as2+bs+c]. Once a form f = [a, b, c] is normalised,
a reduction step consists in normalising the form [c,−b, a]. We denote this form
by ρ(f) and by Rho a corresponding algorithm. The reduction then consists in
normalising f , and then iteratively replacing f by ρ(f) until f is reduced. The
time complexity of this (Lagrange-Gauß) algorithm is quadratic (see [VV07]).
It returns a reduced form g which is equivalent to f modulo SL2(Z). We will
call matrix of the reduction, the matrix M such that g = f.M . The reduction
procedure yields a uniquely determined reduced form in the class modulo SL2(Z).

Indefinite Forms. Our main result will deal with forms of positive discrimi-
nant. Here is the definition of a reduced indefinite form.

Definition 3. The form f = [a, b, c] of positive discriminant ∆ is reduced if∣∣∣√∆− 2|a|
∣∣∣ < b <

√
∆ and normal if −|a| < b ≤ |a| for |a| ≥

√
∆, and

√
∆− 2|a| < b <

√
∆ for |a| <

√
∆.

The reduction process is similar to the definite positive case. The time com-
plexity of the algorithm is still quadratic (see [BV07, Theorem 6.6.4]). It returns
a reduced form g which is equivalent to f modulo SL2(Z). The main difference
with forms of negative discriminant is that there will in general not exist a unique
reduced form per class, but several organised in a cycle structure i. e., when f
has been reduced then subsequent applications of ρ give other reduced forms.

Definition 4. Let f be an indefinite binary quadratic form, the cycle of f is
the sequence (ρi(g))i∈Z where g is a reduced form which is equivalent to f .

From Theorem 6.10.3 from [BV07], the cycle of f consists of all reduced
forms in the equivalence class of f . Actually, the complete cycle is obtained by
a finite number of application of ρ as the process is periodic. It has been shown
in [BTW95] that the period length ` of the sequence of reduced forms in each
class of a class group of discriminant ∆ satisfies R∆

log∆ ≤ ` ≤
2R∆
log 2 + 1.

Our factoring algorithm will actually take place in the principal equivalence
class. The following definition exhibits the principal form of discriminant ∆.

Definition 5. The reduced form [1, b
√
∆c, (b

√
∆c2 − ∆)/4] of discriminant ∆

is called the principal form of discriminant ∆, and will be denoted 1∆.
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2.3 Reduction of the Forms [q2, kq, (k2 ± p)/4] and Heuristics

In this subsection, p and q are two distinct primes of the same bit-size λ and
p ≡ 1 mod 4 (resp. p ≡ 3 mod 4) when we deal with positive (resp. negative)
discriminant. Our goal is to factor the numbers pq2 with the special normalised
quadratic forms [q2, kq, (k2 + p)/4] or [q2, kq, (k2− p)/4], depending whether we
work with a negative discriminant ∆q = −pq2 or with a positive one ∆q = pq2.
If p and q have the same size, these forms are clearly not reduced neither in the
imaginary setting nor in real one. But as we shall see, we can find the reduced
forms which correspond to the output of the reduction algorithm applied on
these forms.

Suppose that we know a form f̂k, either definite positive or indefinite, which
is the reduction of a form fk = [q2, kq, (k2 ± p)/4] where k is an integer. Then

f̂k represents the number q2. More precisely, if Mk =
(
α β
γ δ

)
∈ SL2(Z) is the

matrix such that f̂k = fk.Mk, then f̂k.M
−1
k = fk and q2 = fk(1, 0) = f̂k(δ,−γ).

In Section 3, we will see that provided they are relatively small compared to
∆q, the values δ and −γ can be found in polynomial time with a new variant
of Coppersmith method. Our factoring algorithm can be sketched as follows:
find such a form f̂k and if the coefficients of Mk are sufficiently small, retrieve
δ and −γ and the non-trivial factor q2 of ∆q. In this paragraph, we give some
heuristics on the size of such a matrix Mk and discuss their relevance. If M is a
matrix we denote by |M | the max norm, i. e., the maximal coefficient of M in
absolute value.

In the imaginary case, it is showed in the proof of [CL09, Theorem 2] that
the forms fk belong to different classes of the kernel of the map ϕ̄q, depending
on k, so the reduced equivalent forms f̂k are the unique reduced elements of the
classes of the kernel. To prove the correctness of our attack on NICE, we need
the following heuristic (indeed, the root finding algorithm of Section 3 recovers
roots up to |∆q|1/9):

Heuristic 1 (Imaginary case) Given a reduced element f̂k of a nontrivial
class of ker ϕ̄q, the matrix of reduction Mk is such that |Mk| < |∆q|1/9 with
probability asymptotically close to 1.

From Lemma 5.6.1 of [BV07], |Mk| < 2 max{q2, (k2 + p)/4}/
√
pq2. As fk is

normalised, |k| ≤ q and |Mk| < 2q/
√
p ≈ |∆q|1/6. Note that we cannot reach such

a bound with our root finding algorithm. Experimentally, for random k, |Mk| can
be much smaller. For example, if the bit-size λ of p and q equals 100, the mean
value of |Mk| is around |∆q|1/11.7. Our heuristic can be explained as follows.
A well-known heuristic in the reduction of positive definite quadratic forms (or
equivalently, two-dimensional lattices) is that if [a, b, c] is a reduced quadratic
form of discriminant ∆, then a and c should be close to

√
∆. This cannot hold for

all reduced forms, but it can be proved to hold for an overwhelming majority of
reduced forms. Applied to f̂k = [a, b, c], this means that we expect a and c to be
close to |∆q|1/2. Now, recall that q2 = f̂k(δ,−γ) = aδ2 − bδγ + cγ2, which leads
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to δ and γ close to
√
q2/a = q/

√
a ≈ q/|∆q|1/4 ≈ |∆q|1/12. Thus, we expect that

|Mk| ≤ |∆q|1/12. And this explains why we obtained experimentally the bound
|∆q|1/11.7. Figure 1(a) shows a curve obtained by experimentation, which gives
the probability that |Mk| < |∆q|1/9 for random k, in function of λ. This curve
also supports our heuristic.

In the real case, we prove in the following theorem that R∆q/R∆K forms fk
are principal and we exhibit the generators of the corresponding primitive ideals.

Theorem 1. Let ∆K be a fundamental positive discriminant, ∆q = ∆Kq
2 where

q is an odd prime conductor. Let ε∆K (resp. ε∆q) be the fundamental unit of
O∆K (resp. O∆q) and t such that εt∆K = ε∆q . Then the principal ideals of O∆q
generated by qεi∆K correspond to quadratic forms fk(i) = [q2, k(i)q, (k(i)2−p)/4]
with i ∈ {1, . . . , t− 1} and k(i) is an integer defined modulo 2q computable from
εi∆K mod q.

Proof. Let αi = qεi∆K with i ∈ {1, . . . , t − 1}. Following the proof of [BTW95,
Proposition 2.9], we detail here the computation of ai = αiO∆q . Let xi and yi
be two integers such that εi∆K = xi + yiωK . Then αi = qxi + yiq∆K(1− q)/2 +
yi

1
2 (∆q+

√
∆q), and αi is an element of O∆q . Let mi, ai and bi be three integers

such that ai = mi

(
aiZ +

−bi+
√
∆q

2

)
. As mentioned in the proof of [BTW95,

Proposition 2.9], mi is the smallest positive coefficient of
√
∆q/2 in ai. As O∆q

is equal to Z + (∆q +
√
∆q)/2Z, αiO∆q is generated by αi and αi(∆q +

√
∆q)/2

as a Z-module. So a simple calculation gives that mi = gcd(yi, q(xi + yi∆K/2)).
As εi∆K is not an element of O∆q , we have gcd(yi, q) = 1 so mi = gcd(yi, xi +
yi∆K/2). The same calculation to find m′i for the ideal εi∆KO∆K reveals that
mi = m′i. As εi∆KO∆K = O∆K we must have m′i = 1. Now, N(ai) = |N(αi)| = q2

and N(ai) = m2
i ai = ai and therefore ai = q2. Let us now find bi. Note that

bi is defined modulo 2ai. Since αi ∈ αiO∆q , there exist µi and νi such that
αi = aiµi + (−bi +

√
∆q)/2νi. By identification in the basis (1,

√
∆q), νk = 1

and by a multiplication by 2, we obtain 2qxi + qyi∆K ≡ −biyi (mod 2ai). As
bi ≡ ∆q (mod 2), we only have to determine bi modulo q2. As yi is prime to
q, we have bi ≡ k(i)q (mod q2) with k(i) ≡ −2xi/yi −∆K (mod q). Finally, as
we must have −ai < b ≤ ai if ai >

√
∆q and else

√
∆q − 2ai < b <

√
∆q,

k(i) is the unique integer with k(i) ≡ ∆q (mod 2) and k(i) ≡ −2xi/yi − ∆K

(mod q), such that b = k(i)q satisfies that inequalities. Eventually, the principal
ideal of O∆q generated by qεi∆K corresponds to the form [q2, k(i)q, ci] with ci =
(b2i −∆q)/(4ai) = (k(i)2 −∆K)/4. ut

From this theorem, we see that if we go across the cycle of principal forms,
then we will find reduced forms f̂k. To analyse the complexity of our factor-
ing algorithm, we have to know the distribution of these forms on the cycle.
An appropriate tool is the Shanks distance d (see [BV07, Definition 10.1.4])
which is close to the number of iterations of Rho between two forms. One has
d(1∆q , fk(i)) = iR∆K . From Lemma 10.1.8 of [BV07], |d(f̂k(i), fk(i))| < log q, for
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(a) Imaginary case (b) Real case

Fig. 1. Probability that |Mk| < |∆q|1/9 in function of the bit-size λ of p and q

all i = 1, 2, . . . , t − 1. Let j be the smallest integer such that 0 < jR∆K −
2 log q, then as jR∆K = d(fk(i), fk(i+j)) = d(fk(i), f̂k(i)) + d(f̂k(i), f̂k(i+j)) +
d(f̂k(i+j), fk(i+j)), from the triangle inequality, one has jR∆K < 2 log(q) +
|d(f̂k(i), f̂k(i+j))|. So, |d(f̂k(i), f̂k(i+j))| > jR∆K − 2 log q > 0. This inequality
proves that fk(i) and fk(i+j) do not reduce to the same form. Experiments actu-
ally show that asymptotically, |d(f̂k(i), fk(i))| is very small on average (smaller
than 1). As a consequence, as pictured in figure 2, d(1∆q , f̂k(i)) ≈ iR∆K .

R∆K

fk(1)

f̂k(1)

fk(2)f̂k(2)

fk(3)
f̂k(3)

1∆q

Fig. 2. Repartition of the forms f̂k(i) along the principal cycle

Moreover, as in the imaginary case, experiments show that asymptotically
the probability that the norm of the matrices of reduction, |Mk| is smaller than
∆

1/9
q is close to 1 (see figure 1(b)). This leads to the following heuristic.

Heuristic 2 (Real case) From the principal form 1∆q , a reduced form f̂k such
that the matrix of the reduction, Mk, satisfy |Mk| < ∆

1/9
q , can be found in

O(R∆K ) successive applications of Rho.

We did also some experiments to investigate the case where the bit-sizes of
p and q are unbalanced. In particular when the size of q grows, the norm of the
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matrix of reduction becomes larger. For example, for a 100-bit p and a 200-bit q
(resp. a 300-bit q), more than 95% (resp. 90%) of the f̂k have a matrix Mk with
|Mk| < ∆

1/6.25
q (resp. |Mk| < ∆

1/5.44
q ).

3 A Rigorous Homogeneous Variant of Coppersmith’s
Root Finding Method

Our factoring algorithm searches many times for small modular roots of de-
gree two homogeneous polynomials and the most popular technique to find
them is based on Coppersmith’s method (see [Cop97] or May’s survey [May07]).
Our problem is the following: Given f(x, y) = x2 + bxy + cy2 a (monic) bi-
nary quadratic form and N = pq2 an integer of unknown factorisation, find
(x0, y0) ∈ Z2 such that f(x0, y0) ≡ 0 (mod q2), while |x0|, |y0| ≤ M , where
M ∈ N. The usual technique for this kind of problems is only heuristic, since it
is the gcd extension of bivariate congruences. Moreover, precise bounds cannot
be found in the litterature. Fortunately, because our polynomial is homogeneous,
we will actually be able to prove the method. This homogenous variant is quite
similar to the one-variable standard Coppersmith method, but is indeed even
simpler to describe and more efficient since there is no need to balance coeffi-
cients. We denote as ‖ · ‖ the usual Euclidean norm for polynomials. The main
tool to solve this problem is given by the following variant of the widespread
elementary Howgrave-Graham’s lemma [How97].

Lemma 1. Let B ∈ N and g(x, y) ∈ Z[x, y] be a homogeneous polynomial of
total degree δ. Let M > 0 be a real number and suppose that ||g(x, y)|| < B√

δ+1Mδ

then for all x0, y0 ∈ Z such that g(x0, y0) ≡ 0 (mod B) and |x0|, |y0| ≤ M ,
g(x0, y0) = 0.

Proof. Let g(x, y) =
∑δ
i=0 gix

iyδ−i where some gis might be zero. We have

|g(x0, y0)| ≤
∑δ
i=0 |gi||xi0y

δ−i
0 | ≤M δ

∑δ
i=0 |gi|

≤M δ
√
δ + 1‖g(x, y)‖ < B

and therefore g(x0, y0) = 0. ut

The trick is then to find only one small enough bivariate homogeneous poly-
nomial satisfying the conditions of this lemma and to extract the rational root
of the corresponding univariate polynomial with standard techniques. On the
contrary, the original Howgrave-Graham’s lemma suggests to look for two poly-
nomials of small norm having (x0, y0) as integral root, and to recover it via
elimination theory. The usual way to obtain these polynomials is to form a
lattice spanned by a special family of polynomials, and to use the LLL algo-
rithm (cf. [LLL82]) to obtain the two “small” polynomials. Unfortunately, this
reduction does not guarantee that these polynomials will be algebraically inde-
pendent, and the elimination can then lead to a trivial relation. Consequently,
this bivariate approach is heuristic. Fortunately, for homogeneous polynomials,
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we can take another approach by using Lemma 1 and then considering a uni-
variate polynomial with a rational root. This makes the method rigorous and
slightly simpler since we need a bound on ‖g(x, y)‖ and not on ‖g(xX, yY )‖ if
X and Y are bounds on the roots and therefore the resulting lattice has smaller
determinant than in the classical bivariate approach.

To evaluate the maximum of the bound we can obtain, we need the size of
the first vector provided by LLL which is given by:

Lemma 2 (LLL). Let L be a full-rank lattice in Zd spanned by an integer basis
B = {b1, . . . , bd}. The LLL algorithm, given B as input, will output in time
O(d6 log3(max ‖bi‖)) a non-zero vector u satisfying ‖u‖ ≤ 2(d−1)/4 det(L)1/d.

We will now prove the following general result regarding the modular roots
of bivariate homogeneous polynomials which can be of independent interest.

Theorem 2. Let f(x, y) ∈ Z[x, y] be a homogeneous polynomial of degree δ with
f(x, 0) = xδ, N be a non-zero integer and α be a rational number in [0, 1], then
one can retrieve in polynomial time in logN , δ and the bit-size of α, all the
rationals x0/y0, where x0 and y0 are integers such that gcd(f(x0, y0), N) ≥ Nα

and |x0|, |y0| ≤ Nα2/2δ.

Proof. Let b be a divisor of N for which their exists (x0, y0) ∈ Z2 such that
b = gcd(f(x0, y0), N) ≥ Nα. We define some integral parameters (to be specified
later) m, t and t′ with t = m+ t′ and construct a family of δt+ 1 homogeneous
polynomials g and h of degree δt such that (x0, y0) is a common root modulo
bm. More precisely, we consider the following polynomials{

gi,j(x, y) = xjyδ(t−i)−jf iNm−i for i = 0, . . . ,m− 1, j = 0, . . . , δ − 1
hi(x, y) = xiyδt

′−ifm for i = 0, . . . , δt′.

We build the triangular matrix L of dimension δt+ 1, containing the coeffi-
cients of the polynomials gi,j and hi. We will apply LLL to the lattice spanned
by the rows of L. The columns correspond to the coefficients of the monomials
yδt, xyδt−1, . . . , xδt−1y, xδt. Let β ∈ [0, 1] such that M = Nβ . The product of the
diagonal elements gives det(L) = Nδm(m+1)/2. If we omit the quantities that do
not depend on N , to satisfy the inequality of Lemma 1 with the root bound M ,
the LLL bound from Lemma 2 implies that we must have

δm(m+ 1)/2 ≤ (δt+ 1)(αm− δtβ) (3)

and if we set λ such that t = λm, this gives asymptotically β ≤ α
δλ −

1
2δλ2 , which

is maximal when λ = 1
α , and in this case, βmax = α2/2δ. The vector output by

LLL gives a homogeneous polynomial f̃(x, y) such that f̃(x0, y0) = 0 thanks to
Lemma 1. Let r = x/y, any rational root of the form x0/y0 can be found by
extracting the rational roots of f̃ ′(r) = 1/yδtf̃(x, y) with classical methods. ut

For the case we are most interested in, δ = 2, N = pq2 with p and q of the
same size, i. e., α = 2/3 then λ = 3/2 and we can asymptotically get roots up
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to Nβ with β = 1
9 . If we take m = 4 and t = 6, i. e., we work with a lattice of

dimension 13, we get from (3) that β ≈ 1
10.63 and with a 31-dimensional lattice

(m = 10 and t = 15), β ≈ 1
9.62 . If the size of q grows compared to p, i. e., α

increases towards 1, then β increases towards 1/4. For example, if q is two times
larger than p, i. e., α = 4/5 then β = 1/6.25. For α = 6/7, we get β ≈ 1/5.44.

We will call HomogeneousCoppersmith the algorithm which implements this
method. It takes as input an integerN = pq2 and a binary quadratic form [a, b, c],
from which we deduce the unitary polynomial x2+b′xy+c′y2, by dividing both b
and c by a modulo N , and the parameters m and t. In fact, this method will only
disclose proper representations of q2, those for which x and y are coprime, but
we note that fk properly represents q2, and therefore so does our form [a, b, c].

The case α = 1 of Theorem 2 can already be found in Joux’s book [Jou09] and
we mention that a similar technique has already been independently investigated
by Bernstein in [Ber08].

4 A Õ(p1/2)-Deterministic Factoring Algorithm for pq2

We detail our new quadratic form-based factoring algorithm for numbers of the
form pq2. In this section, p and q will be of same bit-size, and p ≡ 1 (mod 4).

4.1 The Algorithm

Roughly speaking, if ∆q = N = pq2, our factoring algorithm, depicted in Fig. 3,
exploits the fact that the non-reduced forms fk = [q2, kq,−] reduce to forms
f̂k for which there exists a small pair (x0, y0) such that q2 | f̂k(x0, y0) while
q2 | N . From Theorem 1, we know that these reduced forms appear on the
principal cycle of the class group of discriminant ∆q. To detect them, we start a
walk in the principal cycle from the principal form 1N , and apply Rho until the
Coppersmith-like method finds these small solutions.

Input: N = pq2,m, t
Output: p, q

1. h← 1N
2. while (x0, y0) not found do

2.1. h← Rho(h)
2.2. x0/y0 ← HomogeneousCoppersmith(h,N,m, t)

3. q ← Sqrt(Gcd(h(x0, y0), N))
4. return (N/q2, q)

Fig. 3. Factoring N = pq2
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4.2 Heuristic Correctness and Analysis of Our Algorithm

Assuming Heuristic 2, starting from 1N , after O(Rp) iterations, the algorithm
will stop on a reduced form whose roots will be found with our Coppersmith-
like method (for suitable values of m and t) since they will satisfy the ex-
pected N1/9 bound. The computation of gcd(h(x0, y0), N) will therefore expose
q2 and factor N . The time complexity of our algorithm is then heuristically
O(RpPoly(logN)), whereas the space complexity is O(logN). The worst-case
complexity is O(p1/2 log pPoly(logN)). For small regulators, such as in REAL-
NICE cryptosystem (see. Subsection 5.1), the time complexity is polynomial.

This algorithm can be generalised with a few modifications to primes p such
that p ≡ 3 (mod 4), by considering ∆q = 4pq2. Moreover if the bit-sizes of p and
q are unbalanced, our experiments suggest that the size of the roots will be small
enough (see end of Subsection 2.3 and Section 3), so the factoring algorithm will
also work in this case, with the same complexity.

Comparison with other Deterministic Factorisation Methods. Boneh,
Durfee and Howgrave-Graham presented in [BDH99] an algorithm for factoring
integers N = prq. Their main result is the following:

Lemma 3 ([BDH99]). Let N = prq be given, and assume q < pc for some c.
Furthermore, assume that P is an integer satisfying |P − p| < p1− c

r+c−2 rd . Then
the factor p may be computed from N , r, c and P by an algorithm whose running
time is dominated by the time it takes to run LLL on a lattice of dimension d.

For r = 2 and c = 1, this leads to a deterministic factoring algorithm which
consists in exhaustively search for an approximation P of p and to solve the
polynomial equation (P +X)2 ≡ 0 (mod p2) with a method à la Coppersmith.
The approximation will be found after O(p1/3) = O(N1/9) iterations.

The fastest deterministic generic integer factorisation algorithm is actually a
version of Strassen’s algorithm [Str76] from Bostan, Gaudry and Schost [BGS07],
who ameliorates a work of Chudnovsky and Chudnovsky [CC87] and proves a
complexity of O(Mint(

4
√
N logN)) where Mint is a function such that integers of

bit-size d can me multiplied in Mint(d) bit operations. More precisely, for numbers
of our interest, Lemma 13 from [BGS07] gives the precise complexity:

Lemma 4 ([BGS07]). Let b,N be two integers with 2 ≤ b < N . One can
compute a prime divisor of N bounded by b, or prove that no such divisor ex-
ists in O

(
Mint(

√
b logN) + log bMint(logN) log logN

)
bit operations and space

O(
√
b logN) bits.

In particular, for b = N1/3, the complexity is Õ(N1/6), with a very large space
complexity compared to our algorithm. Moreover, none of these two last of al-
gorithms can actually factor an integer of cryptographic size. The fact that a
prime divisor has a small regulator does not help in these algorithms, whereas
it makes the factorisation polynomial in our method.
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5 Cryptanalysis of the NICE Cryptosystems

Hartmann, Paulus and Takagi proposed the elegant NICE encryption scheme
(see [HPT99,PT99,PT00]), based on imaginary quadratic fields and whose main
feature was a quadratic decryption time. Later on, several other schemes, includ-
ing (special) signature schemes relying on this framework have been proposed.
The public key of these NICE cryptosystems contains a discriminant ∆q = −pq2
together with a reduced ideal h whose class belongs to the kernel of ϕ̄q. The
idea underlying the NICE cryptosystem is to hide the message behind a random
element [h]r of the kernel. Applying ϕ̄q will make this random element disappear,
and the message will then be recovered.

In [JSW08], Jacobson, Scheidler and Weimer embedded the original NICE
cryptosystem in real quadratic fields. Whereas the idea remains essentially the
same as the original, the implementation is very different. The discriminant is
now ∆q = pq2, but because of the differences between imaginary and real setting,
these discriminant will have to be chosen carefully. Among these differences, the
class numbers are expected to be small with very high probability (see the Cohen-
Lenstra heuristics [CL84]). Moreover, an equivalence class does not contain a
unique reduced element anymore, but a multitude of them, whose number is
governed by the size of the fundamental unit. The rough ideas to understand
these systems and our new attacks are given in the following. The full description
of the systems is omitted for lack of space but can be found in [HPT99,JSW08].

5.1 Polynomial-Time Key Recovery in the Real Setting

The core of the design of the REAL-NICE encryption scheme is the very particular
choice of the secret prime numbers p and q such that ∆K = p and ∆q = pq2.
They are chosen such that the ratio R∆q/R∆K is of order of magnitude of q
and that R∆K is bounded by a polynomial in log(∆K). To ensure the first
property, it is sufficient to choose q such that q −

(
∆K
q

)
is a small multiple of

a large prime. If the second property is very unlikely to naturally happen since
the regulator of p is generally of the order of magnitude of

√
p, it is indeed

quite easy to construct fundamental primes with small regulator. The authors
of [JSW08] suggest to produce a prime p as a so-called Schinzel sleeper, which
is a positive squarefree integer of the form p = a2x2 + 2bx + c with a, b, c, x
in Z, a 6= 0 and b2 − 4ac dividing 4 gcd(a2, b)2. Schinzel sleepers are known to
have a regulator of the order log(p) (see [CW05]). Some care must be taken
when setting the (secret) a, b, c, x values, otherwise the resulting ∆q = pq2 is
subject to factorisation attacks described in [Wei04]. We do not provide here
more details on these choices since the crucial property for our attack is the fact
that the regulator is actually of the order log(p). The public key consists of the
sole discriminant ∆q. The message is carefully embedded (and padded) into a
primitive O∆q -ideal so that it will be recognised during decryption. Instead of
moving the message ideal m to a different equivalence class (like in the imaginary
case), the encryption actually hides the message in the cycle of reduced ideal
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of its own equivalent class by multiplication of a random principal O∆q -ideal h
(computed during encryption). The decryption process consists then in applying
the (secret) map ϕ̄q and perform an exhaustive search for the padded message in
the small cycle of ϕ̄q([mh]). This exhaustive search is actually possible thanks to
the choice of p which has a very small regulator. Like in the imaginary case, the
decryption procedure has a quadratic complexity and significantly outperforms
an RSA decryption for any given security level (see Table 3 from [JSW08]).
Unfortunately, due to the particular but necessary choice of the secret prime p,
the following result states the total insecurity of the REAL-NICE system.

Result 1 Algorithm 3 recovers the secret key of REAL-NICE in polynomial time
in the security parameter under Heuristic 2 since the secret fundamental dis-
criminant p is chosen to have a regulator bounded by a polynomial in log p.

We apply the cryptanalysis on the following example. The Schinzel poly-
nomial S(X) = 27252X2 + 2 · 3815X + 2 produces a suitable 256-bit prime p
for the value X0 = 103042745825387139695432123167592199. This prime has
a regulator R∆K ' 90.83. The second 256-bit prime q is chosen following the
recommendations from [Wei04]. This leads to a the discriminant

∆q = 28736938823310044873380716142282073396186843906757463274792638734144060602830510
80738669163489273592599054529442271053869832485363682341892124500678400322719842
63278692833860326257638544601057379571931906787755152745236263303465093

Our algorithm recovers the prime
q = 60372105471499634417192859173853663456123015267207769653235558092781188395563

from ∆q after 45 iterations in 42.42 seconds on a standard laptop. The rational
root is x0

y0
equal to − 2155511611710996445623

3544874277134778658948 , where x0 and y0 satisfy log(∆q)
log(|x0|) ' 10.8

and log(∆q)
log(|y0|) ' 10.7.

5.2 Polynomial-Time Key Recovery of the Original NICE

As mentioned above, the public key of the original NICE cryptosystem contains
the representation of a reduced ideal h whose class belongs to the kernel of the
surjection ϕ̄q. The total-break of the NICE cryptosystem is equivalent to solving
the following kernel problem.

Definition 6 (Kernel Problem [BPT04]). Let λ be an integer, p and q be
two λ-bit primes with p ≡ 3 (mod 4). Fix a non-fundamental discriminant ∆q =
−pq2. Given an element [h] of ker ϕ̄q, factor the discriminant ∆q.

Castagnos and Laguillaumie proposed in [CL09] a polynomial-time algorithm
to solve this problem. We propose here a completely different solution within the
spirit of our factorisation method and whose complexity is also polynomial-time.
As discuss in Subsection 2.3, the idea is to benefit from the fact that the public
ideal h corresponds to a reduced quadratic form, f̂k, which represents q2. We thus
find these x0 and y0 such that gcd(f̂k(x0, y0), ∆q) = q2 with the Coppersmith
method of Section 3.
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Result 2 The Homogeneous Coppersmith method from Section 3 solves the Ker-
nel Problem in polynomial time in the security parameter under Heuristic 1.

We apply our key recovery on the example of NICE proposed in [JJ00,CL09]:

∆q = −1001133619402846750073919037082619174565372425946674915149340539464219927955168
18216760083640752198709726199732701843864411853249644535365728802022498185665592
98370854645328210791277591425676291349013221520022224671621236001656120923

a = 5702268770894258318168588438117558871300783180769995195092715895755173700399
141486895731384747

b = 3361236040582754784958586298017949110648731745605930164666819569606755029773
074415823039847007

The public key consists in ∆q and h = (a, b). Our Coppersmith method finds
in less that half a second the root u0 = −103023911

349555951 = x0
y0

and

h(x0, y0) = 5363123171977038839829609999282338450991746328236957351089
4245774887056120365979002534633233830227721465513935614971
593907712680952249981870640736401120729 = q2.

All our experiments have been run on a standard laptop under Linux with
software Sage. The lattice reduction have been performed with Stehlé’s fplll [Ste].
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