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RIGOROUS UNIFORM APPROXIMATION OF D-FINITE

FUNCTIONS USING CHEBYSHEV EXPANSIONS

ALEXANDRE BENOIT, MIOARA JOLDES, AND MARC MEZZAROBBA

Abstract. A wide range of numerical methods exists for computing polyno-
mial approximations of solutions of ordinary differential equations based on
Chebyshev series expansions or Chebyshev interpolation polynomials. We con-
sider the application of such methods in the context of rigorous computing
(where we need guarantees on the accuracy of the result), and from the com-
plexity point of view.

It is well-known that the order-n truncation of the Chebyshev expansion of a
function over a given interval is a near-best uniform polynomial approximation
of the function on that interval. In the case of solutions of linear differential
equations with polynomial coefficients, the coefficients of the expansions obey
linear recurrence relations with polynomial coefficients. Unfortunately, these
recurrences do not lend themselves to a direct recursive computation of the
coefficients, owing among other things to a lack of initial conditions.

We show how they can nevertheless be used, as part of a validated process,
to compute good uniform approximations of D-finite functions together with
rigorous error bounds, and we study the complexity of the resulting algorithms.
Our approach is based on a new view of a classical numerical method going
back to Clenshaw, combined with a functional enclosure method.
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1. Introduction

1.1. Background. Many of the special functions commonly used in areas such
as mathematical physics are so-called D-finite functions, that is, solutions of linear
ordinary differential equations (LODE) with polynomial coefficients [56]. This prop-
erty allows for a uniform theoretic and algorithmic treatment of these functions, an
idea that was recognized long ago in Numerical Analysis [34, p. 464], and more re-
cently found many applications in the context of Symbolic Computation [67, 54, 32].
The present article is devoted to the following problem.

Problem 1.1. Let y : [−1, 1] → R be a D-finite function specified by a linear
differential equation with polynomial coefficients and initial conditions. Let d ∈N. Given y and d, find the coefficients of a polynomial p(x) =

∑d
n=0 cnTn(x)

written on the Chebyshev basis (Tn), together with a “small” bound B such that
|y(x)− p(x)| ≤ B for all x ∈ [−1, 1].

Approximations over other real or complex segments (written on the Chebyshev
basis adapted to the segment) are reduced to approximations on [−1, 1] by means
of an affine change of variables, which preserves D-finiteness.

A first motivation for studying this problem comes from repeated evaluations.
Computations with mathematical functions often require the ability to evaluate
a given function y at many points lying on an interval, usually with moderate
precision. Examples include plotting, numerical integration, and interpolation. A
standard approach to address this need resorts to polynomial approximations of y.
We deem it useful to support working with arbitrary D-finite functions in a com-
puter algebra system. Hence, it makes sense to ask for good uniform polynomial
approximations of these functions on intervals. Rigorous error bounds are necessary
in order for the whole computation to yield a rigorous result.

Besides easy numerical evaluation, polynomial approximations provide a conve-
nient representation of continuous functions on which comprehensive arithmetics
including addition, multiplication, composition and integration may be defined.
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Compared to the exact representation of D-finite functions by differential equa-
tions, the representation by polynomial approximations is only approximate, but
it applies to a wider class of functions and operations on these functions. When
we are working over an interval, it is natural for a variety of reasons to write the
polynomials on the Chebyshev basis rather than the monomial basis. In particular,
the truncations that occur during most arithmetic operations then maintain good
uniform approximation properties. Trefethen et al.’s Chebfun [58, 17] is a popular
numerical computation system based on this idea.

In a yet more general setting, Epstein, Miranker and Rivlin developed a so-
called “ultra-arithmetic” for functions that parallels floating-point arithmetic for
real numbers [20, 21, 30]. Various generalized Fourier series, including Chebyshev
series, play the role of floating-point numbers. Ultra-arithmetic also comprises a
function space counterpart of interval arithmetic, based on truncated series with
interval coefficients and rigorous remainder bounds. This line of approach was
revived with the introduction of “ChebModels” in recent work by Brisebarre and
Joldes, [10]. Part of the motivation for Problem 1.1 is to allow one to use arbitrary D-
finite functions as “base functions” at the leaves of expression trees to be evaluated
using ChebModels.

Finally, perhaps the main appeal of ultra-arithmetic and related techniques is
the ability to solve functional equations rigorously using enclosure methods [44, 30,
37, 45, 60]. LODE with polynomial coefficients are among the simplest equations
to which these tools apply. A third goal of this article is to begin the study of the
complexity of validated enclosure methods, from a computer algebra point of view,
using this simple family of problems as a prototype.

1.2. Setting. To specify the D-finite function y, we fix a linear homogeneous dif-
ferential equation of order r with polynomial coefficients

(1.1) L · y = ary
(r) + ar−1y

(r−1) + · · ·+ a0y = 0, ai ∈ Q[x].

We also write L = ar∂
r + · · ·+a1∂+a0. Up to a change of variable, we assume that

we are seeking a polynomial approximation of a solution y of (1.1) over the interval
[−1, 1]. The uniform norm on this interval is denoted by ‖ · ‖∞. We also assume
that ar(x) 6= 0 for x ∈ [−1, 1], so that (by Cauchy’s existence theorem for complex
LODE) all solutions of (1.1) are analytic on [−1, 1]. Besides the operator L, we are
given r initial values

(1.2) y(i)(0) = ℓi, 0 ≤ i ≤ r − 1.

Many of the results actually extend to the case of boundary conditions, since we
can compute a whole basis of solutions of (1.1) and reduce boundary value prob-
lems to initial value problems by linear algebra. Also note that the case of initial
values given outside the domain of expansion may be reduced to our setting using
numerical analytic continuation.

Table 1 summarizes for quick reference the notation used throughout this arti-
cle. Notations related to Chebyshev expansions are detailed in Section 2.1 below.
Notations from Theorem 2.1 are also repeatedly used in the subsequent discussion.
Double brackets denote integer intervals Ji, jK = {i, i+ 1, . . . , j}.

Unless otherwise noted, we assume for simplicity that all computations are car-
ried out in exact (rational) arithmetic. The rigor of the computation is unaffected
if exact arithmetic is replaced by floating-point arithmetic in Algorithm 4.2 and by



4 ALEXANDRE BENOIT, MIOARA JOLDES, AND MARC MEZZAROBBA

ai coefficients of the operator L; ar(0) 6= 0 p. 3
bi coefficients of the operator P p. 7
C sequences in CZ with exponential decrease p. 6
∂ differentiation operator, ∂ = d/dx p. 3
L differential operator, L · y = 0 p. 3

ℓi initial values, y(i)(0) = ℓi p. 3
P Chebyshev recurrence operator p. 7, p. 9
p∗

d degree-d minimax polynomial approximation of y p. 6
πd truncated Chebyshev expansion operator p. 6
s order of L p. 3
S shift operator, S : (un) 7→ (un+1) p. 7
s (usually) half-order of P p. 7, p. 12
S singularities of P , shifted by s p. 16
Tn Chebyshev polynomials of the first kind p. 5
y (usually) unknown function, L · y = 0 p. 2, p. 26

y(N) approximation of y computed by Algorithm 4.2 p. 18

f̂ inverse Joukowski transform of a function f p. 6
Ji, jK integer interval, Ji, jK = {i, i+ 1, . . . , j} p. 3

Table 1. Notation.

interval arithmetic in Algorithm 6.5. (In the case of Algorithm 5.6, switching to
interval arithmetic requires some adjustments.) However, we do not analyze the
effect of rounding errors on the quality of the approximation polynomial p and error
bound B from Problem 1.1 when the computations are done in floating-point arith-
metic. In simple cases at least, we expect that Algorithm 4.2 exhibits comparable
stability to similar methods based on backward recurrence [65]. Our experiments
show a satisfactory numerical behaviour.

To account for this variability in the underlying arithmetic, we assess the com-
plexity of the algorithms in the arithmetic model. In other words, we only count
field operations in Q, while neglecting both the size of their operands and the cost
of accessory control operations. The choice of the arithmetic complexity model
for an algorithm involving multiple precision numerical computations may come as
surprising. Observe however that all arithmetic operations on both rational and
floating-point numbers of bit size bounded by n may be done in time O(n(lnn)O(1))
(see for instance Brent and Zimmermann’s book [9] for detail). In general, the max-
imum bit size of the numbers we manipulate is roughly the same as that of the
coefficients of p, which may be checked to be O(d ln d) when represented as rational
numbers, so that the bit complexity of the algorithm is actually almost linear in
the total bit size of the output.

1.3. Summary of Results. As we will see in the next section, truncated Cheby-
shev expansions of analytic functions provide very good approximations of these
functions over straight line segments. In the case of D-finite functions, their coef-
ficients are known to satisfy linear recurrences. But computing Chebyshev series
based on these recurrences is not entirely straightforward.
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Roughly speaking, the conclusion of the present article is that these recurrences
can nevertheless be used to solve Problem 1.1 efficiently for arbitrary D-finite func-
tions. The techniques we use (backward recurrence and enclosure of solutions
of fixed-points equations in function spaces) date back to the 1950s–1960s. The
originality of this work is that we insist on providing algorithms that apply to
a well-defined class of functions (as opposed to methods to be adapted to each
specific example), and focus on controlling the computational complexity of these
algorithms.

Our algorithm proceeds in two stages. We first compute a candidate approxima-
tion polynomial, based on the Chebyshev expansion of the function y. No attempt
is made to control the errors rigorously at this point. We then validate the output
using an enclosure method.

The main results of this article are Theorems 4.4 (p. 18) and 6.6 (p. 33), stating
respectively that each of these two steps can be performed in linear arithmetic
complexity with respect to natural parameters, and estimating the quality of the
results they return. Theorem 4.4 is based on a description of the solution space of
the recurrence on Chebyshev coefficients that is more complete than what we could
find in the literature and may be of independent interest.

Note that earlier versions of the present work appeared as part of the authors’
PhD theses [3, 29, 42].

1.4. Outline. This article is organized as follows. In Section 2, we review prop-
erties of Chebyshev series of D-finite functions and then study the recurrence re-
lations satisfied by the coefficients of these series, whose use is key to the linear
time complexity. Section 3 provides results on the asymptotics of solutions of these
recurrences that will be critical for the computation of the coefficients. The actual
algorithm for this task, described in Section 4, reminds of Fox and Parker’s vari-
ant [23, Chap. 5] of Clenshaw’s algorithm [16]. A short description of a prototype
implementation and several examples follow.

The part dedicated to the validation step starts in Section 5 with a study of
Chebyshev series expansions of rational functions. Most importantly, we state re-
mainder bounds that are then used in Section 6, along with an enclosure method
for differential equations, to validate the output of the first stage and obtain the
bound B. We conclude with examples of error bounds obtained using our imple-
mentation of the validation algorithm, and some open questions.

2. Chebyshev Expansions of D-finite Functions

2.1. Chebyshev Series. Recall that the Chebyshev polynomials of the first kind
are polynomials Tn(x) ∈ Q[x] defined for all n ∈ Z by the relation Tn(cos θ) =
cos(nθ). They satisfy T−n = Tn for all n. The family (Tn)n∈N is a sequence of
orthogonal polynomials over [−1, 1] with respect to the weight function w(x) =

1/
√

1− x2, and hence a Hilbert basis of the space L2(w). (We refer the reader to
books such as Rivlin’s [53] or Mason and Handscomb’s [39] for proofs of the results
collected in this section.)

Expansions of functions f ∈ L2(w) on this basis are known as Chebyshev series.
Instead of the more common

(2.1)
∑

n

′
unTn =

u0

2
T0 + u1T1 + u2T2 + · · · ,
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we write Chebyshev series as

(2.2)

∞∑

n=−∞

cnTn(x), c−n = cn.

This choice makes the link between Chebyshev and Laurent expansions as well as the
action of recurrence operators on the cn (both discussed below) more transparent.
The Chebyshev coefficients cn = 1

2un of the expansion of a function f are given by

(2.3) cn =
1

π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx.

for all n ∈ Z. The series (2.2) converges to f in the L2(w) sense for all f ∈ L2(w)

(see for example [39, Chap. 5.3.1]). We denote by πd : f 7→ ∑d
n=−d cnTn the

associated orthogonal projection on the subspace of polynomials of degree at most d.

Now assume that f is a solution of Equation (1.1). As such, it may be analytically
continued to any domain U ⊂ C that does not contain any singular point of the
equation. Let

(2.4) Er = {x ∈ C : |x+
√
x2 − 1| < r}

be the largest elliptic domain with foci in ±1 with this property. Since the singular
points are in finite number, we have 1 < r ≤ ∞. The coefficients cn then satisfy
cn = O(αn) for all α > r−1; and the Chebyshev expansion (2.2) of f converges
uniformly to f on Er [39, Theorem 5.16]. Letting x = cos θ and z = eiθ, it
is not hard to see that the cn are also the coefficients of the (doubly infinite)

Laurent expansion of the function f̂(z) = f( z+z−1

2 ) around the unit circle. The

transformation x = z+z−1

2 sending f(x) to f̂(z) is known as the inverse Joukowski
transform. It maps the elliptic disk Er to the annulus

Ar = {z ∈ C : r−1 < |z| < r}.
The formula Tn(cos θ) = cos(nθ) translates into Tn( z+z−1

2 ) = zn+z−n

2 . The coeffi-
cients cn are also related to those of the Fourier cosine expansion of θ 7→ f(cos θ).

Let C ⊂ CZ be the vector space of doubly infinite sequences (cn)n∈Z such that

(∀n ∈ N)(cn = c−n) and (∃α < 1)(cn = On→∞(αn)).

The sequence of Chebyshev coefficients of a function f that is analytic on some
complex neighborhood of [−1, 1] belongs to C. Conversely, for all c ∈ C, the function
series

∑∞
n=−∞ cnTn(x) converges uniformly on (some neighborhood of) [−1, 1] to

an analytic function f(x).
Truncated Chebyshev series are near-minimax approximations: indeed, they

satisfy [59, Theorem 16.1]

(2.5) ‖f − πd(f)‖∞ ≤
( 4

π2
ln(d+ 1) + 4

)
‖f − p∗

d‖∞

where p∗
d is the polynomial of degree at most d that minimizes ‖f − p‖∞.

Even though p∗
d itself can be computed to arbitrary precision using the Remez

algorithm [12, Chap. 3], Equation (2.5) shows that we do not lose much by replac-
ing it by πd(f). Moreover, tighter approximations are typically hard to validate
without resorting to intermediate approximations of higher degree [13]. The need
for such intermediate approximations is actually part of the motivation that led to
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the present work. There exist a variety of other near-minimax approximations with
nice analytical properties, e.g., Chebyshev interpolation polynomials. Our choice of
truncated Chebyshev expansions is based primarily on the existence of a recurrence
relation on the coefficients (cn) when f is a D-finite function.

2.2. The Chebyshev Recurrence Relation. The polynomials Tn satisfy the
three-term recurrence

(2.6) 2xTn(x) = Tn−1(x) + Tn+1(x),

as well as the mixed differential-difference relation

(2.7) 2(1− x2)T ′
n(x) = n(Tn−1(x)− Tn+1(x))

which translates into the integration formula 2ncn = c′
n−1 − c′

n+1 where
∑
c′

nTn =
(
∑
cnTn)′. From these equalities follows the key ingredient of the approach devel-

oped in this article, namely that the Chebyshev coefficients of a D-finite function
obey a linear recurrence with polynomial coefficients. This fact was observed by Fox
and Parker [22, 23] in special cases and later proved in general by Paszkowski [49].
Properties of this recurrence and generalizations to other orthogonal polynomial
bases were explored in a series of papers by Lewanowicz starting 1976 (see in par-
ticular [35, 36]). The automatic determination of this recurrence in a symbolic
computation system was first studied by Geddes [24].

The following theorem summarizes results regarding this recurrence, extracted
from existing work [49, 35, 36, 52, 4] and extended to fit our purposes. Here and in
the sequel, we denote by Q(n)〈S, S−1〉 the skew Laurent polynomial ring over Q(n)
in the indeterminate S, subject to the commutation rules

(2.8) Sλ = λS (λ ∈ Q), Sn = (n+ 1)S.

Likewise, Q[n]〈S, S−1〉 ⊂ Q(n)〈S, S−1〉 is the subring of noncommutative Laurent
polynomials in S themselves with polynomial coefficients. The elements ofQ[n]〈S, S−1〉
identify naturally with linear recurrence operators through the left action ofQ[n]〈S, S−1〉
on CZ defined by (n · u)n = nun and (S · u)n = un+1. Recall that L denotes the
differential operator appearing in Equation (1.1).

Theorem 2.1. [49, 35, 36, 52, 4] Let u, v be analytic functions on some complex
neighborhood of the segment [−1, 1], with Chebyshev expansions

u(x) =
∞∑

n=−∞

unTn(x), v(x) =
∞∑

n=−∞

vnTn(x).

There exist difference operators P,Q ∈ Q[n]〈S, S−1〉 with the following properties.

(i) The differential equation L · u(x) = v(x) is satisfied if and only if

(2.9) P · (un) = Q · (vn).

(ii) The left-hand side operator P is of the form P =
∑s

k=−s bk(n)Sk where
s = r + maxi(deg ai) and b−k(−n) = −bk(n) for all k.

(iii) Letting

(2.10) δr(n) = 2r
r−1∏

i=−r+1

(n− i), I =
1

2n
(S−1 − S),
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we have Q = Qr = δr(n)Ir (this expression is to be interpreted as a
polynomial identity in Q(n)〈S, S−1〉). In particular, Q depends only on r
and satisfies the same symmetry property as P .

Note that I, as defined in Eq. (2.10), may be interpreted as an operator from
the symmetric sequences (u|n|)n∈Z to the sequences (un)n∈Z\{0} defined only for
nonzero n. A sloppy but perhaps more intuitive statement of the main point of
Theorem 2.1 would be: “(

∫
)rL · u = w if and only if δr(n)P · u = w, up to some

integration constants”.

Proof. Assume L · u = v. Benoit and Salvy [4, Theorem 1] give a simple proof
that (2.9) holds for some P,Q ∈ Q(n)〈S, S−1〉. The fact that P and Q can actually
be taken to have polynomial coefficients and satisfy the properties listed in the last
two items then follows from the explicit construction discussed in Section 4.1 of
their article, based on Paszkowski’s algorithm [49, 35]. More precisely, multiplying
both members of [4, Eq. (17)] by δr(n) yields a recurrence of the prescribed form.
The recurrence has polynomial coefficients since δr(n)Ir ∈ Q〈S, S−1〉. Rebillard’s
thesis [52, Section 4.1] contains detailed proofs of this last observation and of
all assertions of Item ii. Note that, although Rebillard’s and Benoit and Salvy’s
works are closest to the formalism we use, several of these results actually go back
to [49, 35, 36].

There remains to prove the “if” direction. Consider sequences u, v ∈ C such that
P · u = Q · v, and let y ∈ C be the Chebyshev coefficient sequence of the (analytic)
function L · u. We then have P · u = Q · y by the previous argument. This implies
Q · v = Q · y, whence finally y = v by Lemma 2.2 below. �

Lemma 2.2. The restriction to C of the operator Q from Theorem 2.1 is injective.

Proof. With the notation of Theorem 2.1, we show by induction on r ≥ 1 that

(2.11) (v ∈ C) ∧
(
|n| ≥ r =⇒ (Qr · v)n = 0

)
=⇒ v = 0.

First, we have (kerQ1) ∩ C = {0} since any sequence belonging to C converges
to zero as n → ±∞. Now assume that (2.11) holds, and let v ∈ C be such that
(Qr+1 · v)n = 0 for |n| ≥ r + 1. Let w = Qr · v. Observe that C is stable under the
action of Q(n)〈S, S−1〉, so w ∈ C. Since r ≥ 1, we have

2nQr+1 = δr+1(n)(S−1 − S)Ir

= 2 ((n+ r)(n + r − 1)S−1δr(n)− (n− r)(n− r + 1)Sδr(n))Ir

= 2 ((n+ r)(n + r − 1)S−1 − (n− r)(n− r + 1)S)Qr.

Hence, for |n| ≥ r + 1, it holds that

(2.12) (n+ r)(n + r − 1)wn−1 = (n− r)(n− r + 1)wn+1.

Unless wn is ultimately zero, this implies that wn+1/wn−1 → 1 as n → ∞, which
contradicts the fact that w ∈ C. It follows that wn = 0 for |n| large enough, and,
using (2.12) again, that wn = 0 as soon as |n| ≥ r. Applying the hypothesis (2.11)
concludes the induction. �

An easy-to-explain way of computing a recurrence of the form (2.9) is as follows.
We first perform the change of variable x = 1

2 (z + z−1) in the differential equa-
tion (1.1). Then, we compute a recurrence on the Laurent coefficients of û(z) = u(x)
by the classical (Frobenius) method.
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Example 2.3. The function y(x) = arctan(x/2) satisfies the homogeneous equa-
tion (x2 + 4) y′′(x) + 2x y′(x) = 0. The substitutions

x =
z + z−1

2

d

dx
=

2z

z − z−1

d

dz

yield (after clearing common factors and denominators)

(z + 1)(z − 1)(z4 + 18z2 + 1) ŷ′′(z) + 2(z4 − 2z2 − 19)z ŷ′(z) = 0.

We then set ŷ(z) =
∑∞

n=−∞ cnz
n and extract the coefficient of zn (which amounts

to replacing z by S−1 and z d
dz by n) to get the recurrence

(n− 2)(n− 3)cn−3 + (n− 1)(17n− 38)cn−1

− (n+ 1)(17n+ 38)cn+1 − (n+ 2)(n+ 3)cn+3 = 0.

Benoit and Salvy [4] give a unified presentation of several alternative algorithms,
including Paszkowski’s, by interpreting them as various ways to perform the sub-
stitution x 7→ 1

2 (S + S−1), d
dx 7→ (S − S−1)−1(2n) in a suitable non-commutative

division algebra. In our setting where the operator L is nonsingular over [−1, 1],
they prove that all these algorithms compute the same operator P .

Remark 2.4. As applied in Example 2.3, the method based on setting x = 1
2 (z+z−1)

in the differential equation does not always yield the same operator as Paszkowski’s
algorithm. It can be modified to do so as follows: instead of clearing the denom-
inator of the differential equation in z given by the rational substitution, move
this denominator to the right-hand side, translate both members into recurrences,
and then remove a possible common left divisor of the resulting operators P,Q ∈Q(n)〈S, S−1〉.
Definition 2.5. Following Rebillard, we call the recurrence relation (2.9) computed
by Paszkowski’s algorithm (or any equivalent method) the Chebyshev recurrence
associated to the differential equation (1.1).

Remark 2.6. By Theorem 2.1(ii) and with its notation, for any sequence (un)n∈Z,
we have the equalities

∀n,
∑

k

bk(n)un+k = −
∑

k

b−k(−n)un+k = −
∑

k

bk(−n)u−n−k,

that is, P · (un)n∈Z = −P · (u−n)n∈Z. In particular, if (un)n∈Z is a solution of
a homogeneous Chebyshev recurrence, then so is (u−n)n∈Z, and (un + u−n) is a
symmetric solution. Not all solutions are symmetric. For instance, the differential
equation y′(x) = xy(x) corresponds to the recurrence −cn−2 + 4n cn + cn+2 = 0
which allows for u−2 = 3, u−1 = 12, u0 = 1, u1 = 2, u2 = 3.

2.3. Solutions of the Chebyshev Recurrence. Several difficulties arise when
trying to use the Chebyshev recurrence to compute the Chebyshev coefficients.

A first issue is related to initial conditions. Here it may be worth contrasting
the situation with the more familiar case of the solution of differential equations in
power series. Unlike the first few Taylor coefficients of y, the Chebyshev coefficients
c0, c1, . . . that could serve as initial conditions for the recurrence are not related in
any direct way to initial or boundary conditions of the differential equation. In
particular, as can be seen from Theorem 2.1 above, the order 2s of the recurrence
is larger than that of the differential equation except for degenerate cases. Hence we
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need to somehow “obtain more initial values for the recurrence than we naturally
have at hand” 1.

Next, also in contrast to the case of power series, the leading and trailing coeffi-
cients b±s of the recurrence (2.9) may vanish for arbitrarily large values of n even
though the differential equation (1.1) is nonsingular. The zeroes of bs(n − s) are
called the leading singularities of (2.9), those of b−s(n + s), its trailing singulari-
ties. In the case of Chebyshev recurrences, leading and trailing singularity sets are
opposite of each other.

One reason for the presence of (trailing) singularities is clear: if a polynomial
y =

∑
y|n|Tn of degree d is a solution of L · y = 0, then necessarily b−s(d +

s) = 0. However, even differential equations without polynomial solutions can
have arbitrarily large leading and trailing singularities, as shown by the following
example.

Example 2.7. For all k ∈ Z, the Chebyshev recurrence relation associated to the
differential equation y′′(x) + (x2 + 1) y′(x)− k x y(x) = 0, namely

(n+ 1)(n− k − 3) cn−3 + (n− 1)(5n+ k + 7) cn−1 + 8n(n+ 1)(n− 1) cn

−(n+ 1)(5n− k − 7) cn+1 − (n− 1)(n+ k + 3) cn+3 = 0,

admits the leading singularity n = k. For k = 1, the differential equation has no
polynomial solution.

We do however have some control over the singularities.

Proposition 2.8. With the notations of Theorem 2.1, the coefficients of the Cheby-
shev recurrence satisfy the relations

(2.13) bj−i(−j) = −bj+i(−j), |j| ≤ r − 1, i ∈ N,
with bk = 0 for |k| > s. In particular, bs(n) is zero for all n ∈ J1, r − 1K.

Proof. We proceed by induction on r. When j = 0, assertion (2.13) reduces to
b−i(0) = −bi(0), which follows from the second item of Theorem 2.1. In particular,
this proves the result for r = 1. Now let r ≥ 2 and assume that the proposition
holds when L has order r − 1. Write L = L♭ + ∂rpr(x) where pr ∈ Q[x] and L♭ is
a differential operator of order at most r − 1. Letting P ♭ =

∑
k∈Z b♭

k(n)Sk be the

Chebyshev recurrence operator associated to L♭, we then have [4]

(2.14) δr(n)−1P = Iδr−1(n)−1P ♭ + pr(1
2 (S + S−1))

where the last term denotes the evaluation of pr at x = 1
2 (S + S−1). Since

Iδr−1(n)−1 = (nδr(n))−1((n− r + 2)(n− r + 1)S−1 − (n+ r − 2)(n+ r − 1)S)

1Nevertheless, the recurrence (2.9) shows that the Chebyshev coefficients of a D-finite function
are rational linear combinations of a finite number of integrals of the form (2.3). Computing these
coefficients efficiently with high accuracy is an interesting problem to which we hope to come back
in future work. See Benoit [3] for some results.
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by the commutation rule (2.8), relation (2.14) rewrites as

P =
1

n

∑

k

(
(n− r + 2)(n− r + 1)b♭

k+1(n− 1)

− (n+ r − 2)(n+ r − 1)b♭
k−1(n+ 1)

)
Sk

+ δr(n)pr(
1

2
(S + S−1)).

The case j = 0 having already been dealt with, assume 0 < |j| < r. Since δr(−j) = 0
and pr is a polynomial, it follows by extracting the coefficient of Sk in the last
equality and evaluating at n = −j that

(2.15) − jbk(−j) = (j + r − 2)(j + r − 1)b♭
k+1(−j − 1)

− (j − r + 2)(j − r + 1)b♭
k−1(−j + 1).

Now b♭
j−i(−j) = −b♭

j+i(−j) for |j| < r − 1 by the induction hypothesis, and the

term involving b♭
k±1 vanishes for j = ∓(r − 1) and j = ∓(r − 2). In each case, we

obtain bj−i(−j) = −bj+i(−j). �

Corollary 2.9. Let P be the Chebyshev recurrence operator associated to L. The
image by P of a symmetric sequence (u|n|)n∈Z satisfies (P · u)n = 0 for |n| < r.

Proof. Since

(P · u)n =
∑

k∈Zbk(n)un+k =
∑

i∈Z bi−n(n)ui,

it follows from Proposition 2.8 with j = −n and |n| < r that
∑

i∈Z bi−n(n)ui = −
∑

i∈Z b−i−n(n)ui = −
∑

i∈Z bi−n (n)ui,

that is, (P · u)n = − (P · u)n. �

Last but not least, Chebyshev recurrences always admit divergent solution se-
quences. Divergent solutions do not correspond to the expansions of solutions of
the differential equation the recurrence comes from.

Example 2.10. The Chebyshev recurrence associated to the equation y′ = y is

(P · u)n = u(n+ 1) + 2nu(n)− u(n− 1) = 0.

In terms of the modified Bessel functions Iν and Kν , a basis of solutions of the
recurrence is given by the sequences (Iν(1))ν∈Z and (Kν(1))ν∈Z. The former is the
coefficient sequence of the Chebyshev expansion of the exponential function and
decreases as Θ(2−ν ν!−1). The later satisfies Kν(1) = Θ(2ν (ν − 1)!).

3. Convergent and Divergent Solutions

3.1. Elements of Birkhoff-Trjitzinsky Theory. Before studying in more detail
the convergent and divergent solutions of the Chebyshev recurrence relation, we
recall some elements of the asymptotic theory of linear difference equations. Much
of the presentation is based on Wimp’s book [65, Appendix B], to which we refer
the reader for more information.
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Definition 3.1. For all ρ ∈ N\{0}, J ∈ N, κ ∈ Q, α, πj , θ, βj,i ∈ C, we call the
formal expansion

(3.1) ū(n) = n!καneπ(n)
J∑

j=0

(lnn)j
∞∑

i=0

βj,in
θ−i/ρ

where
π(n) = π1n

1/ρ + · · ·+ πρ−1n
(ρ−1)/ρ

a formal asymptotic series (FAS). The set of all FAS is denoted by B.

Formal asymptotic series are to be interpreted as asymptotic expansions of se-
quences as n → ∞. The product of two FAS is defined in the obvious way and
is again an FAS. The same goes for the substitution n 7→ n + k for fixed k ∈ Z,
using identities such as (n+ k)θ = nθ(1 + kθn−1 + · · · ). The sum of two FAS is not
always an FAS, but that of two FAS sharing the same parameters κ, α, π is. Thus,
it makes sense to say that an FAS ū ∈ B satisfies a recurrence

(3.2) b̄s(n)ū(n+ s) + · · ·+ b̄0(n)ū(n) = 0

with formal series coefficients of the form

(3.3) b̄k(n) = nτk/ω(βk,0 + βk,1n
−1/ω + βk,2n

−2/ω + · · · ) ∈ C((n−1/ω)).

Also, given s FAS ū0, . . . , ūs−1 ∈ B, the Casoratian

C(n) = det(ūj(n+ i))0≤i,j<s

belongs to B as well.
Following Wimp, we say that ū1, . . . , ūs ∈ B are formally linearly indepen-

dent when their Casoratian is nonzero. Note that the elements of any subset
of {ū1, . . . , ūs} are then formally linearly independent as well. Indeed, it can be
checked by induction on s that s FAS ū1, . . . , ūs are formally linearly dependent if
and only if there exists a relation of the form µ̄1(n)ū1(n) + · · · + µ̄n(s)ūs(n) = 0
where the µ̄k are FAS such that2 µ̄k(n+ 1) = µ̄k(n).

Definition 3.2. The FAS (3.1) is said to be an asymptotic expansion of a sequence
(un) ∈ CN, and we write un ∼ ū(n), when for any truncation order I, the relation

un = n!καneπ(n)
J∑

j=0

(lnn)j

(
I−1∑

i=0

βj,in
θ−i/ρ +O(nθ−I/ρ)

)

holds as n→∞.

The following fundamental result is known as the Birkhoff-Trjitzinsky theorem,
or “main asymptotic existence theorem” for linear recurrences. It will be the start-
ing point of our analysis of the computation of “convergent” solutions of the Cheby-
shev recurrence by backward recurrence.

Theorem 3.3. [6, 7, 61, 27] Consider a linear recurrence

(3.4) bs(n)un+s + · · ·+ b0(n)un = 0

whose coefficients b0, . . . , bs admit asymptotic expansions (in the sense of Defini-
tion 3.2) b̄0, . . . , b̄s of the form (3.3) for some integer ω ≥ 1. Then,

2Like Wimp, but unlike most authors, we consider recurrences rather than difference equations.
Accordingly, we forbid factors of the form eπρn with | Im πρ| > π in (3.1), so that the µk(n) are

actually constants in our setting.
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(i) the (formal) recurrence (3.2) possesses a system of s formally linearly in-
dependent FAS solutions;

(ii) for any s formally linearly independent solutions ē1, . . . , ēs ∈ B of (3.2),
there exists complex sequences e1 = (e1,n)n≥N , . . . , es = (es,n)n≥N defined
in some neighborhood of infinity, with the property that ek ∼ ēk for all k,
and such that (e1, . . . , es) is a basis of the solution space of (3.4) for n ≥ N .

We note that many expositions of the Birkhoff-Trjitzinsky theorem warn about
possible major gaps in its original proof. However, the consensus among specialists
now appears to be that these issues have been resolved in modern proofs [27, 62].
Besides, under mild additional assumptions on the Chebyshev recurrence, all the
information needed in our analysis is already provided by the more elementary
Perron-Kreuser theorem3 (cf. [26, 41, 43]) or its extensions by Schäfke [55]. See
also Immink [28] and the references therein for an alternative approach in the
case of recurrences with polynomial coefficients, originating in unpublished work
by Ramis.

Also observe that for any subfamily (f1, . . . , fs′) of the sequences ei from The-
orem 3.3, the matrix (fj,n+i)1≤i,j≤s′ is nonsingular for large n. In particular, the
ei,n can vanish only for finitely many n. The more precise statement below will be
useful in the sequel.

Lemma 3.4. Assume that the sequences (e0,n)n, . . . , (es−1,n)n admit formally lin-
early independent asymptotic expansions of the form (3.1), with αi ∈ C \ {0},
κi ∈ Q. Then the Casorati determinant

C(n) =

∣∣∣∣∣∣∣∣∣

e0,n e1,n · · · es−1,n

e0,n+1 es−1,n+1

...
...

e0,n+s−1 e1,n+s−1 · · · es−1,n+s−1

∣∣∣∣∣∣∣∣∣
satisfies

C(n) = βe0,ne1,n · · · es−1,nn
θ((ln n)λ +O((ln n)λ−1)), n→∞,

for some β ∈ C\{0}, θ ∈ C, and λ ∈ N.

Proof. Write C(n) = e0,ne1,n · · · es−1,nC
′(n). The formal linear independence hy-

pothesis means that C(n), and hence C′(n), admit nonzero FAS as asymptotic
expansions. Additionally,

C′(n) = det

(
ej,n+i

ej,n

)

0≤i,j<s

has at most polynomial growth, so that the leading term of its asymptotic expansion
must be of the form nθ(lnn)λ. �

3.2. Newton Polygon of a Chebyshev Recurrence. The formal solutions de-
scribed in Theorem 3.3 may be constructed algorithmically using methods going
back to Poincaré [50] and developed by many authors. See in particular Adams [1]
and Birkhoff [6] for early history, Tournier [57] for a comparison of several methods

3The Perron-Kreuser theorem yields the existence of a basis of solutions such that ei,n+1/ei,n ∼
αnκi , under the assumption that κi = κj ⇒ |αi| 6= |αj |. It does not require that the coefficients
of (3.4) admit full asymptotic expansions, which makes it stronger than Theorem 3.3 in some
respects.
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S

n
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κ3
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κ2 = · · · = κ−2

α−3

κ−3

Figure 1. The Newton polygon of a Chebyshev recurrence.

from a Computer Algebra perspective, and Balser and Bothner [2] for a modern
algorithm as well as more references.

Here, we are mostly interested in the parameters κ and α that control the “ex-
ponential” growth rate of the solutions. We briefly recall how the possible values of
these parameters are read off the recurrence using the method of Newton polygons.
Consider again the Chebyshev recurrence operator

P = b−s(n)S−s + · · ·+ b0(n) + · · ·+ bs(n)Ss

from Section 2.2. The Newton polygon of P is defined as the lower convex hull of
the points pk = (k,− deg bk) ∈ R2 (see Figure 1). To each edge [pi, pj] (i < j) of
the polygon is attached a characteristic equation

χi(α) =
∑

k:pk∈[pi,pj]

lc(bk)αk−i,

where lc(p) denotes the leading coefficient of p. Note that the degrees of the χi sum
to 2s. Let

αs, αs−1, . . . , α1, α−1, . . . , α−s+1, α−s

be the sequence of all roots of the polynomials χi, with multiplicities, the roots
corresponding to distinct edges being written in the order of increasing i and the
roots of each χi in that of increasing modulus. For all k, let κk be the slope of the
edge associated to αk. (Thus, each κk is repeated a number of times equal to the
horizontal length of the corresponding edge, and we have κs ≤ κs−1 ≤ · · · ≤ κ−s.)

How does this relate to the asymptotics of Chebyshev series? Assume that n!καn

is the leading factor of some FAS solution ū of P · ū = 0. It is not too hard to
see that, in order for asymptotically dominant terms of P · ū to cancel out, κ must
be among the slopes of the Newton polygon of P , and α must be a root of the
characteristic equation of the corresponding edge. This gives all possible values of
κ and α. Conversely, the construction behind Theorem 3.3 (i) yields a number of
linearly independent FAS with given κ and α equal to the multiplicity of α as a
root of the characteristic equation of the edge of slope κ. In the case of Chebyshev
recurrences, the Newton polygon has the following symmetry property.

Proposition 3.5. The slopes κi of the Newton polygon of P and the roots αi of its
characteristic equations satisfy κ−i = −κi and |α−i| = |αi|−1 for all i. In addition,
none of the roots associated to the horizontal edge (if there is one) has modulus 1.

Proof. By Theorem 2.1, the coefficients bk of P are related by b−k(n) = −bk(−n).
Hence, the Newton polygon is symmetric with respect to the vertical axis, and
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κ−i = −κi for all i. Now fix i, and let ǫi = [pℓ(i), pr(i)] be the edge of slope κi. The
characteristic equation of ǫi reads

χi(α) =
∑

k:pk∈ǫi

lc(bk)αk−ℓ(i) =
∑

k:pk∈ǫi

(−1)1+deg bk lc(b−k)αk−ℓ(i),

where lc(b) denotes the leading coefficient of a polynomial b. Using the relation
deg bk − deg bℓ(i) = κi(k − ℓ(i)) for pk lying on ǫi, we get

χi(α) = ±
∑

k:pk∈ǫ−i

(−1)κi(−k+ℓ(−i)) lc(bk)α−k+ℓ(−i)

= ±αℓ(i)−ℓ(−i)χ−i((−1)−κiα−1),

and hence |α−i| = |αi|−1.
There remains to prove that κi = 0 implies |αi| 6= 1. Under the change of

variable x = 1
2 (z + z−1), the leading term with respect to θ = z d

dz of ( d
dx)k is

2k(z− z−1)−k. (The leading term is well-defined because the commutation relation
between z and θ preserves degrees.) Therefore, the characteristic equation associ-
ated to the slope κ = 0 (when there is one) of the recurrence operator P1 obtained
by changing z into S−1 and θ into n is

χhoriz(α) :=
∑

k:deg pk=maxi deg pi

lc(bk)αk−i = ar

(
α+ α−1

2

)
,

where ar is the leading coefficient of (1.1). Since P is a right factor of P1, the char-
acteristic polynomial associated to κ = 0 in the Newton polygon of P divides χhoriz.
But, due to the assumptions stated in Section 1.2, the polynomial ar(x) does not
vanish for x ∈ [−1, 1], hence χhoriz(α) 6= 0 for |α| = 1. �

Summing up, the asymptotic structure of the solutions of the Chebyshev re-
currence may be described as follows. Similar observations were already made by
Rebillard [52, Chap. 5].

Corollary 3.6. For large enough N , the space of sequences (un)n≥N satisfying
(P ·u)n = 0 (“germs of solution at infinity of the Chebyshev recurrence”) has a basis
comprising s convergent sequences e1, . . . , es and s divergent sequences e−1, . . . , e−s,
all with formally linearly independent FAS expansions, such that

ei,n = n!κiαn
i e

o(n), n→∞.
In particular, we have ln |ei,ne−i,n| = o(n) for all i.

Proof. This follows from Theorem 3.3, Proposition 3.5, and the description of a
basis of formal solutions at infinity using the Newton polygon. �

4. Computing Approximation Polynomials

4.1. Clenshaw’s Algorithm Revisited. At this point, we know that Chebyshev
expansions of D-finite functions correspond to the symmetric, convergent solutions
of the Chebyshev recurrences introduced in Section 2.2. The question we now face
is to compute these solutions efficiently in spite of the various difficulties discussed
above. Our algorithm for this task may be viewed as a systematized variant of a
method originally due to Clenshaw [16]. The link between Clenshaw’s method4 and

4The Clenshaw method we are referring to in this text should not be confused with the Horner-
like scheme for Chebyshev polynomials known as Clenshaw’s algorithm [15].
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the Chebyshev recurrence was observed long ago by Fox and Parker [22, 23] and
further discussed by Rebillard [52, Section 4.1.3]. Based on the properties of the
recurrence established in the last two sections, we can turn Clenshaw’s method into
a true algorithm that applies uniformly to differential equations of arbitrary order
and degree.

Both Clenshaw’s original method and our algorithm are related to Miller’s well-
known backward recurrence technique [5, 65] to compute minimal (“slowest increas-
ing”) solutions of three-term recurrences. Miller’s idea is to compute the coefficients
uN , uN−1, . . . , u0 of a linear recurrence sequence in the backward direction, start-
ing form arbitrary “initial conditions” uN+1 and uN+2. When N goes to infinity
(uN+1, uN+2 being chosen once and for all), the computed coefficients u0, . . . , uN

get close to those of a minimal solution with large u0, u1, in accordance with the
intuition that “minimal solutions are the dominant ones when going backwards”.
This method behaves much better numerically that the standard forward recur-
rence. But its key feature for our purposes is that it allows one to compute a
minimal solution characterized by its minimality plus one normalizing condition
instead of two initial values.

Roughly speaking, our method amounts to a “block Miller algorithm” tuned to
the special case of Chebyshev recurrences. We use the idea of backward recurrence
to approximate the whole subspace of convergent solutions instead of a single min-
imal one. There remains to take care of the constraints related to the singularities
of the recurrence, the symmetry condition and the initial values of the differential
equation, all of which is done using linear algebra.

Denote S = {n ≥ s : b−s(n) = 0}. Let

E = {(u|n|)n∈Z : n ∈ N\S⇒ (P · u)n = 0}
be the space of symmetric sequences whose restriction to n ∈ N satisfies the Cheby-
shev recurrence, except possibly when n ∈ S.

Proposition 4.1. (i) The space S of symmetric sequences (u|n|)n∈Z such
that P · u = 0 has dimension s + r. Among the elements of E, these
sequences are characterized by the linear equations

(4.1) (P · u)n = 0, n ∈ Jr, s− 1K ∪ S.

These equations are linearly independent.
(ii) The space S∩C of symmetric, convergent sequences (u|n|)n∈Z such that P ·

u = 0 has dimension r. Its elements are the elements of E satisfying (4.1),
and the equations (4.1) are independent as linear forms on E ∩ C as well.

Proof. First observe that a sequence u ∈ E automatically satisfies (P · u)n = 0 for
−n ∈ N\S too, by Remark 2.6. Then u belongs to S if and only if (P · u)n = 0 for
n ∈ S and for |n| < s. But the equations (P · u)n = 0 with |n| < r are trivial by
Corollary 2.9, thus u ∈ S if and only if u ∈ E and (4.1) is satisfied.

Let t = |S|, and let p ≤ s− r+ t denote the rank of (4.1), considered as a system
of linear forms over E . For large enough n0, sequences u ∈ E are in bijection with
their values (un)n∈J, where J = (S− s) ∪ Jn0, n0 + 2s− 1K, hence E has dimension
2s+ t. It follows that dimS = dim E − p ≥ s+ r.

Similarly, an element of E ∩ C is characterized, for large n0, by a convergent
sequence (un)n≥n0

(“a convergent germ of solution”) and values un for n ∈ S. It
belongs to S when additionally (4.1) is satisfied. Thus, by Corollary 3.6, we have
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dim(E ∩ C) = s + t and dim(S ∩ C) = s + t − q, where q ≤ p is the rank of
the system (4.1) restricted to E ∩ C. But we already know from Theorem 2.1 that
S∩C ≃ kerL, and hence dimS∩C = r. Therefore, we have r = s+t−q ≥ s+t−p ≥ r,
and hence p = q = s+ t− r. �

The important fact is that the equations (4.1) are independent. The other state-
ments are there to complete the picture but are not really used in the sequel. Inci-
dentally, Proposition 4.1 implies that divergent solutions of a Chebyshev recurrence
have the same exponential growth near positive and negative infinity.

The full procedure is stated as Algorithm 4.2. As the handling of boundary
conditions is naturally incorporated into the algorithm, here, we see the initial
conditions y(i)(0) = ℓi as a special case of boundary conditions

(4.2) λi(y) = ℓi, 1 ≤ i ≤ r,
each of the form λi(y) =

∑q
j=1 µjy

(rj)(xj) with xj ∈ [−1, 1] and rj ≤ r. In general,
the boundary conditions are assumed to be chosen so that the function y of interest
is the unique solution of (1.1) satisfying (4.2). They are independent in the sense
that the linear forms λi : kerL→ C are linearly independent.

Motivated by Proposition 4.1, we “unroll” s + t linearly independent test se-
quences fi ∈ E . We then solve the linear system (4.3), consisting of the con-
straints (4.1) and of approximations of the boundary conditions (4.2), to select a
single linear combination of the fi as output. Algorithm 4.2 takes as input both a
target degree d and a starting index N . We will see in the next section how the
choice of N influences the quality of the output. In practice, taking N = d + s
usually yields good results.

Algorithm 4.2. Input: a linear differential operator L of order r, boundary condi-
tions λ1(y) = ℓ1, . . . , λr(y) = ℓr as in (4.2), a target degree d > s, an integer N ≥
max(d,max{n : b−s(n) = 0}). Output: an approximation ỹ(x) =

∑d
n=−d ỹnTn(x)

of the corresponding solution y of L · y = 0.
1 compute the Chebyshev recurrence operator P =

∑s
k=−s bk(n)Sk associated to L

2 set S = {n ≥ s : b−s(n) = 0} and I = S ∪ JN,N + s− 1K
3 for n from N + 2s− 1 down to 1

4 for i ∈ I

5 if n = i then set fi,n−s = 1
6 else if n ∈ I or n ≥ N + s then set fi,n−s = 0
7 else compute fi,n−s using the relation (P · f)n = 0

8 using indeterminates ηi, i ∈ I, set

ỹn =

{ ∑
i∈I

ηifi,|n|, |n| ≤ N
ỹn = 0, |n| > N,

and ỹ(x) =

N∑

n=−N

ỹnTn(x)

9 solve for (ηi)i∈I
the linear system

(4.3)

{
λk(ỹ) = ℓk, 1 ≤ k ≤ r,
b−s(n)ỹn−s + · · ·+ bs(n)ỹn+s = 0, n ∈ Jr, s− 1K ∪ S

10 return
∑d

n=−d ỹnTn(x)

The complexity of Algorithm 4.2 is easy to estimate.
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Proposition 4.3. For fixed L, λi, and ℓi, Algorithm 4.2 runs in O(N) arithmetic
operations.

Its correctness is less obvious. At first sight, there could conceivably exist dif-
ferential equations for which Algorithm 4.2 always fails, no matter how large N is
chosen. It could happen for instance that the kernel of (4.1) (a system we know
to have full rank over E by Proposition 4.1) always has a nontrivial intersection
with Span{ti : i ∈ I}. It is not clear either that, when the algorithm does return a
polynomial p, this polynomial is close to y. We prove in the next section that these
issues do not occur. But already at this point, we note that if the result happens
to be satisfactory, it is already possible to validate it (that is, to get a rigorous good
upper-bound on ‖y − p‖∞) using the methods of Section 6.

4.2. Convergence. We now prove that Algorithm 4.2 converges. The fact that it
does not fail for large N will come as a byproduct of the convergence proof. The
proof, inspired in part by the analysis of the generalized Miller algorithm [66, 65],
is based on the asymptotic behaviour of the solutions of the Chebyshev recurrence
predicted by Theorem 3.3. The approach of backward recurrence algorithms based
on this theorem was pioneered by Wimp [64].

Retaining the notation from the previous subsection, assume that the operator L
and the boundary conditions λi(y) = ℓi are fixed. Write the Chebyshev expansion
of y as

y(x) =

∞∑

n=−∞

ynTn(x).

Let y
(N)
n = ỹn, |n| ≤ N , be the coefficients computed by Algorithm 4.2 (run in

exact arithmetic) when called with the starting index N .
The central result of the analysis of Algorithm 4.2 is the following theorem. It

implies that when d is fixed and N →∞, the polynomial output by Algorithm 4.2
converges at least exponentially fast to the truncated Chebyshev series πd(y). The
base of the exponential is related to the asymptotics of the “slowest decreasing”
convergent solution of the Chebyshev recurrence, in turn related to the location of
the singular points of the differential equation (1.1).

Theorem 4.4. Algorithm 4.2 fails for finitely many N only. As N →∞, its output
satisfies

N
max

n=−N
|y(N)

n − yn| = O(N τe1,N)

for some τ independent of N .

We write f(N) = Opol(g(N)) when there exists τ ≥ 0 such that f(N) =
O(N τg(N)) as n→∞.

Proof. The finite sequence (y
(N)
n )N

n=−N computed by Algorithm 4.2 extends to an

element (y
(N)
n )n∈Z of E characterized by the conditions

y
(N)
N = · · · = y

(N)
N+s−1 = 0

from Step 3, along with the linear system (4.3) solved in Step 9.
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By writing the linear forms λ1, . . . , λr : C → C that express the boundary
conditions (4.2) as λi(y) =

∑∞
n=−∞ λi,nyn, we define “truncations”

λ
(N)
i (y) =

N∑

n=−N

λi,nyn

that make sense even for divergent series. (Abusing notation slightly, we apply

the λi and λ
(N)
i indifferently to functions, formal Chebyshev series or their coeffi-

cient sequences.) The system (4.3) consists of the equations λ
(N)
i (y(N)) = ℓi and of

the symmetry and extension-through-singularities constraints (4.1). We introduce

additional linear forms λr+1 = λ
(N)
r+1, . . . , λs+t = λ

(N)
s+t to write these last s − r + t

equations in the same form as the first r, so that (4.3) becomes

(4.4) λ
(N)
i (y(N)) =

N∑

n=−N

λi,ny
(N)
n = ℓi, 1 ≤ i ≤ s+ t.

Now let (e1, . . . , es, e−1, . . . , e−s) be a basis of the solutions of P · u = 0 in the
neighborhood of +∞ of the form provided by Corollary 3.6. Extend each ei to an
element of E , and then the tuple to a basis of E by setting es+1 = fn1

, . . . , es+t = fnt

where n1 < n2 < · · · < nt are the elements of S. Let

(4.5) ∆(N) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1,N · · · es+t,N e−1,N · · · e−s,N

...
...

...
...

e1,N+s−1 · · · es+t,N+s−1 e−1,N+s−1 · · · e−s,N+s−1

λ
(N)
1 (e1) · · · λ

(N)
1 (es+t) λ

(N)
1 (e−1) · · · λ

(N)
1 (e−s)

...
...

...
...

λ
(N)
s+t(e1) · · · λ

(N)
s+t(es+t) λ

(N)
s+t(e−1) · · · λ

(N)
s+t(e−s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Let ∆
(N)
j be the same determinant with the column involving ej replaced by

(0, . . . , 0︸ ︷︷ ︸
s times

, ℓ1, . . . , ℓr, 0, . . . , 0︸ ︷︷ ︸
s − r + t times

)T.

By Cramer’s rule, provided ∆(N) 6= 0, the sequence (y
(N)
n )n decomposes on the

basis (ej)s+t
j=−s of kerP ⊂ CZ as

(4.6) y(N) =

s+t∑

k=−s

γ
(N)
k ek, γ

(N)
k =

∆
(N)
k

∆(N)
.

Algorithm 4.2 fails if and only if ∆(N) = 0.
The sequence of “exact” Chebyshev coefficients of the function y defined by the

input is likewise given by

(4.7) y =

s+t∑

k=1

γkek, γk =
∆k

∆
,

where

∆ = det(λi(ej))1≤i,j≤s+t

and ∆j denotes the determinant ∆ with the j-th column replaced by (ℓ1, . . . , ℓs+t)
T.
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Our goal is now to prove that γ
(N)
k → γk fast as N →∞. To do that, we study

the asymptotic behaviours of the determinants ∆(N) and ∆
(N)
k .

We decompose ∆(N) into the four blocks indicated by Eq. (4.5) as follows:

∆(N) =

∣∣∣∣
A B
C D

∣∣∣∣ .

The corresponding modified blocks in ∆
(N)
k are denoted Ak, Bk, Ck, Dk. (We drop

the explicit index for readability, but notice that these matrices depend on N .) The
blocks B and C are nonsingular for large N , the first one by Lemma 3.4 and the
second one because detC → ∆ 6= 0 as N → ∞. The Schur complement formula
implies

∆(N) = − det(B) det(C) det(I − C−1DB−1A).

Setting ej = (ej,N , . . . , ej,N+s−1)T, the entry at position (i, j) in the matrix B−1A
satisfies (B−1A)i,j = 0 for large N if j > s, and otherwise

(B−1A)i,j =
det(e−1, . . . , e−i+1, ej , e−i−1, . . . , e−s)

detB

=
(−1)i−1 det(ej , e−1, . . . , ê−i, , . . . , e−s)

detB

= Opol

(
ej,N

e−i,N

)

(where the notation ·̂ indicates the omission of the corresponding term) as N →∞
by Lemma 3.4.

In view of our assumptions on the boundary conditions (4.2), we have λi,n =
On→±∞(nr) for all i ≤ σ, where σ is the maximum derivation order appearing
in (4.2). Additionally, the sequences λi,n with r+ 1 ≤ i ≤ s+ t are ultimately zero.
Therefore the entries of D satisfy

Di,j = λ
(N)
i (e−j) = Opol(e−j,N).

This yields the estimate

(DB−1A)i,j = Opol(ej,N )

for the j-th column of DB−1A. Since

Ci,j = λ
(N)
i (ej) = λi(ej) +Opol(ej,N ),

we get (C−1DB−1A)i,j = Opol(ej,N ) as well, and

∆(N) = − det(B) det(C)(1 − tr(C−1DB−1A) +O(‖C−1DB−1A‖2))

= − det(B)(∆ +Opol(e1,N )).

In particular, ∆(N) 6= 0 for all large enough N , hence, for any fixed differential
equation, the algorithm fails at most for finitely many N .

We turn to the modified determinants

∆
(N)
k =

∣∣∣∣
Ak Bk

Ck Dk

∣∣∣∣ .
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For k > 0, the same reasoning as above (except that Ck may now be singular) leads
to

∆
(N)
k = − det(B) det(Ck −DB−1Ak)

= − det(B)(det(Ck) +Opol(e1,N ))

= − det(B)(∆k +Opol(e1,N )),

hence

(4.8) γ
(N)
k =

∆
(N)
k

∆(N)
= γk +Opol(e1,N ), k > 0.

In the case k < 0, write

∆
(N)
k = − det(C) det(Bk −AC−1Dk).

The natural entrywise bounds on A and D yield (C−1Dk)i,j = O(N re−j,N+s−1)
and from there

(AC−1Dk)i,j = O(N re1,Ne−j,N+s−1) = o(e−j,N ),

so that
(Bk −AC−1Dk)i,j ∼ e−j,N+i−1, j 6= −k.

For j = −k however, the j-th column of Bk is zero and that of Dk is constant,
hence

(Bk −AC−1Dk)i,j = O(e1,N ), j = −k.
It follows that

det(Bk +AC−1Dk) = Opol(e−1,N · · · êk,N · · · e−s,Ne1,N ) = Opol

(
det(B)

ek,N
e1,N

)
,

whence

(4.9) γ
(N)
k =

∆
(N)
k

∆(N)
=
− det(B) det(C)Opol(e1,N/ek,N )

− det(B) det(C)(1 +O(e1,N ))
= Opol

(
e1,N

ek,N

)
, k < 0.

Combining (4.6), (4.7) with (4.8), (4.9) finally yields

y(N)
n = yn +Opol

(
e1,N

s∑

k=1

(
ek,n +

e−k,n

e−k,N

))

as N →∞, uniformly in n. �

Remark 4.5. In the special case where the solution y is a polynomial, it is computed
exactly.

Theorem 4.4 implies that the polynomial y(N) = ỹ returned by Algorithm 4.2
satisfies

(4.10) ‖y(N) − πd(y)‖∞ ≤ φ(N)N !κ1αN
1 ,

where κ1 and α1 are the asymptotic growth parameters defined in Section 3.2, for
some φ with lnφ(N) = o(N). Thus, given ǫ > 0, it suffices to take N = O(ln(ǫ−1))
in order to obtain ‖y(N) − πd(y)‖∞ ≤ ǫ. The constant hidden in the O(·) depends
on y. The estimate goes down to O

(
ln(ǫ−1)/ ln ln(ǫ−1)

)
when κ1 < 0, that is (by a

similar argument as in the proof of Proposition 3.5), when the leading coefficient ar

of the differential equation is a constant.
Comparing with Equation (2.5), we can state the following “effective near-minimax

approximation” property.
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Corollary 4.6. Let L and (ℓk)r
k=1 be fixed. Given d ∈ N, there exists N such that

Algorithm 4.2, called with parameters L, (ℓk), d, and N , computes a polynomial pd

of degree at most d satisfying ‖pd − y‖∞ ≤
(
4π−2 ln(d + 1) + 5

)
‖p∗

d − y‖∞ in

O(ln ‖pd − y‖−1
∞ ) arithmetic operations.

There is a different way of looking at this, starting with the lower bound [12,
Sec. 4.4, Theorem 5(i)]

(4.11) ‖p∗
d − y‖∞ ≥

π

2
max
n>d
|yn|

on the quality of the minimax polynomial approximation of degree d of a function y
in terms of the Chebyshev coefficients yn of y. In the (typical) case where

(4.12)
r−1
max
k=0
|yn+k| ≥ n!κ1 |α1|nψ(n), ψ(n) = eo(n),

we see by comparing with (4.10) that choosing N = d+ o(d) is enough to get

‖y(N) − πd(y)‖∞ ≤ ‖p∗
d − y‖∞.

This last inequality in turn implies

‖y(N) − y‖∞ ≤
(
4π−2 ln(d+ 1) + 5

)
‖p∗

d − y‖∞.

When, in (4.12), κ1 and α1 are replaced by κi and αi for some i > 1, the estimate
N = d+ o(d) still holds in the case where κi = κ1 < 0. It becomes N = O(d) when
either κi = κ1 = 0 or κi < κ1 < 0, and N = O(d ln d) in general (that is, when
κi < κ1 = 0).

Remark 4.7. Assuming only ei,n+1/ei,n ∼ αin
κiei,n instead of full asymptotic ex-

pansions in Lemma 3.4, but with the additional hypothesis κi = κj ⇒ αi 6= αj , one
can prove that

C(n) ∼n→∞ e0,ne1,n+1 · · · es−1,n+s−1

∏

i<j
κi=κj

(
αi

αj
− 1

)
,

if the ei are sorted so that κ0 ≤ κ1 ≤ · · · ≤ κs−1. This leads to a weaker variant of
Theorem 4.4 that does not rely on the Birkhoff-Trjitzinsky theorem.

4.3. Examples. We have developed a prototype implementation of Algorithm 4.2
in Maple [38]. Our implementation uses exact rational arithmetic for operations on
the coefficients of approximation polynomials. The experimental source code can
be downloaded from

http://homepages.laas.fr/mmjoldes/Unifapprox

Besides Algorithm 4.2, it includes a (not entirely rigorous with respect to several
minor outwards rounding issues) proof-of-concept implementation of the valida-
tion algorithm of Section 6 further discussed in that section. The gfsRecurrence

package [3] available on the same web page provides tools to compute Chebyshev
recurrences from linear differential equations as discussed in Section 2.2.

For each of the following examples, Figure 2 shows the graph of the difference
between the polynomial approximation of a given degree computed by the imple-
mentation and the known exact solution, illustrating the quality of the approxima-
tions.

http://homepages.laas.fr/mmjoldes/Unifapprox
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(i)

(ii)

(iii)

d = 30 d = 60 d = 90

Figure 2. Plot of the error pd− y between a degree-d approxima-
tion pd computed by Algorithm 4.2 and the exact solutiony, for
each of the problems listed in Section 4.3 and for d ∈ {30, 60, 90}.

(i) The first example is adapted from Kaucher and Miranker [30, p. 222]. It
concerns the hyperexponential function

y(x) =
ex/2

√
x+ 16

,

which can be defined by the differential equation

2 (x+ 16)y′(x)− (x+ 15)y(x) = 0, y(0) =
1

4
.

(ii) Next, we consider the fourth order initial value problem (taken from Ged-
des [24, p. 31])

y(4)(x)− y(x) = 0, y(0) = −y′′(0) =
3

2
, −y′(0) = y′′′(0) =

1

2
,

with the exact solution

y(x) =
3

2
cos(x) − 1

2
sin(x).
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(iii) Finally, the second-order differential equation

(2x2 + 1)y′′(x) + 8xy′(x) + (2x2 + 5)y(x), y(0) = 1, y′(0) = 0,

has complex singular points at z = ±i/
√

2, relatively close to the inter-
val [−1, 1], and admits the exact solution

y(x) =
cos(x)

2x2 + 1
.

On our test system, using Maple 17, the total computation time for each example
is of the order of 0.05 to 0.1 s.

According to a classical theorem of de la Vallée Poussin [12, Section 3.4], the near-
uniform amplitude of the oscillation observed in the first two examples indicates an
approximation error very close to that of the minimax approximation. Table 2 in
Section 6.2 (p. 35) gives numerical values of ‖p− y‖∞ and ‖p∗ − y‖∞ in each case.
We will later extend these examples to include in the comparison the bounds on
‖p− y‖∞ output by the validation algorithm.

4.4. A Link with the Tau Method. Besides Clenshaw’s, another popular method
for the approximate computation of Chebyshev expansions is Lánczos’ tau method [33,
34]. It has been observed by Fox [22] and later in greater generality (and different
language) by El Daou, Ortiz and Samara [19] that both methods are in fact equiva-
lent, in the sense that they may be cast into a common framework and tweaked to
give exactly the same result. We now outline how the use of the Chebyshev recur-
rence fits into the picture. This sheds another light on Algorithm 4.2 and indicates
how the Chebyshev recurrence may be used in the context of the tau method.

As in the previous sections, consider a differential equation L · y = 0 of order r,
with polynomial coefficients, to some solution of which a polynomial approximation
of degree d is sought. Assume for simplicity that there are no nontrivial polynomial
solutions, i.e., (kerL) ∩C[x] = {0}.

In a nutshell, the tau method works as follows. The first step is to compute L · p
where p is a polynomial of degree d with indeterminate coefficients. Since (kerL)∩C[x] = {0}, the result has degree greater than d. One then introduces additional
unknowns τd+1, . . . , τd+m in such number that the system

(4.13)

{
L · p = τd+1Td+1 + · · ·+ τd+mTd+m

λi(p) = ℓi (1 ≤ i ≤ r)
has a (preferably unique) solution. The output is the value of p obtained by solving
this system; it is an exact solution of the projection πd(L · y) = 0 of the original
differential equation.

Now let p =
∑d

n=−d pnTn and extend the sequence (τn) by putting τn = 0

for |n| 6∈ Jd+1, d+mK and τ−n = τn. It follows from (4.13) that P · (pn) = 1
2Q · (τn)

where P and Q are the recurrence operators given by Theorem 2.1. Denoting
Suppu = {|n| : un 6= 0}, we also see from the explicit expression of Q that Supp(Q ·
τ) ⊂ Jd, d + m + 1K. Hence the coefficients pn of the result of the tau method
are given by the Chebyshev recurrence, starting from a small number of initial
conditions given near the index |n| = d.

“Conversely,” consider the polynomial ỹ computed in Algorithm 4.2 with N = d,
and let v =

∑
n vnTn = L · ỹ. We have P · ỹ = Q · v by Theorem 2.1. But the

definition of ỹ in the algorithm also implies that (P · ỹ)n = 0 when |n| ≤ N − s
(since the ỹn, |n| ≤ N are linear combinations of sequences (fi,n)|n|≤N recursively
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computed using the recurrence P ·fi = 0) or |n| > N +s (since ỹn = 0 for |n| > N),
so that Supp(Q · v) ⊂ JN − s,N + s − 1K. It can be checked that the Chebyshev
recurrence associated to L = ( d

dx )r is P = δr(n) : indeed, in the language of [4],

it must be the first element of a pair (P1, Q1) satisfying Q−1
1 P1 = I−r. Thus

δr(n) · u = Q · v is equivalent to u(r) = v, whence

(4.14) v(x) =
dr

dxr

∑

|n|>r

(P · ỹ)n

δr(n)
Tn(x) =

∑

N−s≤|n|<N+s

(P · ỹ)n

δr(n)
T (r)

n (x).

We see that the output ỹ(x) of Algorithm 4.2 satisfies an inhomogeneous differential

equation of the form L · ỹ = τN−sT
(r)
N−s(x)+ · · ·+ τN+s−1T

(r)
N+s−1(x). (However, the

support of the sequence (vn) itself is not sparse in general.)
This point of view also leads us to the following observation.

Proposition 4.8. Assume that Equation 1.1 has no polynomial solution. The
expression on the monomial basis of the polynomial ỹ(x) returned by Algorithm 4.2
with N = d can be computed in O(d) arithmetic operations, all other parameters
being fixed.

In comparison, the best known arithmetic complexity bound for the conversion
of arbitrary polynomials of degree d from the Chebyshev basis to the monomial
basis is O(M(d)), where M stands for the cost of polynomial multiplication [48, 8].

Proof. As already mentioned, the Taylor series expansion of a function that satis-
fies an LODE with polynomial coefficients obeys a linear recurrence relation with
polynomial coefficients. In the case of an inhomogeneous equation L · u = v, the
recurrence operator does not depend on v, and the right-hand side of the recur-
rence is the coefficient sequence of v. Now ỹ satisfies L · ỹ = v where v is given
by (4.14). The coefficients (P · ỹ)n/δr(n) of (4.14) are easy to compute from the
last few Chebyshev coefficients of ỹ. One deduces the coefficients vn in linear time
by applying repeatedly the non-homogeneous recurrence relation

(4.15) T ′
n−1(x) = −T ′

n+1(x) + 2xT ′
n(x) + 2Tn(x)

obtained by differentiation of the equation (2.6), and finally those of the expansion
of ỹ on the monomial basis using the recurrence relation they satisfy. �

5. Chebyshev Expansions of Rational Functions

This section is devoted to the same problems as the rest of the article, only
restricted to the case where y(x) is a rational function. We are interested in com-
puting a recurrence relation on the coefficients yn of the Chebyshev expansion of a
function y, using this recurrence to obtain a good uniform polynomial approxima-
tion of y(x) on [−1, 1], and certifying the accuracy of this approximation. All this
will be useful in the validation part of our main algorithm.

Our primary tool is the change of variable x = 1
2 (z + z−1) followed by partial

fraction decomposition. Similar ideas have been used in the past with goals only
slightly different from ours, like the computation of yn in closed form [18, 40]. In-
deed, the sequence (yn)n∈N turns out to obey a recurrence with constant coefficients.
Finding this recurrence or a closed form of yn are essentially equivalent problems.
However, we will use results regarding the cost of the algorithms that do not seem
to appear in the literature. Our main concern in this respect is to avoid conversions
of polynomial and series from the monomial to the Chebyshev basis and back. We
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also need simple error bounds on the approximation of a rational function by its
Chebyshev expansion.

5.1. Recurrence and Explicit Expression. Let y(x) = a(x)/b(x) ∈ Q[x] be a
rational function with no pole in [−1, 1]. As usual, we denote by (yn)n∈Z, (an)n∈Z
and (bn)n∈Z the symmetric Chebyshev coefficient sequences of y, a and b.

Proposition 5.1. The Chebyshev coefficient sequence (yn)n∈Z obeys the recurrence
relation with constant coefficients b(1

2 (S + S−1)) · (yn) = (an).

Proof. This is actually the limit case r = 0 of Theorem 2.1, but a direct proof is
very easy: just write

deg b∑

i=− deg b

biz
i

∞∑

n=−∞

ynz
n =

∞∑

n=−∞

( ∞∑

i=−∞

biyn−i

)
zn =

∞∑

n=−∞

anz
n, x =

z + z−1

2
,

and identify the coefficients of like powers of z. �

As in the general case (Section 2), this recurrence has spurious (divergent) solu-
tions besides the ones we are interested in. However, we can explicitly separate the
positive powers of z from the negative ones in the Laurent series expansion

(5.1) ŷ(z) = y
(z + z−1

2

)
=

∞∑

n=−∞

ynz
n, ρ−1 < |z| < ρ,

using partial fraction decomposition. From the computational point of view, it is
better to start with the squarefree factorization of the denominator of ŷ:

(5.2) β(z) = zdeg bb

(
z + z−1

2

)
= β1(z)β2(z)2 · · ·βk(z)k

and write the full partial fraction decomposition of ŷ(z) in the form

(5.3) ŷ(z) = q(z) +

k∑

i=1

∑

βi(ζ)=0

i∑

j=1

hi,j(ζ)

(ζ − z)j
, q(z) =

∑

n

qnz
n ∈ Q[z],

where hi,j ∈ Q(z). The hi,j may be computed efficiently using the Bronstein-Salvy
algorithm [11] (see also [25]).

We obtain an identity of the form (5.1) by expanding the partial fractions cor-
responding to poles ζ with |ζ| > 1 in power series about the origin, and those
with |ζ| < 1 about infinity. The expansion at infinity of

hi,j(ζ)

(ζ − z)j
=

(−1)jz−jhi,j(ζ)

(1− ζz−1)j

converges for |z| > |ζ| and does not contribute to the coefficients of zn, n ≥ 0 in the
complete Laurent series. It follows from the uniqueness of the Laurent expansion
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of ŷ on the annulus ρ−1 < |z| < ρ that5

(5.4)

∞∑

n=0

ynz
n = q(z) +

k∑

i=1

∑

βi(ζ) = 0
|ζ| > 1

i∑

j=1

hi,j(ζ)

(ζ − z)j
.

We now extract the coefficient of zn in (5.4) and use the symmetry of (yn)n∈Z to
get an explicit expression of yn in terms of the roots of b(1

2 (z + z−1)).

Proposition 5.2. The coefficients of the Chebyshev expansion y(x) =
∑

n y|n|Tn(x)
are given by

(5.5) yn = qn +
k∑

i=1

i∑

j=1

∑

βi(ζ) = 0
|ζ| > 1

(
n+ j − 1

j − 1

)
hi,j(ζ)ζ−n−j (n ≥ 0)

where the qn ∈ Q, βi ∈ Q[z] and hi,j ∈ Q(z) are defined in Equations (5.2)
and (5.3).

Note that (5.4) also yields a recurrence of order deg b on (yn)n∈N, instead of
2 deg b for that from Proposition 5.1, but now with algebraic instead of rational
coefficients in general.

5.2. Truncation Error. We can now explicitly bound the error in truncating the
Chebyshev expansion of y.

Proposition 5.3. Let y ∈ Q(x) have no pole within the elliptic disk Eρ (see (2.4)).
Assume again the notations from (5.2) and (5.3). For all d ≥ deg q, it holds that

∥∥∥
∑

n>d

ynTn

∥∥∥
∞
≤

k∑

i=1

i∑

j=1

∑

βi(ζ) = 0
|ζ| > 1

|hi,j(ζ)|(d + 2)j−1

(|ζ| − 1)j
|ζ|−d−1 = O(ddeg bρ−d)

as d→∞.

Proof. We have ‖∑n>d ynTn‖∞ ≤
∑

n>d|yn| because ‖Tn‖∞ ≤ 1 for all n. Using
the inequality

∑

n>d

(
n+ j − 1

j − 1

)
tn+j ≤ (d+ 2)j−1td+1

∞∑

n=0

(
n+ j − 1

j − 1

)
tn+j =

(d+ 2)j−1td+j+1

(1− t)j

5To prevent confusion, it may be worth pointing out that in the expression

ŷ(z) = q(z) +

k∑

i=1

∑

βi(ζ) = 0
|ζ| > 1

i∑

j=1

(
hi,j(ζ)

(ζ − z)j
+

hi,j(ζ−1)

(ζ−1 − z)j
)

the Laurent expansion of a single term of the form
hi,j (ζ)

(ζ−z)j +
hi,j (ζ−1)

(ζ−1
−z)j is not symmetric for j > 1,

even if q(z) = 0.
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for t < 1, the explicit expression from Proposition 5.2 yields

∑

n>d

|yn| ≤
∑

n>d

k∑

i=1

i∑

j=1

∑

βi(ζ)=0
|ζ|>1

(
n+ j − 1

j − 1

)
|hi,j(ζ)||ζ|−n−j

≤
k∑

i=1

i∑

j=1

∑

βi(ζ)=0
|ζ|>1

|hi,j(ζ)|(d + 2)j−1

(|ζ| − 1)j
|ζ|−d−1.

Since |ζ| > 1 actually implies |ζ| > ρ when b(1
2 (ζ + ζ−1)) = 0, the asymptotic

estimate follows. �

5.3. Computation. There remains to check that the previous results really trans-
late into a linear time algorithm. We first state two lemmas regarding basic opera-
tions with polynomials written on the Chebyshev basis.

Lemma 5.4. The product ab where the operands a, b ∈ Q[x] and the result are
written in the Chebyshev basis may be computed in O((deg a)(deg b)) operations.

Proof. It suffices to loop over the indices (i, j) and, at each step, add to the coef-
ficients of T|i±j| in the product the contribution coming from the coefficient of Ti

in a and that of Tj in b, according to the formula 2TiTj = Ti+j + Ti−j . �

The näıve Euclidean division algorithm [63, Algorithm 2.5] runs in linear time
with respect to the degree of the dividend when the divisor is fixed. Its input and
output are usually represented by their coefficients in the monomial basis, but the
algorithm is easily adapted to work in other polynomial bases.

Lemma 5.5. The division with remainder a = bq + r (deg r < deg b) where
a, b, q, r ∈ Q[x] are represented in the Chebyshev basis may be performed in O(deg a)
operations for fixed b.

Proof. Assume n = deg a > deg b = m. The classical polynomial division algorithm
mainly relies on the fact that deg(a − b−1

m anx
n−mb) < n where a =

∑
i aix

i and
b =

∑
i bix

i. From the multiplication formula 2TnTm = Tn+m + Tn−m follows
the analogous inequality deg(a − 2b−1

m anTn−mb) < n where ak, bk now denote the
coefficients of a and b in the Chebyshev basis. Performing the whole computation
in that basis amounts to replacing each of the assignments a ← a − b−1

m anx
n−mb

repeatedly done by the classical algorithm by a ← a − 2b−1
m anTn−mb. Since the

polynomial Tn−mb has at most 2m nonzero coefficients, each of these steps takes
constant time with respect to n. We do at most n−m such assignments, hence the
overall complexity is O(n). �

We end up with Algorithm 5.6. In view of future needs, it takes as input a
polynomial of arbitrary degree already written in the Chebyshev basis in addition
to the rational function (of bounded degree) y. The details of the algorithm are
only intended to support the complexity estimates, and many improvements are
possible in practice.

Proposition 5.7. Algorithm 5.6 is correct. As d → ∞ and ǫ → 0 with all other
parameters fixed, it runs in O(d + ln(ǫ−1)) arithmetic operations and returns a
polynomial of degree d′ ≤ max(d,K ln(ǫ−1)), where K depends on y, but not on
f or d.
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Algorithm 5.6. Input: a rational fraction y(x) = a(x)/b(x), the Chebyshev co-

efficients of a polynomial f =
∑d

n=−d fnTn(x), an error bound ǫ. Output: the
Chebyshev coefficients of an approximation ỹ(x) of fy such that ‖ỹ − fy‖∞ ≤ ǫ.
1 convert a and b to Chebyshev basis
2 compute the polynomial g = af , working in the Chebyshev basis
3 compute the quotient q and the remainder r in the Euclidean division of g by b
4 compute the partial fraction decomposition of ŵ(z) = w(x) = r(x)/b(x), where

x =
1

2
(z + z−1), using the Bronstein-Salvy algorithm

5 find d′ ≥ deg q such that
∥∥∥
∑

n>d′

ynTn

∥∥∥ ≤ ǫ/4 using Proposition 5.3

6 compute ρ− and ρ+ such that βi(ζ) = 0 ∧ |ζ| > 1⇒ 1 < ρ− ≤ |ζ| ≤ ρ+

7 compute M ≥
k∑

i=1

i∑

j=1

j(deg βi) sup
ρ−≤|ζ|≤ρ+

(
|h′

i,j(ζ)|+ |ζ−1hi,j(ζ)|
)
ρ−j

−

8 set ǫ′ := min
(
ρ− − 1,M−1

(
1− ρ−1

−

)D+1 ǫ

4

)
, with D = deg b

9 compute approximations ζ̃ ∈ Q[i] of the roots ζ of βi such that
∣∣ζ̃ − ζ

∣∣ < ǫ′

10 for 0 ≤ n ≤ d′

11 set ỹn = qn + Re

(
k∑

i=1

i∑

j=1

∑

βi(ζ)=0
|ζ|>1

(
n+ j − 1

j − 1

)
hi,j(ζ̃)ζ̃−n−j

)

12 return ỹ(x) =

d′∑

n=−d′

ỹnTn(x)

Proof. Firstly, we prove the error bound ‖ỹ − y‖∞ ≤ ǫ. Let A = {ζ : ρ− ≤ |ζ| ≤
ρ+} and

M0 = sup
ζ∈A
|h′

i,j(ζ)|, M1 = sup
ζ∈A
|ζ−1hi,j(ζ)|.

On A, we have
∣∣∣∣

d

dζ

(
hi,j(ζ) ζ−n−j

)∣∣∣∣ ≤ (M0 + (n+ j)M1) |ζ|−n−j ≤ (n+ j)(M0 +M1)ρ−n−j
− .

By Proposition 5.2, observing that the condition |ζ − ζ̃| < ρ− − 1 from Step 8
implies [ζ, ζ̃ ] ⊂ A, we have the inequalities

|yn − ỹn| ≤
k∑

i=1

i∑

j=1

∑

βi(ζ)=0
|ζ|>1

(
n+ j − 1

j − 1

) ∣∣hi,j(ζ)ζ−n−j − hi,j(ζ̃)ζ̃−n−j
∣∣

≤
k∑

i=1

i∑

j=1

j (deg βi)

(
n+ j

j

)
(M0 +M1)ρ−n−j

− ǫ′ ≤M
(
n+D

D

)
ρ−n

− ǫ′.

Therefore, the output of Algorithm 5.6 satisfies

‖yn − ỹn‖∞ ≤
d′∑

n=−d′

|yn − ỹn|+ 2
∥∥∥
∑

n>d′

ynTn

∥∥∥ ≤ 2Mǫ′

(1 − ρ−1
− )D+1

+ 2
ǫ

4
≤ ǫ.
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By Proposition 5.3, for all ǫ > 0, there exists d′ ≤ K ln(ǫ−1) with
∥∥∑

n>d ynTn

∥∥ ≤ ǫ.
In addition, we have deg q ≤ d, hence the degree of the output, as computed in
Step 5, satisfies d′ ≤ max(d,K ln(ǫ−1)).

Turning to the complexity analysis, Steps 1 and 4–8 have constant cost. So
does each iteration of the final loop, assuming the powers of ζ̃−1 are computed
incrementally. Steps 2 and 3 take O(d) operations by Lemmas 5.4 and 5.5, and do
not depend on ǫ. Regarding Step 9, it is known [47, Theorem 1.1(d)] that the roots
of a polynomial with integer coefficients can be approximated with of absolute
accuracy η in O(η−1) arithmetic operations. (In fact, the bit complexity of the
algorithm beyond this statement is also softly linear in ln(ǫ−1).) Since M depends
neither on ǫ nor on d, we have ǫ′ = Ω(ǫ), and hence the cost of Step 9 is in
O(ln(ǫ−1)). �

6. Validation

Assume that we have computed a polynomial of degree d

p(x) =

d∑

n=−d

ỹnTn(x)

which presumably is a good approximation on [−1, 1] of the D-finite function y
defined by (1.1,1.2). As stated in Problem 1.1, our goal is now to obtain a reasonably
tight bound B such that ‖y − p‖∞ ≤ B.

6.1. Principle. The main idea to compute the bound is to convert the initial
value problem defining y into a fixed-point equation T (y) = y, verify explicitly that
T maps some neighborhood of p into itself, and conclude that p must be close to
the “true” solution. This is one simple instance of the functional enclosure methods
mentioned in Section 1.1 and widely used in interval analysis [44]. In most cases
(with the notable exception of [21, 30, 31]), these methods are based on interval
Taylor series expansions such as so-called Taylor models [37, 45]. Here, we describe
an adaptation designed to work in linear time with polynomial approximations
written on the Chebyshev basis.

The first step is to reduce the differential initial value problem defining y to a
linear integral equation of the Volterra type and second kind. Let α0, α1, . . . , αr ∈Q[x] be such that

L = ar∂
r + · · ·+ a1∂ + a0 = ∂rαr + · · ·+ ∂α1 + α0,

and, for k ∈ J0, rK, define

Lk = ∂r−kαr + · · ·+ ∂αk+1 + αk ∈ Q[x]〈∂〉.
Observe that for all a ∈ Q[x] and k ∈ N, the operator ∂ka is of the form

∂ka = a∂k + ∗∂k−1 + · · · ,
so that αr = ar. In particular, αr does not vanish on [−1, 1].

Lemma 6.1. The solution y ∈ X of L·y = 0 such that y(k)(0) = ℓk for k ∈ J0, r−1K
satisfies

(6.1) αr(x)y(x) = g(x) +

∫ x

0

K(x, t)y(t)dt,
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where

(6.2) K(x, t) = −
r−1∑

k=0

(x− t)k

k!
αr−1−k(t) =

r−1∑

j=0

βj(t)xj ,

βj(t) =

r−1−j∑

i=0

(−1)i+1

i!j!
tiαr−1−j−i(t),

and

(6.3) g(x) =

r−1∑

k=0

(Lr−k · y)(0)
xk

k!
=

r−1∑

k=0

k∑

j=0

k∑

i=j

(
i

j

)
α

(i−j)
r−k+i(0)ℓj

xk

k!
.

Proof. We have
∫ x

0

Lk · y = (Lk+1 · y)(x)− (Lk+1 · y)(0) +

∫ x

0

αky.

Applying this formula to integrate r times the equation L · y = 0 yields

(αry)(x) +

∫ x

0

(αr−1y)(x1)dx1 + · · ·+
∫ x

0

∫ x1

0

· · ·
∫ xr−1

0

(α0y)(xr)dxr· · ·dx2dx1

= (L1·y)(0)
xr−1

(r − 1)!
+ · · ·+ (Lr−1·y)(0)x+ (Lr·y)(0),

and (6.1) follows using the relation
∫ x

0

∫ x1

0

· · ·
∫ xk−1

0

f(xk)dxk · · ·dx2dx1 =

∫ x

0

(x− t)k−1

(k − 1)!
f(t)dt

(which can be obtained by repeated integrations by parts). �

Let X denote the Banach space of continuous functions from [0, 1] to R (orC), equipped with the uniform norm. With K and g as in Lemma 6.1, define an
operator T : X → X by

(6.4) T (f)(x) = αr(x)−1

(
g(x) +

∫ x

0

K(x, t)f(t)dt

)
,

so that (6.1) becomes T (y) = y. The next proposition is an instance of a classical
bound (compare, e.g., Rall [51, Chap. 1]). As we recall below, when p is close to
the fixed point y, its iterated image T i(p) remains close to y, which yields good
upper bounds on the distance ‖y − p‖∞.

Proposition 6.2. Assume that A is an upper bound on |αr(x)−1K(x, t)| for x ∈
[−1, 1] and t between 0 and x. Then the bound

‖p− y‖∞ ≤ γi‖T i(p)− p‖∞, γi =

∞∑

j=0

Aij

(ij)!
,

holds for all i ≥ 1.

Proof. Let V : f 7→ α−1
r

∫
Kf denote the linear part of T . Equation (6.4) rewrites

again as (Id−V ) · y = g. More generally, we have

(Id−V i) · y = T i(y)− V i · y = T i(f)− V i · f = (Id +V + · · ·+ V i−1) · g
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for all f ∈ X . The operator V is continuous, and since

|V i · y(x)| ≤
∫ x

0

A

∫ x1

0

A · · ·
∫ xi−1

0

A‖y‖∞dxi · · ·dx2dx1 =
Ai

i!
‖y‖∞,

the (subordinate) norm of V i satisfies

‖V i‖ ≤ Ai

i!
.

Therefore, the series
∑

j V
ij converges, (Id−V i) is invertible, and ‖(Id−V i)−1‖ ≤

γi. Writing

p− y = (Id−V i)−1 · [(Id−V i) · p− (T i(p)− V i · p)] = (Id−V i)−1 · (p− T i(p))

yields the announced result. �

The interesting fact about this bound is that we can effectively compute rigorous
approximations of the right-hand side. Indeed, p and g are explicit polynomials, so
that it is not too hard to compute T i(p)− p approximately while keeping track of
the errors we commit, and deduce a bound on its norm.

Choosing i = 1 (and γ1 = eA) in Proposition 6.2 already yields a nontrivial
estimate, but (as we shall see in more detail) larger values of i are useful since
γi → 1 as i→∞. In particular, we have

(6.5) γi ≤
1

1−Ai/i!

for large i. This crude bound will be enough for our purposes. In practice, though,
it is better to compute an approximation of γi that is closer to reality (e.g., using
the first few terms of the series and a bound on the tail) in order to reduce the
required number of iterations of V .

6.2. Algorithm. The actual computation of ‖T i(p)− p‖∞ relies on the following
lemmas.

Lemma 6.3. One can compute an antiderivative of a polynomial6 of degree at
most d written on the Chebyshev basis in O(d) arithmetic operations.

Proof. If f =
∑

n cnTn and f ′ =
∑

n c
′
nTn, then we have 2ncn = c′

n−1 + c′
n+1

according to Equation (2.7). �

Lemma 6.4. Let f(x) =
∑d

n=−d cnTn(x) (with cn = c−n) be a polynomial of
degree d, given on the Chebyshev basis. Then one can compute M ≥ 0 such that

‖f‖∞ ≤M ≤
√
d+ 1‖f‖∞

in O(d) arithmetic operations.

Proof. It suffices to take M =
∑d

n=−d |cn|. Indeed, we have

‖f‖2 =

(
1

π

∫ 1

−1

f(t)2

√
1− t2

dt

)1/2

=

(
|c0|2 + 4

d∑

n=1

|cn|2
)
.

It follows that

‖f‖2 ≤ ‖f‖∞ ≤M ≤
√
d+ 1‖f‖2,

6Note however that derivation does not commute with the truncation of Chebyshev series.
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where the first inequality results from the integral expression of ‖f‖2, the second
one, from the fact that ‖Tn‖∞ ≤ 1 for all n, and the last one from the Cauchy-
Schwarz inequality. �

This results in Algorithm 6.5. Again here, the suggested bounds for ‖α−1
r ‖∞,

‖p−pi‖∞ and γi are only intended to support the complexity estimate, and tighter
choices are possible in practice.

Algorithm 6.5. Input: A differential operator L = ar∂
r + · · ·+a1∂+a0 ∈ Q[x]〈∂〉

of order r such that ar(x) 6= 0 for x ∈ [−1, 1], initial values ℓ0, ℓ1, . . . , ℓr−1. A
degree-d polynomial p written on the Chebyshev basis. An accuracy parameter ǫ >
0. Output: A real number B > 0 such that ‖y − p‖∞ ≤ B, where y is the unique
solution of L · y = 0 satisfying y(0) = ℓ0, y

′(0) = ℓ1, . . . , y
(r−1)(0) = ℓr−1.

1 using the commutation rule x∂ = ∂x− 1, compute polynomials α0, α1, . . . , αr ∈Q[x] such that L = ∂rαr + · · ·+ ∂α1 + α0

2 define K ∈ Q[t, x], (βj)r−1
j=0 ∈ Q[x]r and g ∈ Q[x] as in Lemma 6.1

3 compute A ≥ max
{
|αr(x)−1K(x, t)| : 0 ≤ t ≤ x ≤ 1 or −1 ≤ x ≤ t ≤ 0

}
(e.g.,

using Algorithm 5.6 to expand αr(x)−1 in Chebyshev series), and define (γi)
∞
i=1

as in Proposition 6.2
4 compute the minimum i such that Ai/i! ≤ 1/2
5 set p0 = p
6 for k = 0, 1, . . . , i− 1

7 compute qk+1(x) = g(x) +
∑r−1

j=0 x
j
∫ x

0 βj(t)pk(t)dt ∈ Q[x]

8 compute pk+1 ∈ Q[x] such that ‖pk+1 − αr(x)−1qk+1(x)‖∞ ≤ ǫ using Algo-
rithm 5.6

9 compute δ ≥ ‖p− pi‖∞ using Lemma 6.4
10 return B = γi(δ + eAǫ)

We now prove that Algorithm 6.5 works as stated, and estimate how tight the
bound it returns is.

Theorem 6.6. Algorithm 6.5 is correct: its output B is an upper bound for ‖y −
p‖∞. For fixed L, as d→∞ and ǫ→ 0, the bound B satisfies

B = O
(
(‖y − p‖∞ + ǫ)(d+ ln(ǫ−1))1/2

)

and the algorithm performs O(d + ln(ǫ−1)) arithmetic operations.

Proof. Denote by V the linear part of T and recall from the proof of Proposition 6.2
that ‖V i‖ ≤ Ai/i!. For all k, the polynomial pk+1 computed on line 8 satisfies

‖pk+1 − T (pk)‖∞ ≤ ǫ,
hence we have

‖pi − T i(p)‖∞

≤ ‖pi − T (pi−1)‖∞ + ‖T (pi−1)− T 2(pi−2)‖∞ + · · ·+ ‖T i−1(p1)− T i(p0)‖∞

≤ ‖pi − T (pi−1)‖∞ + ‖V ‖‖pi−1 − T (pi−2)‖∞ + · · ·+ ‖V i−1‖‖p1 − T (p0)‖∞

≤ eAǫ.
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By Proposition 6.2, it follows that

(6.6) ‖p− y‖∞ ≤ γi‖p−T i(p)‖∞ ≤ γi(‖p− pi‖∞ + ‖pi−T i(p)‖∞) ≤ γi(δ+ eAǫ).

This establishes the correctness of the algorithm.
We now turn to the tightness statement. Letting D = deg(p−pi)+1, Lemma 6.4

implies that

(6.7) δ ≤
√
D ‖p− pi‖∞

where

(6.8)

‖p− pi‖∞ ≤ ‖p− y‖∞ + ‖y − T i(p)‖∞ + ‖T i(p)− pi‖∞

≤
(
1 + ‖V i‖

)
‖p− y‖∞ + eAǫ

≤ 3

2
‖p− y‖∞ + eAǫ.

Looking at the definition of pk+1 in step 7, we see that deg qk+1 ≤ deg pk +
C1 for some C1 > 0 depending on L only. Additionally, according to Propo-
sition 5.7, there exists C2 (again depending on L only) such that deg pk+1 ≤
max

(
deg qk, C2 ln(ǫ−1)

)
. It follows by induction that deg pk ≤ max

(
d, C2 ln(ǫ−1)

)
+

C1k for all k, whence

(6.9) D ≤ max
(
d, C2 ln(ǫ−1)

)
+ C1i+ 1.

Plugging (6.8) and (6.9) into (6.7) yields the estimate

(6.10) δ ≤
√
D

(
3

2
‖p− y‖∞ + eAǫ

)
= O

(
(‖y − p‖+ ǫ)(d+ ln(ǫ−1))1/2

)

and the result then follows from the definition of δ since γi ≤ 2.
Finally, the only steps whose cost depends on d or ǫ are lines 7, 8, and 9 (and

the number of loop iterations does not depend on these parameters either). By
Proposition 5.7, the degrees of pk and qk are all in O(d + ln(ǫ−1)). The cost of
step 7 is linear in this quantity by Lemmas 5.4 and 6.3. The same goes for line 8
by Proposition 5.7, and for line 9 by Lemma 6.4. �

Another way to put this is to say that Algorithm 6.5 can be modified to provide
an enclosure of ‖p− y‖∞. Indeed, Equations (6.7) and (6.8) imply

(6.11) ‖p− y‖∞ ≥ b =
2

3

(
δ√
D
− eAǫ

)
,

and this b is a computable lower bound for ‖p− y‖∞. Furthermore, using (6.6), we
have δ ≥ γ−1

i ‖p− y‖ − eAǫ, and hence

b ≥ 1

3
√
D

(
‖p− y‖∞ − (

√
D + 2)eAǫ

)
.

Comparing with the upper bound on B resulting from (6.10), we deduce

B

b ln(b−1)
≤ 9D‖p− y‖∞ + 6(D +

√
D)eAǫ(

‖p− y‖∞ − (
√
D + 2)eAǫ

)
ln(‖p− y‖−1

∞ )
.

In particular, if we restrict ourselves to polynomials p satisfying ‖p− y‖∞ ≤ e−Γd

for some fixed Γ, and if ǫ is chosen such that

(6.12) ‖p− y‖2E
∞ ≤ ǫ ≤ ‖p− y‖E

∞, E > 1,
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enclosure of ‖y − p‖∞ time (s)
d ǫ computed by Algo. 6.5 ‖y − p‖∞ ‖y − p∗‖∞ D i 4.2 6.5

(i)
30 10−104 [2.3 · 10−53 , 4.3 · 10−52 ] 3.4 · 10−52 3.4 · 10−52 102 2 0.05 0.54
60 10−194 [9.0 · 10−99 , 2.4 · 10−97 ] 2.0 · 10−97 1.9 · 10−97 192 2 0.05 1.07
90 10−284 [4.6 · 10−144, 1.5 · 10−142] 1.2 · 10−142 1.1 · 10−142 282 2 0.06 1.87

(ii)
30 10−88 [6.0 · 10−45 , 9.8 · 10−44 ] 5.9 · 10−44 5.6 · 10−44 42 3 0.06 0.06
60 10−206 [6.7 · 10−104, 1.5 · 10−102] 8.8 · 10−103 8.5 · 10−103 72 3 0.07 0.10
90 10−334 [2.0 · 10−169, 5.1 · 10−168] 3.1 · 10−168 3.0 · 10−168 102 3 0.08 0.23

(iii)
30 10−18 [1.2 · 10−10, 2.4 · 10−9 ] 1.6 · 10−9 1.1 · 10−9 79 3 0.05 0.74
60 10−36 [2.2 · 10−19, 6.1 · 10−18] 4.1 · 10−18 3.0 · 10−18 151 3 0.06 1.6
90 10−54 [4.8 · 10−28, 1.7 · 10−26] 1.1 · 10−26 7.7 · 10−27 223 3 0.10 2.7

Table 2. Bounds, parameters appearing in Algorithm 6.5 and
running time of Algorithms 4.2 and 6.5 for the examples of Sec-
tion 4.3: (i) y(x) = ex/2/

√
x+ 16, (ii) y(x) = 3

2 cosx+ 1
2 sinx, and

(iii) y(x) = (cosx)/(2x2 + 1).

then D ≤ max(Γ−1, 2EC2) ln ‖p− y‖−1
∞ +O(1) as ‖p− y‖∞ tends to zero, so there

exists K (computable as a function of y, Γ, and E) such that

(6.13) B ≤ Kb ln(b−1) ≤ K‖p− y‖∞ ln(‖p− y‖−1
∞ )

for small ‖p − y‖∞. Of course, since ‖p − y‖∞ is what we want to estimate, we
do not know the “correct” choice of ǫ beforehand. But, assuming ‖p − y‖∞ is
indeed small enough, we can search for a suitable ǫ iteratively, starting, say, with
ǫ = 2−d and checking whether (6.13) holds at each step. As our hypotheses imply
d = O(ln ‖p−y‖−1

∞ ), the whole process requires at most O(ln ‖p−y‖−1
∞ ) operations.

By combining these tightness guarantees with Corollary 4.6 and lower bounds
on ‖p∗

d − y‖∞ such as (4.11), one can devise various strategies to obtain certified
polynomial approximations of a given D-finite function y and relate the computed
error bounds to ‖p∗

d − y‖∞.

Example 6.7. Table 2 gives validated error bounds obtained for the polynomi-
als computed in Section 4.3 using the code presented there. In each case, a näıve
implementation of Algorithm 6.5 was called on the polynomial p returned by Al-
gorithm 4.2. (In the third example, the rough bound A suggested in Step 3 was
manually replaced by a tighter one to keep the number of iterations small.) The
remaining input parameter ǫ was manually set to approximately ‖p−y‖2

∞ based on
a heuristic estimate of ‖p− y‖∞. In practice, this makes the term eAǫ in the error
bound (6.6) small, so that the main contribution to the error bound B in practice
is ‖pi − p‖∞.

Besides the upper bound B, the table gives a lower bound b ≤ ‖p− y‖∞ obtained
as discussed above. For comparison, we include the “true” value of ‖p− y‖∞, as
well as the error ‖y − p∗‖∞ corresponding to the minimax polynomial of degre d,
computed using Sollya [14].

The last four columns indicate the values of the parameters D and i and the run-
ning time of both algorithms. It can be observed that our choice of ǫ makes D grow



36 ALEXANDRE BENOIT, MIOARA JOLDES, AND MARC MEZZAROBBA

significantly larger than d, and that a näıve implementation of Algorithm 6.5, de-
spite its interesting theoretical complexity, is far from being efficient in practice.
Nevertherless, for simple examples at least, the total running time remains reason-
able. Note for comparison that plotting the error curves shown on Figure 2 is about
1 to 2 times slower than computing the error bounds.

Unfortunately, the above complexity results come short of providing what we
may call “validated near-minimax approximations”, at least in a straightforward
way. More precisely, following Mason and Handscomb [39, Def. 3.2], call an ap-
proximation scheme mapping a function y to a polynomial pd of degree at most d
near-minimax if it satisfies

‖pd − y‖∞ ≤ Λ(d) ‖p∗
d − y‖∞

where Λ(d) does not depend on y. It is then natural to ask for polynomial approx-
imations where ‖p∗

d − y‖∞ not only satisfies the above inequality, but also comes
with an explicit upper bound satisfying a similar inequality, that is

(6.14) ‖pd − y‖∞ ≤ B ≤ Λ(d) ‖p∗
d − y‖∞, Λ independent of y.

We thus leave open the following question.

Question 6.8. Given a D-finite function y and a degree bound d, what is the com-
plexity of computing a pair (pd, B) with deg pd ≤ d satisfying (6.14) for some Λ(d)?
For instance, can it be done in O(d) + ln(‖p∗

d − y‖−1
∞ ) arithmetic operations when

y is fixed?

Another subject for future work is the following. In the timespan since we
prepared the first draft of this work, an article by Olver and Townsend [46] has
appeared that studies a similar question—how to obtain polynomial approxima-
tions of solutions of linear ODEs on the Chebyshev basis “in linear time”—from a
Numerical Analysis perspective. On first sight at least, the motivations, language,
and techniques look quite different from ours, and there appears to be little overlap
between the actual results. Yet the methods have common ingredients. Roughly
speaking, our algorithm may also be viewed as a coefficient spectral method in the
terminology of Olver and Townsend. Their method is more general in the sense
that it can deal with non-polynomial coefficients, which also means that they do
not directly exploit the Chebyshev recurrence. Instead, the computation of the
approximation polynomials (for which we use a block Miller algorithm) boils down
to the fast and numerically stable solution of a linear system similar to (4.4). There
is no validation of the solution. It is intriguing to understand these links in detail
and determine if the best features of the two methods can somehow be combined.

Beyond non-polynomial coefficients, an interesting research direction concerns
the case of nonlinear ODEs. We may expect algorithms of a different kind (prob-
ably based on Newton’s method instead of recurrences) for the computation of
polynomial approximations, but some of the ideas used in the present article may
still apply. And, closer to what we do here, it is natural to ask for a generalization
to other families of orthogonal polynomials, starting with the rest of the class of
Gegenbauer polynomials.
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Sendra and L. González-Vega, editors, ISSAC ’08, page 269–276. ACM, 2008.

[9] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University Press,
2010.

[10] N. Brisebarre and M. Joldes, . Chebyshev interpolation polynomial-based tools for rigorous
computing. In S. M. Watt, editor, ISSAC ’10, page 147–154. ACM, 2010.

[11] M. Bronstein and B. Salvy. Full partial fraction decomposition of rational functions. In
M. Bronstein, editor, ISSAC ’93, page 157–160. ACM, 1993.

[12] E. W. Cheney. Introduction to approximation theory. American Mathematical Society, 1998.
[13] S. Chevillard, J. Harrison, M. Joldes,, and C. Lauter. Efficient and accurate computation

of upper bounds of approximation errors. Theoretical Computer Science, 16(412):1523–1543,
2011.
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