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Abstract

Generalized maps describe the subdivision of objects in cells and are widely
used to model 2D and 3D images. In this context, several pattern recog-
nition tasks involve solving submap isomorphism problems (to decide if a
map is included in another map) or, more generally, computing maximum
common submaps (to measure the distance between two maps). Recently,
we have described a polynomial-time algorithm for solving the submap iso-
morphism problem when the pattern map is connected. In this paper, we
show that submap isomorphism is NP-complete when the pattern map is
not connected. Then, we characterize the inherent difficulty of submap iso-
morphism with respect to the number of connected components. We show
that it is Fixed-Parameter Tractable (FPT) and we give an FPT algorithm
for submap isomorphism. We experimentally compare this algorithm with a
state-of-the-art subgraph isomorphism algorithm for searching for patterns
in an image and we show that it is both more accurate and more efficient.
Finally, we study the complexity of the maximum common submap problem,
and we show that it is NP-hard even though we restrict the problem to the
search of common connected submaps.
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1. Motivations

To model the topology of the segmentation of an image in regions, one
may use Region Adjacency Graphs (RAGs) [1, 2]: An RAG associates a node
with every region and an edge with every pair of adjacent regions. However an
RAG does not fully describe the topology of a partition in regions because it
does not represent multi-adjacency relations nor the order of adjacent regions
when turning around a given region. Thus two partitions having different
topologies may be described by isomorphic RAGs, as illustrated in Fig. 1.
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Figure 1: Segmented images (a) and (b) have different topologies but their RAGs are
isomorphic to (c). (We don’t represent the infinite region in the RAG.)

Dual graphs [3] extend RAGs and fully describe the topology of a seg-
mented image by pairs (G,G) of dual graphs such that each face of G cor-
responds to a vertex of G, and vice-versa. This representation is able to
encode any subdivision of the 2D topological space [4]. However, encoding
3D topological spaces with dual graphs is a difficult problem. Combinatorial
maps and generalized maps [5] are more general data structures which fully
model the topology of nD objects subdivided in cells (e.g., 0D vertices, 1D
edges, 2D faces, 3D volumes) by means of incidence and adjacency relation-
ships between these cells. In particular, these models are very well suited for
scene modeling [6], and for 2D and 3D image segmentation [7].

In [8], we have defined a basic tool for comparing combinatorial maps,
i.e., submap isomorphism which involves deciding if a copy of a pattern map
may be found in a target map. This problem is central to many pattern
recognition tasks as it may be used to decide whether a part of a segmented
image is homeomorphic to another segmented image. In [8], we have proposed
an efficient polynomial-time algorithm for solving this problem provided that
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the pattern map is connected. This algorithm allows us to very quickly find
all occurrences of a pattern, and we have illustrated its interest and feasibility
for searching patterns in 2D and 3D segmented images, in the same way as
any child would aim to do when he searches Wally in Martin Handford’s
books. However, a strong precondition of this algorithm is that the pattern
map must be connected, and we have shown in [9] that submap isomorphism
becomes NP-complete when the pattern map is not connected. This is a
strong impediment since combinatorial maps modeling image segmentations
are not always connected: When some regions are completely enclosed in a
region, the corresponding combinatorial map is not connected.

In this paper, we study further the tractability of submap isomorphism
and we characterize the inherent difficulty of submap isomorphism with re-
spect to the number of connected components. More precisely, we show that
it is Fixed-Parameter Tractable (FPT) and we describe an FPT-algorithm
which is exponential only in the number of connected components of the
pattern map while being polynomial in the sizes of the two maps. We draw
a series of experiments that aim at comparing this algorithm with a state-
of-the-art subgraph isomorphism algorithm for searching for patterns in a
segmented image. We show that our FPT-algorithm dramatically reduces
the running time needed to find patterns and improves the relevance of re-
trieved patterns.

Submap isomorphism is a decision problem which cannot be used to mea-
sure the similarity of two maps as soon as there is no inclusion relation be-
tween them. In order to deal with this issue, we have introduced in [10] a
distance measure which is based on the size of a largest common submap,
in a similar way as a graph distance measure is defined by means of the
size of a largest common subgraph in [11]. Many pattern recognition tasks
such as, for example, mining, classification, or clustering, rely on the com-
putation of distances so that it is important to have efficient algorithms for
computing maximum common submaps. In order to better understand these
questions, it is worth studying the theoretical complexity of this problem: If
it is obviously NP-hard in the general case1, its theoretical complexity be-

1We may decide if a map M is isomorphic to a submap of another map M ′ by searching
for the maximum common submap of M and M ′ and checking whether it is isomorphic
to M . As submap isomorphism is NP-complete when M is not connected, searching for
a maximum common submap is NP-hard if we do not restrict the search to connected
submaps.
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comes less obvious when we restrict the problem to the search of maximum
common connected submaps. Indeed, the fact that there exists a polynomial-
time algorithm for solving connected submap isomorphism lets us hope that
the basic principle of this algorithm may be extended to efficiently solve the
maximum common connected submap problem. In this paper, we prove that
this problem is actually NP-hard.

Contributions and outline of the paper. In Section 2 we recall definitions
related to generalized maps, and in Section 3 we recall definitions and results
related to computational complexity. In Section 4, we study the theoretical
complexity of submap isomorphism, and we give an FPT algorithm for this
problem. In Section 5, we experimentally compare this algorithm with a
subgraph isomorphism algorithm for searching patterns in an image and we
show that it is both more accurate and more efficient. In Section 6, we study
the theoretical complexity of maximum common submap.

The new contributions of this paper with respect to [9] mainly are:

• A proof that submap isomorphism is Fixed-Parameter Tractable (FPT)
and the description of an FPT-algorithm for this problem;

• An experimental evaluation of the FPT-agorithm for searching for pat-
terns in a segmented image;

• A proof that the maximum common submap problem isNP-hard, even
when the common submap is required to be connected.

2. Recalls and basic definitions on generalized maps (nG-maps)

In this work we consider generalized maps, which are more general than
combinatorial maps, and we refer the reader to [5] for more details on gen-
eralized maps.

Throughout this paper n is a positive integer corresponding to the dimen-
sion of the nG-maps, and N denotes the set of all integers ranging between
0 and n.

Definition 1. (nG-map) An n-dimensional generalized map (or nG-map)
is defined by a tuple M = (D,α0, . . . , αn) such that (i) D is a finite set of
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(a) (c)

a b c d e f g h i j k l m n
α0 h c b e d g f a j i l k n m
α1 b a d c f e h g n k j m l i
α2 a b c i j f g h d e k l m n

(b)

Figure 2: (a) A plane graph. (b) The corresponding 2G-map. (c) Its graphical representa-
tion: Darts are represented by segments labeled with letters, consecutive darts separated
with a little segment are 0-sewn (e.g., α0(b) = c and α0(c) = b), consecutive darts sepa-
rated with a dot are 1-sewn (e.g., α1(a) = b and α1(b) = a), parallel adjacent darts are
2-sewn (e.g., α2(d) = i and α2(i) = d).

components called darts; (ii) ∀i ∈ N , αi is an involution2 on D; and (iii)
∀i, j ∈ N such that i+ 2 ≤ j, αi ◦ αj is an involution.

2G-maps may be used to model plane graphs, i.e., embeddings of planar
graphs into planes. For example, Fig. 2 displays a plane graph and the cor-
responding 2G-map. We say that a dart d is i-sewn with a dart d′ whenever
d = αi(d

′) and d 6= d′, whereas it is i-free whenever d = αi(d). A seam is a
tuple (d, i, d′) such that d′ is i-sewn to d. For example, (a, 0, h) is a seam of
the 2G-map displayed in Fig. 2 because α0(a) = h.

Definition 2. (seams of a set of darts in an nG-map) LetM = (D,α0, . . . , αn)
be an nG-map and E ⊆ D be a set of darts. The set of seams associated with
E in M is: seamsM(E) = {(d, i, αi(d))|d ∈ E, i ∈ N,αi(d) ∈ E,αi(d) 6= d}.

For example, in the 2G-map M displayed in Fig. 2, we have

seamsM({d, e, i}) = {(d, 0, e), (e, 0, d), (d, 2, i), (i, 2, d)}

2An involution f on D is a bijective mapping from D to D such that f = f−1.
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Map isomorphism [5] allows us to decide the equivalence of two nG-maps.

Definition 3. (map isomorphism [5]) Two nG-maps M = (D,α0, . . . , αn)
and M ′ = (D′, α′

0, . . . , α
′
n) are isomorphic if there exists a bijection f : D →

D′, such that ∀d ∈ D, ∀i ∈ N, f(αi(d)) = α′
i(f(d)).

Induced submaps are defined in [12]: M is an induced submap of M ′ if
M preserves all seams of M ′, i.e, for every couple of darts (d1, d2) of M , d1
is i-sewn to d2 in M ′ if and only if d1 is i-sewn to d2 in M .

Definition 4. (induced submap [12]) An nG-map M ′ = (D′, α′
0, . . . , α

′
n) is

an induced submap of another nG-map M = (D,α0, . . . , αn) if D′ ⊆ D and
seamsM ′(D′) = seamsM(D′).

Another submap relation is introduced in [10] and is called partial submap
by analogy with existing work on graphs. Indeed, induced subgraphs are
obtained by removing some nodes (and all their incident edges) whereas
partial subgraphs are obtained by removing not only some nodes (and all
their incident edges) but also some edges. In our nG-map context, partial
submaps are obtained by removing not only some darts (and all their seams)
but also some other seams.

Definition 5. (partial submap [10]) An nG-map M ′ = (D′, α′
0, . . . , α

′
n) is

a partial submap of another nG-map M = (D,α0, . . . , αn) if D′ ⊆ D and
seamsM ′(D′) ⊆ seamsM(D′).

An nG-map is connected if any pair of darts is connected with a path of
sewn darts.

Definition 6. (connected nG-map) An nG-map M = (D,α0, . . . , αn) is con-
nected if ∀d, d′ ∈ D, there exists a sequence of darts (d1, . . . , dk) such that
d1 = d, dk = d′ and ∀i∈{1, . . . , k − 1}, ∃ji ∈ N, di+1 = αji(di).

A connected component of an nG-map M = (D,α0, . . . , αn) is an induced
submap M ′ of M which is connected and maximal, i.e., such that there does
not exist another induced submap M ′′ 6= M ′ of M which is connected and
such that M ′ is an induced submap of M ′′.

2G-maps modeling segmented images are not necessarily connected, as
illustrated in Fig. 3. Note that we may transform a non connected nG-
map into a connected nG-map by splitting some darts belonging to different

6



(c)(b)(a) (d)

R2

R1

R3 R4 R3 R4

R2

R1

Figure 3: Example of segmented image (a) whose associated 2G-map (b) is not connected.
Regions R3 and R4 are enclosed in region R1 so that the 2G-map (b) contains 2 different
connected components. The first one corresponds to the external boundaries of R3 and R4

and the internal boundary of R1. The second one corresponds to the external boundaries of
R2 and R1 and the internal boundary of the infinite region. (c) and (d) are two connected
2G-maps which are obtained from (b) by splitting some darts and sewing them. However,
these two 2G-maps are not isomorphic.

connected components and sewing them together. However, the choice of the
darts to be splitted is arbitrary so that two homeomorphic segmented images
may be modeled with two non isomorphic connected nG-maps, as illustrated
in Fig. 3.

3. Recalls on computational complexity

3.1. (Sub)Graph Isomorphism and Maximum Common Subgraph Problems

2G-maps may be used to model the topology of a plane graph. Hence,
problems on nG-maps are at least as hard as corresponding problems on plane
graphs in the sense that if we have an algorithm to solve a problem on nG-
maps, then we may extend this algorithm to solve the corresponding problem
on plane graphs in a straightforward way (and also on planar graphs which
have unique planar embeddings such as, for example, 3-connected planar
graphs).

In this section, we recall some complexity results for (sub)graph isomor-
phism and maximum common subgraph problems.

The complexity of graph isomorphism is still an open question. If it
clearly belongs to NP , no polynomial-time algorithm has been found for
this problem, and it has not been shown to be NP-complete. However,
there exist special classes of graphs for which this problem is polynomial
such as, for example, planar graphs [13], bounded valence graphs [14] and
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ordered graphs [15]. For general graphs, many instances may be solved in
polynomial time by exploiting local invariant properties such as node degrees
[16, 17]. However, in some cases these local invariant properties are not strong
enough to discriminate non isomorphic graphs.

Subgraph isomorphism is more general than graph isomorphism (in the
sense that graph isomorphism may be reduced to subgraph isomorphism) and
it has been shown to be NP-complete, even in the case of planar graphs [18].
However, there exist subclasses of planar graphs for which this problem be-
comes polynomial such as, for example, trees [19], 2-connected outerplanar
graphs [20] and outerplanar graphs under the block-and-bridge preserving
constraint [21]. Moreover, several studies have aimed at circumventing the
source of NP-completeness by studying its parameterized complexity. In
particular, Eppstein [22] has proposed a first FPT-algorithm for planar sub-
graph isomorphism with fixed size patterns. The time-complexity of this
algorithm is linear in the number of vertices of the target graph, and expo-
nential only in the number k of vertices of the pattern graph. Recently, Dorn
[23] has improved the dependence on the size k of the pattern graph from
kO(k) to 2O(k).

The maximum common subgraph problem is more general than subgraph
isomorphism and it is NP-hard in the general case. However, for all classes
of graphs for which subgraph isomorphism is polynomial, it is worth studying
the complexity of the maximum common subgraph on this particular class
of graphs. In particular, this problem can be solved in polynomial time if
input graphs are trees or almost trees of bounded degree [24]. Most recently,
polynomial-time algorithms have been introduced for outerplanar graphs of
bounded degrees [25], and for outerplanar graphs under the block-and-bridge-
preserving constraint [26].

3.2. Boolean Satisfiability

The boolean satisfiability problem (SAT) involves deciding if a boolean
formula F over a set X = {x1, . . . , xv} of variables may be satisfied. Without
loss of generality, we assume that F is in Conjunctive Normal Form (CNF),
i.e., F = c1 ∧ . . . ∧ cm is a conjunction of m clauses such that each clause
ci = li,1 ∨ . . . ∨ li,ji is a disjunction of ji literals, and each literal li,k is either
a variable of X (i.e., li,k = xj) or the negation of a variable of X (i.e.,
li,k = ¬xj). We use the set membership notation to denote that a clause cj
occurs in F and that a variable xi occurs in a clause cj (either positively or
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negatively). Let #X be the number of variables in X, #F the number of
clauses in F , and #cj the number of literals in a clause cj.

SAT is an NP-complete problem [27], and it remains NP-complete even
if every clause is composed of at most 3 literals, yielding the 3-SAT problem.

Some problems which are NP-complete for general graphs may become
polynomial when graphs are planar or plane so that it is worth studying
their complexity in these special cases. To facilitate NP-completeness proofs
of problems dealing with planar graphs, Lichtenstein [28] has introduced
Planar 3-SAT. Given a 3-SAT instance (X,F ), he defines the graph G(X,F ) =
(V,E1 ∪ E2) such that

• V associates a vertex with every variable xi ∈ X and every clause
cj ∈ F ;

• E1 associates an edge with every couple (xi, cj) such that cj is a clause
and xi is a variable which occurs in cj, i.e., E1 = {(xi, cj) | cj ∈ F, xi ∈
cj}; we note pos(xi) (resp. neg(xi)) the set of edges (xi, cj) ∈ E1 such
that xi occurs positively (resp. negatively) in cj, and #pos(xi) (resp.
#neg(xi)) the cardinality of pos(xi) (resp. neg(xi)).

• E2 defines a cycle over the set of vertices associated with variables, i.e.,
E2 = {(xi, xi+1) | i ∈ [1,#X − 1]} ∪ {(x#X , x1)}.

Lichtenstein has defined Planar 3-SAT as 3-SAT restricted to instances (X,F )
such that the graph G(X,F ) is planar, and he has shown that Planar 3-SAT
is NP-complete.

In our generalized map context, we are not only interested in planar
graphs, but also in plane graphs, i.e., embeddings of planar graphs in planes.
When the graph G(X,F ) is embedded in a plane, edges of E2 define a cycle
which separates the plane into two parts: A first part inside the cycle, and a
second part outside. We note in(xi) (resp. out(xi)) the set of edges (xi, cj) ∈
E1 such that cj is inside (resp. outside) the cycle defined by E2 edges.
For example, Fig. 4 displays an instance (X,F ) of Planar 3-SAT and an
embedding of its associated graph G(X,F ) in a plane. On this example, edges
of x3 which belong to the cycle are in(x3) = {(x3, c2), (x3, c4)}.

A plane embedding ofG(X,F ) is said to be separable if, for every variable xi,
we have {pos(xi), neg(xi)} = {in(xi), out(xi)}. In other words, all edges of
pos(xi) belong to the same part of the plane with respect to the cycle defined
by E2, and all edges of neg(xi) belong to the other part. For example, in the
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X = {x1, x2, x3, x4, x5}
F = (¬x1 ∨ x2 ∨ ¬x4)
∧ (x1 ∨ ¬x2 ∨ x3)
∧ (x2 ∨ ¬x3 ∨ ¬x4)
∧ (x3 ∨ x4 ∨ ¬x5)
∧ (¬x1 ∨ x5)

neg

x2 x3 x4 x5

C2 C4

C3

C5

C1

pos

pos

posnegnegneg neg pos

negpos pos

neg

pos

x1

Figure 4: An instance (X,F ) of Separable Planar 3-SAT and a separable embedding of its
associated formula graph G(X,F ) in a plane. Clauses correspond to circles, and variables
to squares. Edges of E2 are displayed in dotted lines and the part of the plane inside the
cycle defined by E2 edges is displayed in gray. For each variable xi, edges of pos(xi) are
labelled with pos and edges of neg(xi) are labelled with neg.

embedding displayed in Fig. 4, we have in(x3) = {(x3, c2), (x3, c4)} = pos(x3)
and out(x3) = {(x3, c3)} = neg(x3), so that the separability constraint is
satisfied for x3. We can check that it is also satisfied for all other variables
so that this plane embedding is separable.

Furthermore, Knuth and Raghunathan [29] have shown that any sepa-
rable embedding may be drawn so that all variables are aligned from x1 to
x#X , and all clauses which are inside (resp. outside) the E2 cycle are above
(resp. below) the variable line, as displayed in Fig. 4.

Lemma 1 of [28] shows us that the Separable Planar 3-SAT problem
defined below is NP-complete.

Problem: Separable Planar 3-SAT
Instance: A triple (X,F, µ) where X is a set of boolean variables, F is
a CNF formula over X and µ is a plane embedding of G(X,F ) such that
(i) the plane embedding µ is separable; (ii) every variable occurs in 2 or
3 clauses, and at least once positively and once negatively; and (iii) every
clause contains 2 or 3 literals.
Question: Does there exist a truth assignment for X which satisfies F?

Note that the embedding µ is given as an input of the instance: Indeed,
Lichtenstein [28] has proven that, given any planar 3-SAT instance (X,F ),
we can build in polynomial-time an equivalent SAT instance (X ′, F ′) and a
separable plane embedding of G(X′,F ′). Furthermore, the instance (X ′, F ′)
satisfies constraints (ii) and (iii) of the definition of the problem.
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b d
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M1 M2 M3 M4

Figure 5: Submap isomorphism examples. M1 is not isomorphic to a submap of M2 (i.e.,
M1 6vp M2 and M1 6vi M2), though each connected component of M1 is a submap of M2.
M1 is isomorphic to a partial submap of M3, but not to an induced one (i.e., M1 vp M3

and M1 6vi M3), because the seams (a, 2, c) and (b, 2, d) of M3 are not preserved in M1.
M1 is isomorphic to an induced submap of M4 and, therefore, it is also isomorphic to a
partial submap of M4 (i.e., M1 vp M4 and M1 vi M4).

4. Submap isomorphism

Submap isomorphism involves deciding if a pattern nG-map M is isomor-
phic to a submap of a target nG-map M ′, and it is formally defined below.

Problem: Partial (resp. induced) submap isomorphism
Instance: A couple (M,M ′) such that M and M ′ are nG-maps.
Question: Does there exist a partial (resp. induced) submap of M ′ which
is isomorphic to M?

We note M vp M ′ (resp. M vi M ′) when the answer is yes. Note that
M vi M ′ ⇒M vp M ′. Fig. 5 displays examples of submap isomorphisms.

The complexity of submap isomorphism depends on the connectedness of
the pattern nG-map. For example, the nG-map M1 of Fig. 5 is not connected,
and is composed of two connected components, whereas the nG-maps M2,
M3 and M4 are connected. When the pattern nG-map M is connected, we
can decide of submap isomorphism in polynomial time by using the algorithm
described in [8]. When the pattern nG-map M is not connected, we may use
this algorithm to search for all occurrences of each connected component of
M in the target nG-map M ′. Let us consider, for example, the nG-map
M1 of Fig. 5. Its left hand side component occurs once in M2 and twice
in M3 and M4, and its right hand side component occurs once in M2 and
M3 and twice in M4. To solve the submap isomorphism problem from these
occurrence lists, we have to solve the following combinatorial problem: Can
we select one occurrence in M ′ of each connected component of M so that
the selected occurrences do not overlap in M ′?

In Section 4.1, we prove that submap isomorphism becomesNP-complete
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when the pattern nG-map M is not required to be connected. In Section 4.2,
we give an FPT-algorithm which proves that the tractability of this problem
actually depends on the number of connected components in M .

4.1. Submap Isomorphism is NP-complete

Theorem 1 claims that submap isomorphism is NP-complete in the gen-
eral case, when the pattern nG-map M is not required to be connected.

Theorem 1. Partial (resp. induced) submap isomorphism is NP-complete.

The problem trivially belongs to NP since one can check that a given
partial (resp. induced) submap of the target nG-map M ′ is isomorphic to the
pattern nG-map M in polynomial time. We may use for example the poly-
nomial time algorithm for map isomorphism of [8], which has been defined
for non connected nG-maps.

To prove that the problem is NP-complete, we show that Separable Pla-
nar 3-SAT may be reduced to it in polynomial time3. We first consider the
induced case; the extension of the proof to the partial case is discussed at the
end of this section. We consider an instance (X,F, µ) of Separable Planar 3-
SAT and we show how to build an instance (M,M ′) of submap isomorphism
such that M vi M ′ iff the answer to (X,F, µ) is yes. We consider 2G-maps,
so that n = 2.

Definition of the target 2G-map M ′. Let us first describe the building blocks
which compose M ′:

• For each variable xi, M
′ contains a gadget which is composed of a

central 12-dart face surrounded with four 10-dart faces such that two
of these 10-dart faces are labelled with xi and are adjacent, and the two
other ones are labelled with ¬xi and are adjacent, as displayed below:

xi xi

not xi not xi

3We have given a different proof in [9], based on a reduction of Planar-4 3-SAT. The
new proof is a bit simpler.
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Darts displayed in bold are connecting darts which will be 2-sewn to
define a connected 2G-map.

• For each clause cj, M
′ contains a gadget which is composed of a central

6-dart face surrounded with #cj 8-dart faces as displayed below:

If #cj = 3: If #cj = 2:

Each 8-dart face is labelled with a literal of cj, and the order of these
labels when turning around the central 6-dart face is the same as the
one in the embedding µ. Again, darts displayed in bold are connecting
darts which will be 2-sewn to define a connected 2G-map.

These building blocks are positionned in the plane like in the separable em-
bedding µ of G(X,F ) in such a way that, for each variable xi, the 10-dart faces
labelled with xi (resp. ¬xi) are oriented towards the part of the cycle defined
by E2 edges which contains pos(xi) (resp. neg(xi)) edges.

Then, these building blocks are 2-sewn in order to define a connected
2G-map: For each clause cj, each connecting dart of the associated clause
gadget is 2-sewn with a connecting dart of a 10-dart face which is labelled
with a literal of cj, according to the separable embedding µ of G(X,F ). Note
that in separable instances every variable occurs in 2 or 3 clauses, and at
least once positively and once negatively, so no variable occurs more than
twice positively or more than twice negatively. This ensures us that variable
gadgets have enough 10-dart faces to connect clause gadgets with variable
gadgets. Fig. 6 displays the 2G-map associated with the formula displayed in
Fig. 4. This 2G-map contains only one connected component as the different
gadgets which compose it have been 2-sewn.

Definition of the pattern 2G-map M . M is composed of #X occurrences of
the variable gadget and #F occurrences of the clause gadget, where variable
and clause gadgets are displayed below:

Variable gadget: Clause gadget:
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Figure 6: 2G-map M ′ associated with the SAT instance displayed in Fig. 4. Note that this
2G-map contains holes (corresponding to white parts in the figure): each dart d adjacent
to these holes is 2-free so that α2(d) = d.

For example, the 2G-map M associated with the formula displayed in Fig. 4
contains 10 connected components: 5 occurrences of the variable gadget and
5 occurrences of the clause gadget.

Proof of (M vi M ′) ⇒ (∃ truth assignment of X which satisfies F ). Let us
first assume that there exists an induced submap M ′′ of M ′ which is isomor-
phic to M , and let us show that there exists a truth assignment of X which
satisfies F .

IfM ′′ is isomorphic toM then, according to Def. 3, there exists a bijection
f which matches darts of M ′′ with darts of M and which preserves all seams.
By extension, we say that f matches faces of M ′′ with faces of M . As we
consider induced submap isomorphism, two faces of M which belong to two
different connected components cannot be matched by f with faces which
are 2-sewn in M ′′ (according to Def. 3). Fig. 7 displays an example of
such a solution for the instance (M,M ′) of the induced submap isomorphism
problem associated with the instance (X,F ) displayed in Fig. 4.

M contains #F clause gadgets, and each of these clause gadgets has a
6-dart face adjacent to a 8-dart face. These faces can only be matched with
faces which belong to clause gadgets in M ′ as 6-dart faces in M ′ only come
from clause gadgets. As there are #F clause gadgets in M , each clause
gadget in M ′ is matched with a different clause gadget in M . For the same
reasons, each variable gadget in M is matched with a different variable gadget
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Figure 7: Solution of the induced submap isomorphism instance (M,M ′) associated with
the Separable Planar 3-SAT instance displayed in Fig. 4. The induced submap of M ′

which is isomorphic to M is displayed in dark gray. Note that two different components
of this submap cannot be 2-sewn in M ′ as we consider induced submap isomorphism.

in M ′. For each variable gadget, the label of 10-dart faces in M ′ which are
not matched with 10-dart faces of M gives the truth assignment for the
corresponding variable. For each clause gadget, the label of the 8-dart face
of M ′ which is matched with a 8-dart face of M corresponds to a literal which
satisfies the clause. As two faces ofM which belong to two different connected
components cannot be matched by f with faces which are 2-sewn in M ′′, we
ensure that when a 8-dart face of a clause gadget is matched, then its 2-
sewn 10-dart face is not matched, i.e., when a clause is satisfied by a literal,
then no other clause can be satisfied by the negation of this literal so that
the truth assignment deduced from the variable gadget matching actually
satisfies all clauses of F . For example, the truth assignment corresponding
to the solution displayed in Fig. 7 is {¬x1,¬x2, x3,¬x4, x5}.

Proof of (∃ truth assignment of X which satisfies F ) ⇒ (M vi M ′). Let us
assume that there exists a truth assignment of X which satisfies F and let us
show that there exists an induced submap M ′′ of M ′ which is isomorphic to
M , i.e., that there exists a dart matching which preserves all seams of M . For
each variable gadget in M associated with a variable xi, we match the darts
of the 12-dart face with the darts of the 12-dart face of the variable gadget
associated with xi in M ′ and we match the darts of the two 10-dart faces with
the darts of the two 10-dart faces which are labeled with the negation of the
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truth value of xi. For each clause gadget in M associated with a clause cj,
we match the darts of the 6-dart face with the darts of the 6-dart face of the
clause gadget associated with cj in M ′ and we match the darts of the 8-dart
face with the darts of one of the three 8-dart faces: We choose an 8-dart face
which is labeled with a literal which is satisfied by the truth assignment (this
8-dart face cannot be 2-sewn with a matched 10-dart face).

Proof for the partial case. Let us now consider the partial case: We consider
an instance (X,F, µ) of Separable Planar 3-SAT and we show how to build
an instance (M,M ′) such that M vp M ′ iff the answer to (X,F, µ) is yes.
The proof is similar to the induced case. The difference between the induced
and the partial cases is that, when considering induced submap isomorphism,
two faces which belong to two different components in M cannot be matched
with faces of M ′ which are 2-sewn whereas, when considering partial submap
isomorphism, two faces which belong to two different components in M may
be matched with faces of M ′ which are 2-sewn. Therefore, we modify the
clause gadget C so that the 8-dart face is adjacent to a 6-dart face, on one
side, and to a 10-dart face on the opposite side, as displayed below:

These 10-dart faces can only be matched with 10-dart faces of M ′.The label of
the matched 10-dart face corresponds to the literal which satisfies the clause.
Fig. 8 displays an example of solution for partial submap isomorphism.

4.2. FPT-algorithm for Submap Isomorphism

The fact that submap isomorphism is NP-complete implies that there
does not exist an algorithm which can solve all instances of this problem in
polynomial time, unless P = NP . However, we show in this section that the
practical tractability of instances of this problem actually depends on the
number of different connected components of the pattern nG-map M .

Let us first define the parameterized submap isomorphism problem:

Problem: Parameterized partial (resp. induced) submap isomorphism
Instance: A couple (M,M ′) such that M and M ′ are nG-maps.
Question: Does there exist a partial (resp. induced) submap of M ′ which
is isomorphic to M?
Parameter: The number k of connected components in M
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Figure 8: Solution of the partial submap isomorphism instance (M,M ′) associated with
the Separable Planar 3-SAT instance displayed in Fig. 4. The partial submap of M ′ which
is isomorphic to M is displayed in dark gray.

Theorem 2 shows us that this problem may be solved in polynomial
time when the number k of connected components in the pattern nG-map is
bounded by a fixed value.

Theorem 2. Parameterized partial (resp. induced) submap isomorphism is
fixed-parameter tractable.

To prove this theorem, we describe in algorithm 1 a procedure for deciding
if an nG-map M composed of k connected components is isomorphic to a
submap of M ′, and we show that the time complexity of this procedure is
exponential only in k while it is polynomial in n and in the number of darts
of M and M ′. We begin to consider the partial case; the proof is extended
to the induced case at the end of this section.

Correctness of algorithm 1. Let us first show that Algorithm 1 returns true
iff M is isomorphic to a partial submap of M ′. It returns true iff the graph G
has a clique of size k, i.e., a subset S ⊆ V such that ∀((M ′

x, i), (M
′
y, j)) ∈ S×

S, (M ′
x, i) 6= (M ′

y, j) ⇒ ((M ′
x, i), (M

′
y, j)) ∈ E. All vertices in V correspond

to submaps of M ′ which are isomorphic to connected components of M , and
two different vertices (M ′

x, i) and (M ′
y, j) are adjacent in G iff the submaps

M ′
x and M ′

y of M ′ do not share darts and are isomorphic to two different
connected components of M . Therefore, a clique of size k corresponds to k
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Algorithm 1: solvePartialSubIsomorphism(M,M ′)

Input: two nG-maps M and M ′ such that M is composed of k
connected components

Output: returns true iff M is isomorphic to a partial submap of M ′

1 Decompose M into its k connected components denoted M1, . . . , Mk

2 Let V and E be two empty sets
3 for each connected component Mi of M do
4 for each partial submap M ′

x of M ′ which is isomorphic to Mi do
5 add (M ′

x, i) to V

6 for each (M ′
x, i) ∈ V do

7 for each (M ′
y, j) ∈ V such that i 6= j do

8 Let D′
x and D′

y be the darts of M ′
x and M ′

y, respectively

9 if D′
x ∩D′

y = ∅ then add ((M ′
x, i), (M

′
y, j)) to E;

10 if the graph G = (V,E) has a clique of size k then
11 return true
12 else
13 return false

vertices (M ′
1, i1), . . . , (M ′

k, ik) such that each M ′
i is isomorphic to a different

connected component Mi and all M ′
i have different darts.

Complexity of algorithm 1. Let us note d, d′, and di the number of darts of
M , M ′, and Mi, respectively. As k is a fixed parameter, we consider here
that it is a constant independent from the size of the instance which only
depends on n, d and d′.

Line 1 may be done by a simple traversal of M in O(nd).
Lines 3 to 5 may be done in O(ndd′) as d1 + . . . + dk = d, and the

complexity of searching for all partial submaps of M ′ which are isomorphic
to Mi isO(ndid

′) when using algorithm 3 of [8]: We modify line 5 of algorithm
3 of [8] by storing the initial dart of M ′ (instead of returning true) each time
we find a subisomorphism function. Note that there are at most d′ partial
submaps of M ′ which are isomorphic to each connected component Mi (one
for each initial dart of M ′; see [8] for more details).

Lines 6 to 9 may be done inO(dd′2). Indeed, the set V hasO(d′) elements,
and submaps M ′

x and M ′
y have at most d darts. It is possible to check whether

18



D′
x ∩ D′

y is empty in O(d) by marking all the darts of D′
x after line 6, and

verifying whether some dart of D′
y is marked.

Lines 10 to 13 may be done in O(d′k) as the graph G has O(d′) vertices
and there are O(d′k) subgraphs of G to check, and each subgraph has O(k2)
edges whose presence in G needs to be checked.

Thus, the overall time complexity of algorithm 1 is O(d′k + ndd′ + dd′2).

Algorithm for the induced case. The algorithm for the induced case may
be derived from algorithm 1 by searching for induced submaps instead of
partial submaps (line 4), and by modifying the way the set of edges E is
built (lines 6 to 9). Indeed, when considering induced submap isomorphism,
two occurrences of two different connected components must not share darts
and must not have darts which are sewn in M ′ but not in M . To ensure this,
we simply have to mark all darts of D′

x as well as all darts which are sewn
with D′

x (between lines 6 and 7).

5. Experimental evaluation for searching for patterns in images

In [8], we have introduced a polynomial-time algorithm for solving submap
isomorphism when the pattern nG-map is connected, and we have shown how
to use this algorithm for searching for a pattern into a database of images.
However, in these experiments, we have restricted our attention to patterns
which are modelled by connected nG-maps as the algorithm of [8] is defined
for connected submaps only. In this section, we report a similar experiment
and show how to use the FPT algorithm introduced in Section 4.2 to search
for subimages which are modelled by non connected 2G-maps.

We have considered the segmented image displayed in Fig. 9, and we have
used the algorithm of [30] to build a 2G-map from the segmented image.
The basic idea of this algorithm is to build the 2G-map in an incremental
way: Each pixel is considered iteratively and, for each pixel, a square face
is created and sewn to the 2G-map. Then this square face is merged with
adjacent faces that belong to the same region. Finally, consecutive edges
separating the same two regions are merged so that two adjacent regions are
separated by exactly one edge (see [30] for more details).

We have extracted 10 subimages from the segmented image. Each subim-
age is a connected rectangular subset of pixels. For each subimage, we have
used the algorithm of [30] to build a 2G-map from the subimage. Then we
have removed from this 2G-map every face corresponding to a region of the
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Figure 9: Segmented image

subimage which is adjacent to the exterior of the subimage (to remove faces
corresponding to regions which are not completely enclosed in the subimage).
Table 1 describes these 2G-maps. These 2G-maps are not connected because
some regions of the segmentation are completely enclosed in other regions,
as illustrated in Fig. 3 (page 7).

We compare our FPT-algorithm with LAD, a state-of-the-art algorithm
for solving subgraph isomorphism problems [31]. Given a 2G-map M , we
build a multigraph G = (V,E) such that V associates a vertex with every
0-cell of M and E associates an edge with every 1-cell of M . G is a multi-
graph because when a face has only two vertices i and j in its boundary, the
edge (i, j) occurs more than once. For example, let us consider the 2G-map
displayed in Fig. 10(b). Face 1 has only two vertices in its boundary so that
the multiplicity of edge (a, g) in the graph displayed in Fig. 10(c) is equal to
two.

To search for patterns in graphs, we consider the partial subgraph iso-
morphism problem. Indeed, the graph associated with a pattern 2G-map is
not necessarily an induced subgraph of the graph associated with a target
2G-map, as illustrated in Fig. 10. Looking for partial subgraph isomor-
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t p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
cc 79 2 2 3 3 4 4 5 5 6 6
D 30184 2240 3100 868 712 196 1858 1804 1856 758 3644
V 4978 229 298 108 82 31 366 199 191 170 720
E 7546 337 437 150 113 39 541 284 280 242 1060
F 2726 110 142 45 34 12 179 90 95 79 346

Table 1: Description of 2G-maps extracted from the image displayed in Fig. 9 (column
t) and from 10 subimages of this image (columns p1 to p10). Each column successively
displays the number of connected components (cc), darts (D), vertices (V), edges (E) and
faces (F).

phisms allows us to find all submap isomorphisms. However, some subgraph
isomorphisms may not correspond to submap isomorphisms as topological
relationships are ignored. For example, the two graphs displayed in Fig. 10
(e) and (g) are isomorphic whereas the two 2G-maps from which they have
been built (displayed in Fig. 10 (d) and (f)) are not isomorphic.

We may search for partial subgraph isomorphisms without decomposing
the pattern graph into connected components. However, when a same con-
nected component occurs several times in the target graph, it may be more
efficient to proceed in a similar way as what is done in Algo. 1, i.e., (i) de-
compose the pattern graph into its k connected components, (ii) search for
all occurrences of each connected component in the target graph, (iii) build
a graph which associates a vertex with every component occurrence and an
edge with every pair of component occurrences which do not share edges, and
(iv) search for all cliques of k vertices in this graph. Note that this algorithm
is not FPT with respect to the number of connected components as searching
for all occurrences of a connected component is an NP-complete problem in
the case of graphs, whereas it is polynomial in the case of nG-maps.

Table 2 compares our FPT submap algorithm with these two different
subgraph isomorphism approaches. All algorithms have been implemented
in C or C++. All our experiments were made on Intel(R) Core(TM) i7 CPU
930 2.80GHz. For each subimage, we have searched for all occurrences of this
subimage in the target image.

Comparison of CPU times. We report the time performance (in seconds) in
Table 2. Our FPT submap algorithm is very effective: It is able to find all
occurrences of a pattern in .27 second on average for the 10 patterns. For all
patterns but one (p7), most of the time is spent to find all occurrences of all
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Figure 10: (a) Example of image segmented in 7 regions, with a subimage delimited by a
red rectangular dotted line. (b) 2G-map Mt built from (a). (c) Multigraph Gt built from
Mt. (d) 2G-map Mp built from the subimage of (a). (e) Multigraph Gp built from Mp.
(f) A 2G-map M ′ which is not isomorphic to Mp. (g) Multigraph G′ built from M ′. Gp

is a partial subgraph of Gt; it is not an induced subgraph as edge (d′, j′) does not belong
to Gp and edge (a′, g′) occurs only once in Gp. Gp and G′ are isomorphic whereas the
2G-maps from which they have been built (Mp and M ′) are not isomorphic.

connected components of the pattern in the target, whereas the cliques are
very quickly found (in .01 second or less). Actually, the number of vertices
in the graph in which we search for the cliques is usually far below the
theoretical bound so that cliques are very quickly found and our algorithm
scales well.

Subgraph isomorphism is much slower. When searching for each con-
nected component separately, subgraph isomorphism is nearly 150 times as
slow as submap isomorphism, on average. When searching all connected
components together it is even slower and only five instances can be solved
in less than one hour of CPU time. Of course, our submap algorithm does
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SMI SGI1 SGI2
t1 t2 v s t1 t2 v s t

p1 .14 + .00 253 248 16.70 + .00 536 2064 57.00
p2 .15 + .00 2 1 1.74 + .00 3 2 6.08
p3 .11 + .00 3 1 1.48 + .00 3 1 2.45
p4 .11 + .01 280 18297 168.97 + .23 1066 385616 >3600.00
p5 .17 + .00 250 5376 32.21 + .05 752 266016 >3600.00
p6 .25 + .00 33 54 41.83 + .00 57 716 478.34
p7 .22 + .78 294 526864 59.97 + 19.53 657 10096928 >3600.00
p8 .22 + .01 152 28248 6.49 + .12 327 950272 >3600.00
p9 .16 + .00 46 264 4.61 + .00 92 3968 5.11
p10 .32 + .01 150 53568 53.37 + .38 313 3999488 >3600.00

avg .19 + .08 146 63292 38.74 + 2.03 381 1570507 >1854.90

Table 2: Experimental comparison of submap isomorphism (SMI), subgraph isomorphism
when searching each connected component separately (SGI1), and subgraph isomorphism
when searching all connected components together (SGI2). For SMI and SGI1, t1 = time
for finding all occurrences of all connected components, t2 = time for searching for all
cliques (corresponding to solutions), v = number of vertices of the graph in which cliques
are searched, and s = number of solutions found. For SGI2, t = time for finding all
solutions (>3600 for runs not completed within 1 hour). All times are in seconds.

not solve the same problem: It exploits the topology to search for each con-
nected pattern in polynomial time. When ignoring this topology, the problem
of searching for a connected pattern becomes NP-complete and is much more
difficult to solve.

Comparison of the number of solutions. For two patterns (p2 and p3), submap
isomorphism only has one solution, corresponding to the subimage that has
been originally extracted in the target image. This comes from the fact that
all connected components of these two patterns are rather large ones (the
smallest connected component has 10 vertices). The eight other patterns (p1
and p4 to p10) contain at least one smaller connected component which oc-
curs several times in the target image. For example, pattern p7 is composed
of five connected components which have 4, 5, 6, 63, and 121 vertices, re-
spectively. If the last two components only occur once in the target, the first
three ones occur 34, 108 and 150 times in the target, respectively. In this
case, the graph in which cliques are searched has 34+108+150+1+1 = 294
vertices and this graph contains 526864 cliques of five vertices (among the
34 ∗ 108 ∗ 150 = 550800 possible combinations of occurrences of the five con-
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nected components). The time needed to enumerate these 526864 cliques is
higher than the time needed to search occurrences of connected components
(.78 compared to .22), but it is still reasonable.

For all patterns but one (p3), subgraph isomorphism finds more solutions
than submap isomorphism. For example, let us consider pattern p7: the
connected component with 4 (resp. 5, 6, 63, and 121) vertices occurs 70
(resp. 236, 348, 1 and 2) times in the target. In this case, the graph in which
cliques are searched has 70 + 236 + 348 + 1 + 2 = 657 vertices and this graph
contains more than ten million cliques of five vertices.

6. Maximum Common Submap

The maximum common submap problem has been defined in [32]. Given
two nG-maps M and M ′, the goal is to find the largest nG-map which is
isomorphic to submaps of M and M ′. The size of an nG-map depends on
the number of its darts and seams. In order to have a more generic definition,
it is parameterized by two weights as follows.

Definition 7. (size of an nG-map [32]) Let M = (D,α0, . . . , αn) be an nG-
map, and (ω1, ω2) ∈ R+ be positive weights. The size of M is:
size(ω1,ω2)(M) = ω1 · |D|+ ω2 · |seamsM(D)|

Maximum common submap is more general than submap isomorphism
as we may solve submap isomorphism by searching for a maximum common
submap. As submap isomorphism is NP-complete when M is not connected,
maximum common submap is NP-hard when the common submap is not
required to be connected.

Let us now consider the maximum common connected submap problem,
where the common submap is required to be connected. As there exists
a polynomial-time algorithm for solving submap isomorphism for connected
nG-maps, we could try to extend the key ideas of this algorithm to search for
maximum connected common submaps (we have actually been trying for a
while. . . ). In this section, we show that this is not possible, unless P = NP .

The maximum common connected submap problem is an optimization
problem. As class NP is defined for decision problems only, we consider the
decision problem which involves deciding if there exists a common connected
submap whose size is greater than a given bound. Obviously, the maximum
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common connected submap problem is at least as hard as this decision prob-
lem. The decision problem is formally defined below.

Problem: Partial (resp. induced) common connected submap
Instance: A tuple (s, ω1, ω2,M,M ′) such that M and M ′ are nG-maps,
(ω1, ω2) ∈ R+ are positive weights, and s ∈ R+ is a bound on the size of
the common submap
Question: Does there exist a connected nG-map M ′′ such that
size(ω1,ω2)(M

′′) ≥ s, M ′′ vp M and M ′′ vp M ′ (resp. M ′′ vi M and
M ′′ vi M ′)?

Theorem 3 claims that this problem is NP-complete.

Theorem 3. Partial (resp. induced) common connected submap is NP-
complete.

The problem trivially belongs to NP since one can check that a given
connected nG-map M ′′ has a size greater than s and is isomorphic to partial
(resp. induced) submaps of M and M ′ in polynomial time.

To prove NP-completeness, we exhibit a polynomial-time reduction of
Separable Planar 3-SAT to the problem. We first consider the induced case;
the extension of the proof to the partial case is discussed at the end of
this section. We consider an instance (X,F, µ) of Separable Planar 3-SAT
and we show how to build an instance (s, ω1, ω2,M,M ′) of induced common
connected submap such that the two instances have the same answers. We
consider 2G-maps, so that n = 2. We set ω1 to 1 and ω2 to 0 so that the size
of an nG-map is equal to its number of darts.

Definition of the 2G-map M . Let us first describe building blocks associated
with variables. For each variable xi ∈ X, M contains four 8-dart faces con-
nected by two chains of darts, called connecting chains, as displayed below.

etc.

xx x x1 2 3 #X

The two connecting chains are displayed in bold, and they connect all vari-
ables, starting from x1, and ending on x#X . Some darts in the connecting
chains are displayed in green. We call them choice-point darts.
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Figure 11: Map M associated with the Seperable Planar 3-SAT instance displayed in
Fig. 4. Clause gadgets contain D+1 darts and are all different but we have only displayed
the first 10 darts.

Let us recall that any separable embedding may be drawn so that all
variables are aligned from x1 to x#X , and all clauses which are inside (resp.
outside) the E2 cycle are above (resp. below) the variable line [29]. Without
loss of generality, we assume in this reduction that the embedding µ is such
that all variables are aligned. The upper part of the connecting chain corre-
sponding to a variable xi is labelled with xi (resp. ¬xi) if pos(xi) = in(xi)
(resp. neg(xi) = in(xi)) whereas the lower part is labelled with ¬xi (resp.
xi), as displayed in Fig. 11.

The whole variable gadget is composed of four 8-dart faces for each vari-
able and two connecting chains of (#X − 1) ∗ 10 darts each. Therefore, it
has 52 ∗#X − 20 darts. Let us define D = 52 ∗#X − 20.

We now introduce the building blocks associated with clauses. For each
clause cj, M contains a gadget composed of D+1 darts: The first eight darts
are aligned in a chain; the remaining darts are composed of 2-sewn chains
which have 2j + 2 darts as illustrated below for c1, c2, c3 and c4.

4

c1 c3

c2 c

Hence, gadgets associated with clauses are all different and the gadget asso-
ciated with a clause cj cannot be matched with the gadget associated with
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another clause ck.
These clause gadgets are positionned in the plane like in the separable

embedding µ of G(X,F ). The first 2 · #cj darts of the gadget associated
with cj are 2-sewn with the 8-dart faces corresponding to the literals of cj,
as illustrated in Fig. 11. Note that in Separable Planar 3-SAT instances
every variable occurs in 2 or 3 clauses, and at least once positively and once
negatively, so that no variable occurs more than twice positively or more
than twice negatively. This ensures us that variable gadgets have enough
8-dart faces to connect clause gadgets with variable gadgets.

Definition of the 2G-map M ′. The second nG-map M ′ is obtained from the
first nG-map M by 2-unsewing choice-point darts of the two connecting
chains as displayed below:

3

etc.

2x x x
1 x

#X

Also, for every clause cj such that cj contains #cj literals, M ′ contains #cj
occurrences of the clause gadget associated with cj. The first (resp. second
and third, if any) two darts of the first (resp. second and third, if any)
occurrence of this clause gadget are 2-sewn with the 8-dart face associated
with the corresponding literal, as illustrated in Fig. 12.

Definition of the bound on the size s. We can now define the bound on the
size of the common nG-map as s = #F · (D + 1) where D = 52 ∗#X − 20.

Proof of (∃M ′′,M ′′ vi M,M ′′ vi M ′, size(1,0)(M
′′) ≥ s)⇒ (F is satisfiable).

Let us first assume that M ′′ exists, and let us show that there exists a truth
assignment A of X which satisfies F .

Let us first note that if we remove the choice-point darts (displayed in
green), the nG-map M ′ is composed of 2·#X different connected components
(one for every truth value of every variable) and each connected component
cannot contain more than two clause gadgets. Therefore, the only way to
connect more than two clause gadgets is to keep in the submap M ′′ some
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Figure 12: Map M ′ associated with the Separable Planar 3-SAT instance displayed in
Fig. 4. Clause gadgets contain D + 1 darts but we have only displayed the first 10 darts.

choice-point darts. However, given a variable xi, M
′′ cannot contain both

upper choice-point darts and lower choice-point darts. More precisely, let us
consider the pattern associated with a variable xi in M ′,

l

c
ba

d
e f

gh
ij

k

and show that if M ′′ contains one or more darts of {b, c, d, e} then it cannot
contain any dart of {k, j, i, h} (and vice versa). Indeed, if M ′′ contains b,
then it cannot contain k as these darts are 2-sewn in M and 2-free in M ′,
and it cannot contain h, i or j as M ′′ must be connected and all the paths of
sewn darts which connect b to a dart of {h, i, j} either go through k (via a
and l), which is not possible as M ′′ cannot contain k, or go through e and h
(via f and g), which is not possible as e and h are 2-sewn in M and 2-free in
M ′. Therefore, for each variable xi, M

′′ cannot contain both the upper and
the lower part of the connecting chain, i.e., we cannot recover both label xi
and label ¬xi in the truth assignment.

Now, let us show how to build the truth assignment A from M ′′. Each
variable xi ∈ X is assigned in A to the truth value associated with the part
of the connecting chains which belongs to M ′′. It may happen that M ′′ does
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Figure 13: Common connected submap M ′′ of the nG-maps of figures 11 and 12. M ′′ has
a size greater than s = 5 · (D+ 1) as it contains one gadget for each clause c1, . . . , c5. The
truth assignment built from M ′′ is A = {¬x1,¬x2, x3,¬x4, x5}. Note that M ′′ does not
contain any part of the connecting chains associated with x5 as all clauses are satisfied
whatever the truth value of x5 is. Therefore, x5 is arbitrarily set to true in A.

not contain any part of the connecting chains associated with xi. This occurs
when all the clauses of formula F can be satisfied whatever the truth value
of the first variable x1 or the last variable x#X , as illustrated in Fig. 13. In
this case, A arbitrarily assigns the corresponding variable to true.

Let us show thatA satisfies all clauses of F . This is a direct consequence of
the fact that size(1,0)(M

′′) ≥ s with s = #F ·(D+1). Indeed, size(1,0)(M
′′) ≥

s iffM ′′ contains #F clause gadgets as each clause gadget containsD+1 darts
whereas the whole variable gadget has D darts. As M contains #F clause
gadgets which are all different, M ′′ must contain exactly one occurrence of
each clause gadget, i.e., one for each different clause of F . Each clause cj
is satisfied by at least one literal, i.e., the literal which connects the gadget
associated with cj to the connecting chains in M ′′. For example, in Fig. 13,
c1 is satisfied by ¬x1, c2 by x3, c3 by ¬x4, c4 by x3, and c5 by ¬x1.

Proof of (F is satisfiable)⇒ (∃M ′′,M ′′ vi M,M ′′ vi M ′, size(1,0)(M
′′) ≥ s).

Let us assume that there exists a truth assignment A of X which satisfies F
and let us show how to derive from A a nG-map M ′′ which is isomorphic to
induced submaps of M and M ′ and whose size is greater than s. We build
M ′′ from M ′ by removing some darts from it. For each variable xi, we remove
from M ′ the part of the connecting chain which corresponds to the negation
of the truth value of xi in A (together with its two adjacent 8-edge faces).
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For each clause cj, we choose one literal of cj which is satisfied by A and we
remove from M the clause gadgets corresponding to the other literals of cj.
We obtain a connected nG-map which contains #F clause patterns so that
its size is greater than #F · (D+ 1). One can easily check that this nG-map
is also an induced submap of M .

Proof for the partial case. Let us now consider the partial case. To extend
the previous proof to the partial case, we have to modify the connecting
chains in the nG-map M ′. The goal is to forbid one to keep in a common
submap the two choice-point darts associated with the two different truth
values of a same variable. To this aim, we 2-sew each choice-point dart with
new darts which are 1-free as displayed below:

2 3

etc.

x x x
1 x

#X

Also, we modify the weights used to define the size of an nG-map. Indeed,
in the partial case, if ω2 is set to 0, a maximum common submap may be
obtained by removing all seams of the smallest nG-map while keeping all
its darts (as the size of an nG-map only depends on its number of darts).
Therefore, we set both ω1 and ω2 to 1 so that the size of an nG-map is equal
to its number of darts and seams. Finally, we modify clause gadgets so that
the size of each clause gadget is greater than the size of the whole variable
gadget (all 8-dart faces and the two connecting chains), and define the bound
on the size s as #F times the size of a clause gadget.

7. Conclusion

In this paper, we have proved that the search of a non connected pattern
submap in a target nG-map is anNP-complete problem, by reduction of Sep-
arable Planar 3-SAT. Nevertheless, we have shown that it is Fixed-Parameter
Tractable, by describing an FPT-algorithm whose time complexity is expo-
nential only in the number of connected components in the pattern nG-map.
Our algorithm may be extended to plane graphs in a rather straightforward
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way. In this case, the dimension n of the nG-maps is equal to 2 and the time
complexity of the algorithm becomes O(v′k + vv′2) where v and v′ are the
number of vertices of the pattern and the target graphs. This complexity may
be compared to the complexity of the FPT-algorithm proposed by Dorn [23]
for planar subgraph isomorphism, where the fixed parameter is the number
of vertices v of the pattern graph. In this case, Dorn gives an FPT-algorithm
which is linear in v′ and exponential in v (instead of the number of connected
components k in our case). Of course, we do not solve the same problem:
We consider plane graphs whereas Dorn considers planar graphs.

Also, we have proved that the computation of the maximum common
connected submap of two nG-maps is NP-hard, by reduction of Separable
Planar 3-SAT. A first consequence of this result is that the computation of
the map edit distance of [10] is also NP-hard as we have shown in [10] that
there exist edit costs for which the map edit distance may be derived in
polynomial time from the maximum common submap. Another consequence
is that the computation of a maximum connected common plane subgraph is
NP-hard (even though plane subgraph isomorphism is polynomial when the
pattern graph is connected). Indeed, the reduction described in Section 6
may be extended to plane graphs in a rather straighforward way.

Determining whether the maximum common submap is approximable or
not is an interesting perspective. Indeed, on the one hand, the problem
of computing the maximum common connected subgraph of two graphs is
deeply related to the computation of a maximum clique in the product of the
graphs [33], and Max Clique is known to be hard to approximate [34]. But
on the other hand, the maximum common connected subgraph was recently
shown to be solvable in polynomial time for outerplanar graphs of bounded
degree [25], which leaves room for further investigations in the framework of
nG-maps.
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