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Spectral gap properties and limit theorems
for some random walks and dynamical systems.

Yves Guivarc’h

Abstract We give a description of some limit theorems and the corresponding proofs
for various transfer operators. Our examples are closely related with random walks on
homogeneous spaces. The results are obtained using spectral gap methods in Hölder spaces
or Hilbert spaces. We describe also their geometrical setting and the basic corresponding
properties. In particular we focus on precise large deviations for products of random
matrices, Fréchet’s law for affine random walks and local limit theorems for Euclidean
motion groups or nilmanifolds.

Introduction

In the proofs of limit theorems for dynamical systems with hyperbolic properties, the use of
transfer operators plays an important role. For transformations with expanding properties
this amount to the use of spectral gap properties of Perron-Frobenius operators (see for
example [7], [20], [37], [46]). For Anosov systems and their extensions, the relevant transfer
operators are obtained through the use of a Markov partition which allows to go over to
a symbolic system (see [5], [48]) and to prove limit theorems (see [25]). In the context of
random walks on homogeneous spaces, spectral gap properties on Hölder spaces ([17], [25],
[28]), L2-spaces (see [1], [3], [10], [15]), or Sobolev spaces (see [9], [11]) are valid also. Hence
we are led to study a general class of Markov chains on a metric space (X, d) associated
with semigroup actions on X.
Let m be a probability on the Borel subsets of the complete and separable metric space
(X, d), S a Polish semigroup acting measurably on X by x → g.x (x ∈ X, g ∈ S). Let
p(x, g) be a non negative measurable function on (X,S) with

∫
p(x, g)dµ(g) = 1 for any

x ∈ X, where µ ∈ M1(S) is a probability on S. We consider the Markov operator Q
defined on bounded measurable functions by Qϕ(x) =

∫
ϕ(g.x)p(x, g)dµ(g). The special

case where p(x, g) = 1 is often considered in the framework of the so-called ”Iterated
Random Functions” (see [32] for example). In various situations like the study of expanding
transformations (see [7]) or large deviations for products of random matrices (see below)
it is natural to allow p(x, g) to depend on (x, g) ∈ X × S. We will assume that m is
Q-invariant i.e Qm = m where Qm(ϕ) = m(Qϕ). We denote by Ω the product space
Ω = SN and for ω = (g1, g2, · · ·) ∈ Ω, n ∈ N, we write sn = sn(ω) = gn · · · g1 ∈ S,

pn(x, ω) =
n
Π
k=1

p(sk−1.x, gk). We define the probability Px on Ω as the projective limit of

the system of probabilities pn(x, .)µ
⊗n on the spaces Ωn = S × · · · × S (n times) and we

write P =
∫
Pxdm(x). The corresponding expectation with respect to Px(resp. P) will be

denoted by Ex(resp. E). In particular, we have Qnϕ(x) = Ex(ϕ ◦ sn).
Then the Q-invariance of m implies that P is invariant under the shift θ on Ω. If m is

1



Q-ergodic, then the dynamical system (Ω, θ,P) is also ergodic. We will be interested in

limit theorems for the Birkhoff sum Sn(x, ω) =
n
Σ
1
f(sk−1.x, gk) where f(x, g) is a given real

valued Borel function on X ×S. It is natural to consider the associated ”Markov walk” on
X × R given by (x, t) → (g1.x, t + f(x, g1)), its kernel denoted by

.
Q, leaves invariant the

measure m ⊗ ℓ where ℓ is Lebesgue measure on R and
.
Q commutes with the translations

on X × R given by (x, t) → (x, t+ t′). The iterated transitions (x, t) → (sn.x, t+ Sn(x, .))

are given by the iterated kernel
.

Qn. Here we restrict mainly to the problem of the local
limit theorem i.e to the asymptotics of E[1I(Sn(x, .)] where I is an interval of the line.
The Fourier transform of the random variable Sn, i.e Ex(eitSn(x,.) where t ∈ R, can be
calculated with the ”Fourier operators” Qit given on bounded functions on X by Qitϕ(x) =∫
ϕ(g.x) p(x, g)eitf(x,g)dµ(g) and, with abuse of notation, we write Qitϕ(x) = Q(eitfϕ). In

particular we have : Ex(eitSn(x,.)ϕ(sn.x)) = (Qit)nϕ(x).
The spectral methods developed below in specific examples are also useful for proving
precise forms of other limit theorems like central limit thorem with remainder (see [20],
[42], [46]), large deviations, renewal theorem (see [25] for example), but also for convergence
to stable laws ([28]) and extreme value theory ([33]). For recent results on random walks
in random medium, closely connected with extreme value theory and stable laws on the
affine group see [13].
In section 1 we recall basic spectral results and we show their connexion with the local
limit theorem. In section 2 we describe results for products of random matrices which are
used in sections 3, 4. In section 3 we apply the results of sections 1, 2 to some specific
situations ; we get local limit theorems on motion groups and on nilmanifolds, as well as
large deviations for products of random matrices. In section 4 we consider affine random
walks on Rd and we apply the above spectral results to get an analogue of Fréchet’s law,
in particular. Sections 3,4 and the end of section 2 corresponds to recent results (see [31],
[33]). For the beginning of section 2, see the surveys [26], [30] and the book [4].
We thank B. Bekka, J.-P Conze, G.-A Margulis for important remarks and the referee for
very useful suggestions.

1 Spectral gap properties of Markov operators and the local

limit theorem.

We will show the local limit theorem in various geometric situations and we begin by recall-
ing a useful analytic setting first considered in [12] and fully developed in [35]. We assume
that the metric space (X, d) is compact and we write C(X) for the space of continuous

functions ; if ϕ ∈ C(X) we denote for ε > 0 |ϕ|∞ = sup
x

|ϕ(x)|, [ϕ]ε = sup
x,y

|ϕ(x)− ϕ(y)|
dε(x, y)

and we write Hε(X) ⊂ C(X) for the space of ε-Hölder functions i.e ϕ ∈ Hε(X) if and only
if [ϕ]ε < ∞. The space Hε(X) is normed by ‖ϕ‖ = |ϕ|∞ + [ϕ]ε and then it becomes a
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Banach space. We will say that a bounded operator Q on C(X) satisfies condition (D-F)
if

a) The powers Qn of Q acting on C(X) are uniformly bounded in norm | |∞.
b) There exists numbers ρ ∈ [0, 1[, r ∈ N, C ≥ 0 such that for any ϕ ∈ Hε(X)

[Qrϕ]ε ≤ ρ[ϕ]ε + C|ϕ|∞.

The functional inequality in b) will we called (D-F) inequality.
Then we have the

Theorem 1.1 Assume that (X, d) is compact and Q satisfies condition (D-F) on Hε(X).
Then Q has only finitely many unimodular spectral values and they are isolated in the
spectrum of Q. The corresponding characteristic subspaces have finite dimension and are
equal to the corresponding eigenspaces.

For more general and more precise statements see [12], [34], [35].
If Q is a Markov operator on X, hence in particular Q1 = 1, we say that Q is irreducible
if the equation Qϕ = eiθϕ(θ ∈ R) implies eiθ = 1, ϕ =const. If the Markov operator Q on
X is irreducible and satisfies condition (D-F) then m is the unique Q-invariant measure
and the projection m⊗ 1 on C1 satisfies lim

n→∞
‖Qn −m⊗ 1‖ = 0. More precisely, we have

the spectral decomposition Q = m ⊗ 1 + R where R(m ⊗ 1) = (m ⊗ 1) R = 0 and the
spectral radius of R is less than 1. We write Hε

0(X) = {ϕ ∈ Hε(X) ; m(ϕ) = 0} and we
observe that Hε(X) = C1⊕Hε

0(X). Under condition D-F, Q-ergodicity of m is equivalent
to simplicity of the eigenvalue 1. Also, the support supp(m) of m is the smallest closed
Q-invariant subset of X. In general it is smaller than X, but we can always restrict Q to
supp(m). For the operator Qit we have [Qitϕ]ε ≤ ρ[ϕ]ε + Ct|ϕ|∞ where

ρ = sup
x,y

∫
p(x, g)

dε(g.x, g.y)

dε(x, y)
dµ(g)

Ct = sup
x,y

∫ |eitf(x,g)p(x, g)− eitf(y,g)p(y, g)|
dε(x, y)

dµ(g).

The corresponding quantities for (Qit)n are conveniently expressed with Ex, in particular
ρ is replaced by :

ρ(n) = sup
x,y

∣∣∣∣Ex
(
dε(sn.x, sn.y)

dε(x, y)

)∣∣∣∣.

In particular if the functions x → p(x, g), x → f(x, g) are uniformly Hölder then Ct < ∞.
Also, if lim

n→∞
ρ(n) < 1, then condition D-F is satisfied ; hence in this case we are able to

develop a detailed study of Sn(x, ω).
We assume now that Q is an irreducible Markov operator with satisfies condition D-F and
f(., g) is uniformly Hölder. We follow closely [25].

Definition 1.2 We will say that the function f(x, g) on X × S is non degenerate (resp
is aperiodic) if f is not additively (resp multiplicatively) cohomologous to a constant on
supp(m) i.e for any g ∈ supp(µ), x ∈ supp(m) and some u ∈ Hε(X), c ∈ R (resp
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u ∈ Hε(X), |u| = 1, t ∈ R, θ ∈ R) we have f(x, g) = u(g.x) − u(x) + c (resp. eitf(x,g) =
eiθu(g.x)u−1(x)).

We assume that the integral
∫
f(x, g)dm(x)dµ(g) is finite and we denote this integral by

γ(f). The function v(x) =
∫
f(x, g)dµ(g) − γ(f) satisfies m(v) = 0, hence the equation

u−Qu = v has a unique solution u with u ∈ Hε
0(X). If

∫
f2(x, g)dm(x)dµ(g) is finite we

can define

σ2 = σ2(f) =

∫
(f(x, g)− γ(f) + u(x)− u(g.x))2dm(x)dµ(g)

and non degeneracy of f can be expressed as σ2(f) > 0.
Also we see that for t small, by perturbation theory onHε(X), the operatorQit has a simple
dominant eigenvalue k(f, it) = k(it) which is isolated in the spectrum of Qit and satisfies
|k(it)| = lim

n→∞
‖(Qit)n‖1/n < 1. If

∫
f2(x, g)dm(x)dµ(g) <∞ the second derivative of k(it)

at zero exists and k′(f, 0) = iγ(f), k′′(f, 0) = −(σ2(f)+ γ2(f)). The non-degeneracy (resp
aperiodicity) of f can be caracterized as follows :

Proposition 1.3 With the above notations, the following conditions are equivalent
a) f is degenerate (resp not aperiodic).
b) For any t ∈ R (resp for some t 6= 0), there exists θ ∈ R and ϕt ∈ Hε(supp(m)) such

that Qitϕt = eiθϕt on supp(m).

The following simple Lemma will be useful in the proof of the local limit theorem below.

Lemma 1.4 With the above notation assume
∫
f2(x, g)dm(x)dµ(g) < ∞, γ(f) = 0, and

f is non degenerate. Then for any ϕ ∈ Hε(X), t ∈ R, the sequence (Qit/
√
n)nϕ converges

to e−t
2σ2/2m(ϕ). There exists A > 0, ε0 > 0 such that for |t/√n| < ε0 the sequence

‖(Qit/
√
n)n‖ is bounded by 2 e−At

2

.

Proof : Since Q is irreducible and satisfies condition (D-F), we have for t small, by per-
turbation in Hε(X), Qitϕ = k(it)mt(ϕ)et + R(it)ϕ where mt ⊗ et is the projection op-
erator on the line Cet, (mt ⊗ et)R(it) = R(it)(mt ⊗ et) = 0, and the spectral radius
of R(it) is less than |k(it)|. Since γ(f) = 0 and

∫
f2(x, g)dm(x)dµ(g) < ∞ we have

k(it) = 1 − σ2t2/2 + ◦(t2), hence |k(it)| < 1 for t small non zero and lim
n→∞

kn(it
√
n) =

lim
n→∞

(1 − σ2t2/2n)n = e−σ
2t2/2. Also, for some C ∈ [0, |k(it)|[, C < 1 we have (Qit)n =

kn(it)mt ⊗ et + Rn(it) with ‖(R(it))n‖ ≤ Cn, lim
t→0

mt ⊗ et = m ⊗ 1. This gives the first

conclusion. The asymptotic expansion of k(it) gives |k(it)| ≤ e−σ
2t2/4 for |t| ≤ ε0 with

ε0 > 0, hence |kn(it/√n)| ≤ e−σ
2t2/4. If |t/√n| ≤ ε0 we have Cn ≤ exp(t2ε−2

0 LogC).

Since ‖(Qit/
√
n)n‖ ≤ |kn(it/√n)| + ‖Rn(it/√n)‖ we have ‖(Qit/

√
n)n‖ ≤ 2e−At

2

with
A = sup(σ2/4, ε−2

0 LogC). �
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Theorem 1.5 Assume that the Markov kernel Q on Hε(X) is irreducible, Qit satisfies
condition (D-F) for any t ∈ R, the function f on X × S is aperiodic with γ(f) = 0, and∫
f2(x, g)dm(x)dµ(g) <∞. Then for any ϕ ∈ Hε(X) and arbitrary interval I ⊂ R :

lim
n→∞

σ
√
2πn Ex(ϕ(sn.x)1I(Sn(x, .))] = m(ϕ)ℓ(I),

where ℓ is Lebesgue measure on R.

Proof : As in [6] we consider the following sequence of Radon measures ℓnx on X×R defined
by ℓnx(ϕ⊗ u) = σ

√
2πn Ex(ϕ(sn.x)u(Sn(x, .))) and we need to show the weak convergence

of ℓnx to m⊗ℓ. Hence it suffices to show that lim
n→∞

ℓnx(ϕ⊗u) = m(ϕ)ℓ(u) for any continuous

u ∈ L1(R) with compactly supported Fourier transform û (see [6]). The Fourier inversion
formula gives with ε > 0 :

Ex(ϕ(sn.x)u(Sn(x, .)) = (2π)−1
∫∞
−∞(Qit)nϕ(x)û(t)dt

ℓnx(ϕ⊗ u) = σ
√
n(2π)1/2

(∫
|t|≥ε′(Q

it)nϕ(x)û(t)dt+
∫ ε′√n
−ε′√n(Q

it/
√
n)nϕ(x)û(t/

√
n)dt

)

Since f is aperiodic, Proposition 1.3 gives that Qit has no unimodular eigenvalue if t 6= 0.
Since Qit satisfies condition (D-F) it follows that the spectral radius of Qit satisfies r(Qit) <
1. Hence the first term in the right hand side has limit zero. On the other hand, the above
lemma shows that for ε′ small (Qit/

√
n)nϕ(x)1[−ε′√n,ε′√n](t) satisfies dominated convergence

with limit e−t
2σ2/2. The convergence of the second term to m(ϕ)

∫∞
−∞ e−σ

2t2/2û(0)dt =

(σ−1
√
2π)−1m(ϕ)ℓ(u) follows. �

Remark 1.6 Condition (D-F) for Qit(t 6= 0) and aperiodicity of f are satisfied if Qit has
spectral radius less than one and f is non degenerate.

Clearly the same proof in the L2 context with L2
0(X) = {ϕ ∈ L2(X) ; m(ϕ) = 0} gives

Theorem 1.7 Assume that the Markov kernel Q is irreducible and its spectral radius r(Q0)
on L2

0(X) satisfies r(Q0) < 1. Assume the Borel function f(x, g) on X × S satisfies
γ(f) = 0, σ2(f) > 0, and the operator Qit on L2(X) has spectral radius less than 1 for any
t 6= 0. Then for ϕ ∈ L2(X) and arbitrary interval I ⊂ R :

lim
n→∞

σ
√
2πnE(ϕ(sn.x)1I(Sn(x, .)) = m(ϕ)ℓ(I).

For various examples where the conditions of the theorem are satisfied, see [10]. Clearly
the hypothesis and the result are stable under perturbation of Q in the operator norm and
this property gives new examples.
We observe that if r(Q0) < 1, Proposition 3.4 below allows one to verify that the spectral
radius of Qit is less than 1 in various situations. Then the spectral arguments developed in
[25] can also be used for the proofs of various limit theorems, under a Hilbert space spectral
hypothesis on Q. The condition r(Q0) < 1 of the theorem is called ”strong mixing” of Q

5



in [45]. For a study of the central limit theorem in a similar general framework, we refer to
[45]. The classical “Doeblin’s condition” is stronger than “strong mixing”. More precisely
“Doeblin’s condition” is equivalent to the fact that the spectral radius of Q0 in L1

0(m) is
less than 1.

2 Law of large numbers and spectral gap properties for prod-

ucts of random matrices.

In this section we describe some properties of products of random matrices which are
essential for the proofs of limit theorems in sections 3, 4 below. In section 3 we will show
the local limit theorem and large deviations asymptotics in a certain range for products of
random matrices. These results will play also an important role in section 4, in the study
of extreme values for affine random walks. We need to give a brief exposition of known
results on products of random matrices. We begin by describing some notation.
Let G̃ = GL(V ) be the full linear group of the Euclidean vector space V = Rd(d ≥ 2),
G = SL(V ) the special linear group of V , P(V ) (resp S(V )) the projective space (resp
unit sphere) of V . The scalar product on V will be written 〈x, y〉 if x, y ∈ V . The
corresponding norm of x ∈ V (resp g ∈ G̃) will be written |x| (resp |g|) . For g ∈ G̃ we write
γ(g) = sup(|g|, |g−1|). If x ∈ V we will denote x(resp x̃) its projection on P(V ) (resp S(V )).
Also for x ∈ P(V ) we will write x̃ ∈ S(V ) for one of its corresponding representatives in
S(V ). The action of g on x ∈ P(V ) (resp y ∈ S(V )) will be written g.x (resp g.y). We will
use on S(V ) (resp P(V ) the distance δ̄(x̃, ỹ) = |x̃− ỹ| (respδ̄(x, y) = inf (δ̃(x̃, ỹ), δ̃(−x̃, ỹ)).
We will also consider the distance δ on P(V ) given by δ(x, y) = |x∧ y| = sin(x, y) which is
equivalent to δ̄. We note that the natural norm |x∧ y| on the wedge product Λ2V satisfies
|x|2|y|2 = |x ∧ y|2 + |〈x, y〉|2. For s ∈ R we write s̄ = inf(s, 1), ŝ = sup(s, 1). For a subset
E of a group we write 〈E〉 (resp [E]) for the closed subgroup (resp semigroup) generated
by E. If g ∈ G̃ has a simple dominant eigenvalue λg we will write V = Rvg ⊕ V <

g where
vg is a dominant eigenvector and V <

g the corresponding supplementary hyperplane. In
this case we will say that g is proximal and we denote by g+ ∈ P(V ) the attracting fixed
point defined by vg. For a semigroup Γ ⊂ G̃ we will write Γprox for the subset of proximal
elements in Γ. The closure of {g+ ; g ∈ Γprox} will play an important role below in the
discussion of aperiodicity for the function f(x, g) = Log|gx̃| with g ∈ G̃, x ∈ P(V ) (see
Corollary 2.12). It will called limit set of Γ. The dual space of V will be denoted V ∗ and
the dual map of g by g∗. We will say that a semigroup Γ ⊂ G̃ satisfies condition (I-P) if

a) No finite union of proper subspaces is Γ-invariant (strong irreducibility of Γ).
b) Γ contains a proximal element.

It follows from [18] that condition (I-P) for Γ, 〈Γ〉 and the Zariski closure Zc(Γ) of Γ in G̃
are all equivalent. Since Zc(Γ) is a Lie subgroup of G̃ with a finite number of connected
components, condition (I-P) is easily verified. If the field R is replaced by the local field
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Qp, the corresponding (I-P) condition is useful (see [29]).
If Γ acts on a locally compact metric space X and if λ(resp ν) is a positive measure on
Γ (resp X) we define the convolution λ ∗ ν by (λ ∗ ν)(ϕ) =

∫
ϕ(γ.x)dλ(γ)dν(x) where

ϕ ∈ C(X) is compactly supported. We will denote by M1(E) the space of probabilities on
a Polish space E. In particular if µ ∈ M1(Γ) we will write µn for its convolution power
of order n. Also we will write P = µ⊗N for the corresponding probability on ΓN. The
product of the random matrices gk ∈ G̃(1 ≤ k ≤ n) will be written Sn = gn · · · g1. The
spectral radius of a bounded linear operator U of a Banach space into itself will be denoted
r(U) = lim

n→∞
|Un|1/n. We begin by considering products of unimodular random matrices

; we follow ([4] [16], [22], [30]) with a few changes. We start with the following (see [22],
[52]).

Theorem 2.1 Let V = Rd(d ≥ 2), G = SL(V ), µ ∈M1(G) be such that the subgroup
< supp(µ) > is non-compact and strongly irreducible, and denote by Pµ the convolution
operator defined by µ on the G-space V \ {0}. Let L2(V ) be the Hilbert space on V with
respect to Lebesgue measure and rV (µ) the spectral radius of Pµ acting on L2(V ). Then
rV (µ) < 1.

We have the following corollaries.

Corollary 2.2 With µ as in the theorem and
∫
Log|g|dµ(g) <∞, the sequence 1

n

∫
Log|g|dµn(g)

converges to a positive number :

lim
n→∞

1

n

∫
Log|g|dµn(g) ≥ −1

d
Log rV (µ) > 0.

Corollary 2.3 Assume supp(µ) satisfies condition (I-P), denote by P̄µ the operator on
P(V ) defined by convolution with µ. Then P̄µ has a unique invariant probability measure
ν. If

∫
Log|g|dµ(g) is finite the sequence of functions on P(V ), 1

n

∫
Log|gx|dµn(g) converges

uniformly to Lµ =
∫
Log|gx|dµ(g)dν(x) > 0.

This is a weak form of the well known Furstenberg’s result giving exponential growth for

products of unimodular random matrices : lim
n→∞

1

n
Log|gn · · · g1| = Lµ > 0 P − a.e (see

[16]). This fact follows also from the above and the subadditive ergodic theorem.

Corollary 2.4 We consider the d-dimensional torus Td = Rd/Zd (d > 1), the action of a
semigroup Γ ⊂ SL(d,Z) on Td by automorphisms, a probability measure µ ∈ M1(Γ) such
that the action of the group < supp(µ) > on Rd is strongly irreducible. Then the spectral
radius r0(µ) of the corresponding convolution action on L2

0(T
d,m) where m is Lebesgue

measure, satisfies r0(µ) < 1.
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We observe that this corollary (see[15]) is a very special case of a general result of automorphism-
actions on a compact nilmanifold N/∆ used below : the action of Γ ⊂ Aut(N/∆) on
L2
0(N/∆) does not contain weakly the identity representation if and only if there is no

Γ-equivariant torus factor T of N/∆ such that the corresponding quotient group acting on
T is virtually abelian (see [1]).

Corollary 2.5 With the hypothesis of Corollary 2.3 we assume that for some τ > 0,∫
|g|τdµ(g) is finite. Then there exists ε0 > 0 such that for any ε ∈]0, ε0] :

lim
n→∞

sup
|x|=1

(∫
|gx|−εdµn(g)

)1/n

< 1.

Then in particular if dim V = 2, and 2ε ∈]0, ε0] one has :

ρ(ε) = lim
n→∞

sup
x̄,ȳ∈P(V )

∫
δε(g.x̄, g.ȳ)

δε(x̄, ȳ)
dµn(g)) < 1,

and the spectral radius of P̄µ on Hε
0(P(V )) = {ϕ ∈ Hε(P(V )); ν(ϕ) = 0} is at most ρ(ε) < 1.

Remark 2.6 a) As the proof below shows, we can replace in the statement of the theorem
V by Zd, i.e SL(V ) by SL(d,Z) ; then rV (µ) is replaced by the spectral radius of the
convolution by µ on Zd \ {0}, less than 1 under the same condition.
b) Strong irreducibility is a necessary hypothesis for the validity of the theorem : if µ =

1
2(δa + δb) with a =

(
λ 0
0 1/λ

)
, b =

(
0 1

−1 0

)
, λ > 1 we get with standard notations

on P1(R2) : ν = 1
2(δē1 + δē2), Lµ = lim

n→∞
1

n

∫
Log|g|dµn(g) = 0.

c) If d = 2, condition (I-P) for [supp(µ)] is equivalent to strong irreducibility and non-
compactness of < supp(µ) >.

For the proof of the theorem we need the lemma (see [16]) :

Lemma 2.7 Assume that a semigroup Γ ⊂ SL(V ) is strongly irreducible and non-compact.
Then there is no Γ-invariant probability measure on P(V ).

Proof of Lemma 2.7 Assume ν ∈ M1(P(V )) satisfies g.ν = ν for every g ∈ Γ. Since Γ
is unbounded there exists gn ∈ Γ with lim

n→∞
|gn| = ∞. We denote un = |gn|−1gn and we

observe that |det un| = |gn|−d converges to zero. Since |un| = 1, we can extract a convergent
subsequence in EndV , again denoted un and we have lim

n→∞
un = u, with |u| = 1, det u = 0.

We write W = Ker u, W ′ = Im u and we denote by W and W
′
the corresponding

projective subspaces with W
c
= P(V ) \ W . We decompose ν as ν = ν1 + ν2 where

ν1 (resp ν2) is the restriction of ν1 (respν2) to W
c
(resp W ) and we observe that ν =

8



lim
n→∞

gn.ν = lim
n→∞

gn.ν1 + u.ν2 where u.ν2 is supported by W
′
. Since P(V ) is compact we

can assume, taking a subsequence, that gn.ν1 converges to ν ′1 which is supported on the

subspace W 1 = lim
n→∞

gn.W . Since g.ν = ν it follows that ν(W 1UW
′
) = 1. We consider

the set Φ of subsets F of P(V ) which are finite unions of proper subspaces with ν(F ) = 1.
Since any decreasing sequence in Φ is finite, Φ has a least element F0. Since g.ν = ν, we
have g.F0 = F0 for any g ∈ Γ, hence Γ is not strongly irreducible. This gives the required
contradiction. �

Proof of Theorem 2.1 Assume rV (µ) = 1 and let z = eiθ, |z| = 1 be a spectral
value of Pµ = P . Then either lim

n→∞
‖Pϕn − zϕn‖2 = 0 for some sequence ϕn ∈ L2(V )

with ‖ϕn‖2 = 1 or Im(P − zI) is not dense in L2(V ). In the second case, duality gives
zP ∗ϕ = ϕ for some ϕ ∈ L2(V ), ϕ 6= 0. Since SL(V ) preserves Lebesgue measure on
V , P is a contraction of L2(V ), hence the fixed points of z̄ P and zP ∗ in L2(V ) are
the same i.e Pϕ = zϕ. Hence it suffices to consider the first case. Then the condition
lim
n→∞

‖Pϕn − zϕn‖2 = 0 is equivalent to lim
n→∞

< Pϕn, zϕn >= 1. Since |Pϕn| ≤ P |ϕn| and

〈P |ϕn|, |ϕn|〉 ≤ 1 we get lim
n→∞

〈P |ϕn|, |ϕn|〉 = 1, i.e lim
n→∞

∫
〈|ϕn| ◦ g, |ϕn|〉dµ(g) = 1. Since

〈|ϕn| ◦ g, |ϕn|〉 ≤ 1 it follows that, taking a subsequence, lim
n→∞

〈|ϕn| ◦ g, |ϕn|〉 = 1 µ− a.e,

i.e lim
n→∞

‖|ϕn| ◦ g − |ϕn|‖2 = 0 µ− a.e. On the other hand we have

‖|ϕn|2 ◦ g − |ϕn|2‖1 ≤ ‖|ϕn| ◦ g − |ϕn|‖2 ‖|ϕn| ◦ g + |ϕn|‖2 ≤ 2‖|ϕn| ◦ g − |ϕn|‖2,

hence lim
n→∞

‖|ϕn|2 ◦ g − |ϕn|2‖1 = 0 µ − a.e. We consider the probability νn on V \ {0}
defined by νn = |ϕn|2ℓ, where ℓ is Lebesgue measure on V , and its projection νn on P(V ).
Then we have in variation norm lim

n→∞
‖gνn − νn‖ = 0, hence lim

n→∞
‖g.νn − νn‖ = 0 µ− a.e,

and also lim
n→∞

g.νn − νn = 0 weakly for any g ∈ supp(µ). Taking a weak limit ν of a

subsequence νnk
we get g.ν = ν for any g ∈ supp(µ), hence ν is < supp(µ) >-invariant.

From the lemma this is impossible because Γ =< supp(µ) > is non-compact and strongly
irreducible. �

Proof of Corollary 2.2 We have 1 = det g ≤ |g|d, hence |g| ≥ 1 for g ∈ G, and
∞ >

∫
Log|g|dµn(g) = un ≥ 0. Also by subadditivity of Log|g| : um+n ≤ um + un. It

follows n−1un ≤ u1 <∞, lim
n→∞

n−1un = inf
n≥1

n−1un = c ≥ 0.

For ε > 0 we consider the L2 functions fε and 1C on V given by :

fε(v) = inf(1, |v|−d−ε), C = {1 ≤ |v| ≤ 2}.

The theorem gives :
lim sup
n→∞

| < Pnµ fε, 1C > |1/n ≤ rV (µ) < 1.

9



But : 〈Pnµ fε, 1C〉 ≥
∫
C |gv|−d−εdµn(g)dv ≥ 2−d−εℓ(C)

∫
|g|−d−εdµn(g),. It follows Log〈Pnµ fε, 1C〉 ≥

−(d+ ε)un + Log(2−d−εℓ(C)), (d+ ε) lim
n→∞

n−1un ≥ −Log rV (µ).

Hence c ≥ −d−1Log rV (µ) > 0 �

Proof of Corollary 2.3 The uniqueness of the Pµ-invariant measure ν ∈ M1(P(V ))
will be shown later (Theorem 2.11).

This uniqueness implies the uniform convergence of the sequence 1
n

n−1
Σ
0
P
k
µϕ(x) to ν(ϕ), for

any ϕ ∈ C(P(V )). We can write :
∫
Log|gx|dµn(g) =

∫
Log|gngn−1 · · · g1x|dP(ω) =

n
Σ
1

∫
Log|gk(gk−1 · · · g1.x)|dP(ω) =

n
Σ
1

∫
Log|g(h.x)|dµ(g)dµk−1(h) =

n
Σ
1
P
k−1
µ ϕ(x) with ϕ(x) =

∫
Log|gx|dµ(g).

The condition
∫
Log|g|dµ(g) <∞ implies the continuity of ϕ on P(V ). From above we get

the uniform convergence of 1
n

∫
Log|gx|dµn(g) to

∫
ϕ(x)dν(x). The positivity of the limit

follows from 2.2. �

Proof of Corollary 2.4 We observe that m is preserved by any γ ∈ SL(d,Z) and we
can write L2(Td) = L2(Td,m) as L2(Td) = C1 ⊕ L2

0(T
d). For any ϕ ∈ L2(Td) we have

Tµϕ(x) = µ ∗ ϕ(x) = Σ
γ
ϕ(γ−1x)µ(γ). We observe that the Fourier transform of ϕ, i.e

ϕ̂(k) =< ϕ, ek > where ek(x) = e2iπ<k,x> and k ∈ Zd, gives an isometry ϕ → ϕ̂ from
L2(Td) to ℓ2(Zd), in which L2

0(T
d) corresponds to ℓ2(Zd \ {0}). Also for g ∈ SL(d,Z),

we have ϕ̂ ◦ g = ϕ̂ ◦ g∗. Clearly the stated hypothesis on < supp(µ) > carries over to
< supp(µ) >∗. If < supp(µ) > is strongly irreducible on Rd, then 〈supp(µ)〉 ⊂ SL(d,Z) is
infinite, hence non-compact. Hence we can use Theorem 2.1 and the Remark 2.6 to deduce
that the spectral radius r0(µ) of Tµ on L2

0(T
d) satisfies r0(µ) < 1. �

Proof of Corollary 2.5 We denote un(ε) = sup
|x|=1

∫
|gx|−εdµn(g). Since |gx| ≥

|g−1|−1 ≥ |g|−(d−1) the integral is finite for ε(d− 1) ≤ τ . We have um+n(ε) ≤ um(ε)un(ε)
because :∫
|gx|−εdµm+n(g) =

∫
|g(h.x)|−ε|hx|−εdµm(g)dµn(h) ≤ sup

|y|=1

∫
|gy|−εdµm(g)

∫
|hx|−εdµn(h)

≤ um(ε)un(ε). Hence lim
n→∞

|un(ε)|1/n = inf
n
(un(ε))

1/n. It follows that it suffices to show

un(ε) < 1 for some n ≥ 1.
We write |gx|−ε = exp(−εLog|gx|) and use the inequality eu ≤ 1 + u+ u2e|u| which gives

|gx|−ε ≤ 1− εLog|gx|+ (ε2Log2|g|)|g|(d−1)ε,

∫
|gx|−εdµn(g) ≤ 1− ε

∫
Log|gx|dµn(g) + ε2

∫
|g|(d−1)εLog2|g|dµn(g).
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The last integral is bounded by (
∫
(Log|g|)4dµn(g))1/2(

∫
|g|2ε(d−1)dµn(g))1/2, hence is finite

for any n if 2ε(d−1) ≤ τ . Using Corollary 2.3, we fix n such that
∫
Log|gx|dµn(g) ≥ c > 0,

hence lim inf
ε→0+

1− un(ε)

ε
≥ c > 0, i.e un(ε) < 1 for ε ≤ ε0 small.

We observe that δ(x̄, ȳ) = |x ∧ y| where |x| = |y| = 1 is also a distance on P(V ) which
is equivalent to δ̄ since δ(x̄, ȳ) = |sin(x, y)|. Also δ(g.x̄, g.ȳ) = |gx| |gy|δ(x̄, ȳ) since g ∈
SL(2, V ). If follows :∫ δε(g.x̄)(g.ȳ)

δε(x̄,ȳ dµn(g) =
∫

1
|gx|ε|gy|εdµ

n(g) ≤ (
∫
|gx|−2εdµn(g))1/2(

∫
|gy|−2εdµn(g))1/2 ≤

sup
|x|=1

∫
|gx|−2εdµn(g).

The inequality ρ(ε) < 1 follows if 2ε ≤ ε0.
For any ϕ ∈ Hε(P(V )) we have : ϕ(x) − ν(ϕ) =

∫
(ϕ(x) − ϕ(y))dν(y). It follows that

|ϕ−ν(ϕ)|∞ ≤ [ϕ]ε, hence |Pnµϕ|∞ ≤ [P
n
µϕ]ε if ϕ ∈ Hε

0(P(V ), and the norms ϕ→ ‖ϕ‖, ϕ→
[ϕ]ε on H

ε
0(P(V )) are equivalent.

Also [P
n
µϕ]ε ≤ [ϕ]ε sup

x̄,ȳ∈P(V )

∫
δε(g.x̄, g.ȳ)

δε(x̄, ȳ)
dµn(g). Since |Pnµϕ|∞ ≤ [P

n
µϕ]ε on H

ε
0(P(V )) we

get ‖Pnµ‖ ≤ 2 sup
x̄,ȳ∈P(V )

∫
δε(g.x̄, g.ȳ)

δε(x̄, ȳ)
dµn(g) on Hε

0(P(V )). The last conclusion follows from

the above inequality ρ(ε) < 1. �

Corollary 2.5 has a natural extension to any dimension d ≥ 2. The proof is based on a
basic inequality between the two first Lyapunov exponents associated with µ ∈M1(GL(V ))
(see [18], [24]). We consider the ergodic dynamical system (Ω, θ, π) where Ω = G̃N, θ is
the shift, π is a θ-invariant probability, f a GL(d,R)-valued function on Ω which satisfies∫
(Log+|f(ω)| + Log+|f−1(ω)|)dπ(ω) < ∞, and we write Sn(ω) = f(θn−1ω) · · · f(ω) for

n ≥ 0. Then the top Lyapunov exponent L1
f is defined by

L1
f = lim

n→∞
1

n

∫
Log|Sn(ω)|dπ(ω).

Using the wedge products ΛkV we define the other Lyapunov exponents Lkf by :

L1
f + · · ·+ Lkf = lim

n→∞
1

n

∫
Log|ΛkSn(ω)|dπ(ω).

Here we consider the two first Lyapunov exponents L1
µ, L

2
µ for products of independant

random matrices with law µ i.e π = µ⊗N = P. We have the following result (see [24]).

Theorem 2.8 Let µ ∈ M1(GL(d,R)) be such that Logγ(g) is µ-integrable and the semi-
group [supp(µ)] of GL(d,R) satisfies condition (I-P). Then L1

µ > L2
µ.
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Condition (I-P) is satisfied for exemple, if the projection of the group < supp(µ) > on
SL(d,R) is Zariski-dense in SL(d,R) (see [18]).
The geometrical meaning of the theorem is that for any x, y ∈ V \ {0}, the angle between
the random vectors Sn(ω)x, Sn(ω)y decreases P−a.e to zero at exponential speed exp(L2

µ−
L1
µ) < 1.

The proof of this fact is based on a martingale argument due to H. Furstenberg and given
below (see Theorem 2.11) : if ν is a Pµ-invariant probability on P(V ) then the sequence of
random measures g1 · · · gn.ν on P(V ) converges weakly to a Dirac measure. The uniqueness
of ν as a Pµ-invariant measure follows (see below). A useful algebraic tool for passing from
ergodic properties of Pµ to Lyapunov exponents is the following cocycle σ : if ξ ∈ T 1 is

a unit tangent vector to P(V ) defined by x ∈ V and x ∧ y ∈ ∧2(V ), σ(g, ξ) = |g(x∧y)||x|2
|gx|2|x∧y| .

Then, using the above convergence, one shows that, under condition (I-P) (see [24]) :

lim
n→∞

1

n
sup
ξ∈T 1

∫
Logσ(g, ξ)dµn(g) < 0.

The extension of Corollary 2.4 is as follows :

Theorem 2.9 Assume that µ ∈ M1(G̃) satisfies
∫
γτ (g)dµ(g) < ∞ for some τ > 0 and

the semigroup [supp(µ)] satisfies (I-P). Then for ε sufficiently small one has :

ρ(ε) = lim
n→∞

(
sup
x̄,ȳ

∫
δε(g.x̄, g.ȳ)

δε(x̄, ȳ)
dµn(g)

)1/n

< 1.

In particular the spectral radius of Pµ acting on Hε
0(P(V )) = {ϕ ∈ Hε(P(V )); ν(ϕ) = 0} is

at most ρ(ε) < 1.

In order to deduce limit theorems for products of random matrices (see [42]), we are led to

consider the ”Fourier operators” P
it
µ onHε(P(V )) defined by P

it
µϕ(x̄) =

∫
|gx|itϕ(g.x̄)dµ(g).

Corollary 2.10 We denote for any k ≥ 0, ε > 0 :

Ck(ε) =
∫
|g|εdµk(g), ρk(ε) = sup

x̄,ȳ∈P(V )

∫
δε(g.x̄, g.ȳ)

δε(x̄, ȳ)
dµk(g)

Then, for any t ∈ R, ϕ ∈ Hε(P(V )), k ≥ 0 :

[(P
it
µ )
kϕ]ε ≤ ρk(ε)[ϕ]ε + |ε−1t|Ck(ε)|ϕ|∞.

In particular for ε small and k large the operator P
it
µ satisfies the (D-F) inequality,

[(P
it
µ )
kϕ]ε ≤ ρ′(ε)[ϕ]ε + |ε−1t|C ′(ε)|ϕ|∞ with ρ′(ε) < 1, C ′(ε) <∞

Proof of Theorem 2.9 We have if |x| = |y| = 1,

δ(g.x̄, g.ȳ)

δ(x̄, ȳ)
=

|gx ∧ gy|
|gx||gy||x ∧ y| .

Hence, by Schwarz inequality(∫ δε(g.x̄,g.ȳ)
δε(x̄,ȳ) dµn(g)

)2
≤
∫ ( |gx∧gy|

|gx|2|x∧y|

)ε
dµn(g)

∫ ( |gx∧gy|
|gy|2|x∧y|

)ε
dµn(g).
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Hence it suffices to show

lim
n→∞

sup
ξ∈T 1

(∫
σε(g, ξ)dµn

)1/n

< 1.

The proof is the same as for Corollary 2.5 where |gx|−ε replaces σε(g, ξ), once we have

lim
n→∞

1

n
sup
ξ∈T 1

∫
Logσ(g, ξ)dµn(g) < 0 which, as explained above, follows from L1

µ > L2
µ.

The spectral gap assertion on Hε
0(P(V )) is proved as in Corollary 2.5. �

Proof of Corollary 2.10 We use the following mean value inequality for
|x| = |y| = 1, t ∈ R, ε ∈]0, 1] : ||gx|it − |gy|it| ≤ |ε−1t| |g|ε|x− y|ε.

Hence, with x̄, ȳ ∈ P(V ), |x| = |y| = 1 :

||gx|it − |gy|it| ≤ |ε−1t| |g|εδ̄ε(x̄, ȳ),
||gx|itϕ(g.x̄)− |gy|itϕ(g.ȳ)| ≤ |ϕ|∞||gx|it − |gy|it|+ [ϕ]εδ̄

ε(g.x̄, g.ȳ).
The first inequality follows by integration will respect of µk. Let ε > 0 with 0 < 2ε < ε0 as

in Corollary 2.5. Since lim
k→∞

(
sup

x̄,ȳ∈P(V )

∫
δε(g.x̄, g.ȳ)

δε(x̄, ȳ)
dµk(g)

)1/k

< 1 we can fix k > 0 with

ρ′(ε) = ρk(ε) < 1.
Taking ε with ε < τ , we have Ck(ε <∞). Hence (D-F) inequality follows. �

Theorem 2.11 Assume µ ∈ M1(G̃), ν ∈ M1(P(V )) is Pµ-invariant and [supp(µ)] satis-
fies condition (I-P). Then the sequence σn.ν = g1g2 · · · gn.ν converges P − a.e to a Dirac
measure δz(ω). In particulier ν is unique as a Pµ-invariant probability and gives zero mass
to any proper subspace of P(V ).

The following corollaries will play an essential role in the proofs of the local limit theorem
for Log|Sn(ω)x|.

Corollary 2.12 Let ∆ be a closed subsemigroup of G̃ which satisfies condition (I-P). Then
the action of ∆ on P(V ) has a unique minimal subset Λ(∆) and Λ(∆) is not contained
in a countable union of proper subspaces. Furthermore Λ(∆) is the closure of the set of
attractive points of ∆.

The set Λ(∆) is called the limit set of ∆.

Corollary 2.13 With the notations and hypothesis of Corollary 2.12 and d ≥ 2, let A ⊂ ∆
with [A] = ∆, assume that ϕ ∈ C(P(V )) satisfies for some t ∈ R, θ ∈ [0, 2π[ and any γ ∈ A,
x̄ ∈ Λ(∆), |γx|itϕ(γ.x̄) = eiθϕ(x̄).
Then t = 0, eiθ = 1, ϕ =const.
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This corollary (see Proposition 3 in [24]) is useful in the verification of the aperiodicity
conditions in the proofs of the local limit theorems. In view of its essential role in limit
theorems we give a detailed proof below.

Corollary 2.14 Assume Γ ⊂ GL(V ) is a subsemigroup which satisfies (I-P), d ≥ 2 and
define SΓ = {Log|λg| ; g ∈ ∆prox}. Then SΓ generates a dense subgroup of the additive
group R.

This property plays an essential role in the study of renewal theorems for products of
random matrices (see [31]), and also in some geometric situations (see [7]).

For the proof of Theorem 2.11 we use the following lemmas.

Lemma 2.15 Let ϕ ∈ C(P(V )) and denote fn(ω) = σn.ν, f
r
n(ω, η) = σnη1 · · · ηr.ν for

(ω, η) ∈ Ω × Ω. Then for r fixed the sequence f rn(ω, η) − fn(ω) converges P × P − a.e to
zero.

Lemma 2.16 For any proper subspace W of P(V ) one has ν(W ) = 0.

Proof of Lemma 2.15 Since g → g.ν(ϕ) is µ-harmonic, fn(ω) is a martingale and we
have for any r ≥ 0 :

E(fn+r − fn)
2 = E(f2n+r)− E(f2n).

Hence for any N > 0,
N
Σ
1
E(f2n+r − f2n) ≤ 2r|ϕ|2∞. It follows that the series

∞
Σ
1
E(f2n+r − f2n)

is convergent. Also :

E(f2n+r − f2n) =

∫
|f rn(ω, η)− fn(ω)|2d(P⊗ P)(ω, η).

Hence the series
∞
Σ
1
|f rn(ω, η) − fn(ω)|2 is P ⊗ P − a.e convergent. In particular for r fixed

and P− a.e η = (η1, · · · , ηr) :
lim
n→∞

|f rn(ω, η)− fn(ω)| = 0. �

Proof of Lemma 2.16 We consider the set Φ of proper projective subspaces H of
P(V ) of minimal dimension r such that ν(H) > 0. Clearly if H,H ′ ∈ Φ with H 6= H ′,
then ν(H ∩ H ′) = 0. It follows that for any ε > 0 the set Φε = {H ∈ Φ ; ν(H) ≥ ε} is
finite. In particular, there exists H0 ∈ Φ with ν(H0) = sup{ν(H) ; h ∈ Φ} and the set
Φ′ = {H ∈ Φ ; ν(H) = ν(H0)} is finite. Since g−1H0 and H0 have the same dimension
r the equation ν(H0) =

∫
(g.ν)(H0)dµ(g) implies ν(g−1H0) = ν(H0) for µ-almost every g.

Hence g−1H0 ∈ Φ′, g−1Φ′ ⊂ Φ′ for any g ∈ supp(µ). Since Φ′ is finite this contradicts
strong irreducibility of [suppµ]. Hence Φ = φ. �
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Proof of Theorem 2.11 Using Lemma 2.15 we know that the sequence fn(ω) is a
bounded martingale. The martingale convergence theorem implies the P−a.e convergence
of fn(ω). Since C(P(V )) is separable, we get the weak convergence of σn.ν to the random
probability νω. We denote by Ω′ ⊂ Ω the set of ω such that σn.ν converges weakly and such
that the convergence in Lemma 2.15 for any ϕ ∈ C(P(V )) takes place with P⊗P-probability
1. Then, P(Ω′) = 1 and for any ω ∈ Ω′, and for P− a.e η :

lim
n→∞

σnη1 · · · ηr.ν = lim
n→∞

σn.ν.

Let nk(ω) be a subsequence such that |σnk
|−1σnk

converges to a linear map τω with
kernel Hω, hence the quasi projective map τω is defined and continuous on P(V ) \ Hω.
Then by Lemma 2.16, ν and η1 · · · ηr.ν gives zero mass to any proper subspace, hence
τω(η1 · · · ηr.ν) = τω.ν = νω.
This equality is valid for a dense subset of (supp(µ))⊗r, hence for any γ ∈ (supp(µ))r :
τω(γ.ν) = τω.ν. Then for any γ in [supp(µ)] we have τω.(γ.ν) = νω = τω.ν. Let γ1 be
a proximal element of [supp(µ)] with γ+1 = x, and γ0 ∈ [supp(µ)] with γ0.x /∈ Hω (γ0
exists by strong irreducibility of [supp(µ)], see [19]). Then taking γ = γ0γ

n
1 ∈ [supp(µ)]

we get lim
n→∞

γ0γ
n
1 .ν = γ0.δx. The continuity of x → τω.x outside Hω gives finally : τω.ν =

νω = τω(γ0.δx) = δτωγ0.x. It follows that for ω ∈ Ω′, νω is a Dirac measure δz(ω) and
τω(P(V )\Hω) = z(ω). The martingale convergence theorem implies that the P-law of z(ω)
is ν. Since τω.ν = δz(ω) and τω is independant of ν, this gives the uniqueness of ν. �

Proof of Corollary 2.12 Let µ ∈ M1(G̃), be such that [supp(µ)] = ∆, and ν ∈
M1(P(V )) be the unique Pµ-invariant probability. If F is a closed ∆-invariant subset
of P(V ), then Kakutani’s fixed point theorem implies that there exists a Pµ-invariant
probability η ∈ M1(F ) ; the theorem gives η = ν, hence F ⊃ supp(η) = supp(ν). The
first assertion follows. If supp(ν) is contained in a countable union of subspaces, then at
least one of them has positive measure, which contradicts Theorem 2.11. The last assertion
follows from the minimality of Λ(∆). �

Proof of Corollary 2.13 Let Λ̃(∆) be the inverse image of Λ(∆) in V \ {0} and let
ϕ̃ be the function on Λ̃(∆) defined by ϕ̃(v) = ϕ(v̄)|v|it where we can assume t ≥ 0. Then
the relation satisfied by ϕ can be written as ϕ̃(γv) = eiθϕ̃(v), hence ϕ̃(δv) = eirθϕ̃(v) if
δ ∈ Ar, r ∈ N. Assume t > 0, hence ρ = e2πt > 1. We have also ϕ̃(λv) = |λ|itϕ̃(v)
and in particular ϕ̃(±ρkv) = ϕ̃(v), k ∈ Z. We observe that, since ∆ acts minimally on
Λ(∆) and ϕ is continuous, the invariance condition on ϕ implies |ϕ| =const, hence we
can assume |ϕ| = 1. It follows that the condition ϕ̃(λv) = ϕ̃(v) for some v ∈ Λ̃(∆) is
equivalent to λ = ±ρk (k ∈ Z). We define Λc ⊂ Λ̃(∆) by Λc = ϕ̃−1(c) where c is a
value of ϕ̃ hence Λc = ±ρZΛc 6= φ. It follows that Λc is closed as well as its projection
in Λ(∆). We note that for β ∈ R, one has Λceiβ = exp(βt−1)Λc, γ(Λc) ⊂ Λceiθ for γ ∈ A,
hence δ(Λc) ⊂ exp(rθt−1)Λc if δ ∈ Ar. Then the above projection of Λc in Λ(∆) is ∆-
invariant, hence equal to Λ(∆) by minimality. Let γk be sequence in ∆ and nk ∈ Z
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such that u = lim
k→∞

ρ−nkγk 6= 0. Then, since γk(Λc) ⊂ Λceiθk and ±ρZΛc = Λc, we have

also u(Λc) ⊂ ΛceiαU{0} with eiα = lim
k→∞

eiθk , passing if necessary to a subsequence. Let

δ ∈ Ar be a proximal element and γk = δk, hence Keru = W 6= {0} has codimension
1 and Imu = Rvδ for some vδ 6= 0. From the above we get u(Λc) ⊂ ±ρZvδU{0}. Since
u−1({vδ}) = a +W with a 6= 0, we get Λc \W ⊂ ±ρZ(a +W ), hence Λc has a countable
projection in V/W . Let Fc be the family of subspacesW ′ in V such that Λc has a countable
projection in V/W ′. We observe that the condition Λceiβ = exp(βt−1)Λc gives Fceiβ = Fc
for β ∈ R. Also if W1,W2 ∈ Fc, then W1 ∩W2 ∈ F ; this follows since V/W1 ∩W2 is
a subspace of V/W1 × V/W2. Then Fc has a minimum element Wc = ∩

W ′∈Fc

W ′. Since

Fc = Fceiθ , we have Wc = Wceiθ , hence the condition γΛc ⊂ Λceiθ for γ ∈ A implies
γ(Wc) ⊂ Wc. Since the projection of Λc in P(V ) is Λ(∆) and, since dimV ≥ 2, we know
from the theorem that Λ(∆) is uncountable, it follows that Wc 6= {0}. This contradicts
irreducibility of ∆. Hence we have t = 0, ϕ(x) = eiθϕ(γ.x) for any x ∈ Λ(∆), γ ∈ A.
Taking γ proximal and x = γ+ we get eiθ = 1 since |ϕ(x)| = 1, hence ϕ =const by
minimality of the ∆-action on Λ(∆). �

We need the following lemmas, the first of them is well known (see [5] p 90-94, Lemma
2.16). The second one is basic.

Lemma 2.17 Let A be a finite set, Ω the compact metric space AN and θ the shift on Ω.

For a function ϕ on Ω we denote Sn(ω) =
n−1
Σ
k=0

ϕ ◦ θk(ω). Suppose ϕ is Hölder continuous

and for any periodic point ω of period p, Spϕ(ω) ∈ Z. Then there exists a Hölder Z-valued
function ϕ′ on Ω and a Hölder function ψ on Ω such that ϕ = ϕ′ + ψ − ψ ◦ θ. If for any
p-periodic ω we have Spϕ(ω) = 0, then ϕ is of the form ψ − ψ ◦ θ with ψ Hölder on Ω.

Lemma 2.18 Assume g, h ∈ GL(V ) are such that h is proximal and g.h+ /∈ V <
h . Then

for n = 2p large, g hn is proximal and :

lim
n→∞

(g hn)+ = g.h+, lim
n→∞

V <
g hn = V <

h .

Proof : We consider the sequence un = |hn|−1hn and we observe that un converges to a map
πh proportional to the projection on R vh along the hyperplane V

<
h . Hence lim

n→∞
g un = g πh

and Im(g πh) = R(g.h+), Ker(g πh) = V <
h . Since g.h+ /∈ V <

h , g πh is collinear to a
projection onto a one-dimensional subspace. Since g πh has a simple dominant eigenvalue,
the same is true for g un for n large. Hence for n large, g hn is proximal and we have the
required convergences. �

Lemma 2.19 Assume Γ ⊂ GL(V ) is a subsemigroup which satisfies condition (I-P). Then
there exists a, b ∈ Γprox with a+ 6= b+, V <

a 6= V <
b and a+ /∈ V <

b , b+ /∈ V <
a .
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Proof :We consider the dual semigroup Γ∗ acting on the dual space V ∗ and the projective
space P(V ∗). Then condition (I-P) is also valid for Γ∗ and we can consider the corresponding
limit set Λ(Γ∗). We fix a ∈ Γprox and observe that we can find b ∈ Γprox with V <

b 6= V <
a ,

a+ /∈ V <
b . Otherwise there would be a dense subset of Λ(Γ∗) contained in the union of the

two projective subspaces in P(V ∗) defined by V <
a and a+. Hence Λ(Γ∗) would be contained

in their union, but from Corollary 2.12, this is impossible. If b+ /∈ {a+} ∪ V <
a we have

found the required pair (a, b). If not, we consider g ∈ Γ and the sequence g bn (n ∈ 2N).
By strong irreducibility we can choose g ∈ Γ such that g.b+ /∈ V <

b ∪ V <
a ∪ {a+}. Then we

apply the above lemma and replace b by g bn = b′ for n large. Then V <
b′ is close to V <

b and
the above relations are still satisfied. Since (b′)+ is close to g.b+ and g.b+ /∈ {a+} ∪ V <

a ,
the condition (b′)+ /∈ {a+} ∪ V <

a is also satisfied. Hence we can take (a, b′) as the required
pair. �

Proof of Corollary 2.14 Since Γ satisfies (I-P) we can choose a1, a2 in Γ according
to Lemma 2.19. Let C1, C2 be closed disjoint neighbourhoods of a+1 , a

+
2 in P(V ) such that

(C1 ∪C2)∩ (V <
a1 ∪ V <

a2 ) = φ and let 0 ∈ P(V ) be a point outside V <
a1 ∪ V <

a2 ∪C1 ∪C2. Since
a, b are injective then for i = 1, 2, lim

n→∞
ani .(C1 ∪C2) = a+i , lim

n→∞
ani .0 = a+i . Taking n large

and a = an1 , b = an2 we get a.0 ∈ C1, b.0 ∈ C2, a.(C1 ∪C2) ⊂ Int C1, b.(C1 ∪C2) ⊂ Int C2.
These relations imply that the semigroup Γ(a, b) generated by a, b is free, discrete, and any
γ ∈ Γ(a, b) is proximal. The limit set of Γ(a, b) generates a subspaceW ⊂ V with dimension
at least 2 and Γ(a, b) satisfies condition (I-P) in GL(W ). In order to prove the corollary
we can assume Γ = Γ(a, b) and replace V by W . Then we consider the {0, 1}-valued metric

δ on {a, b} and endow Ω = {a, b}N with the metric δ̂(ω, ω′) =
∞
Σ
k=1

2−kδ(ωk, ω
′
k). We define

a homeomorphism z between Ω and Λ(Γ) as follows. If ω = (ak)k∈N then the sequence
a1 · · · an.0 converges to z(ω) ∈ C1 ∪ C2 and we see that z is a bi-Hölder homeomorphism
; hence we can transfer properties of (Ω, θ) to the action of Γ on Λ(Γ). If z̃(ω) ∈ V with
|z̃(ω)| = 1 has projection z(ω), then |a1(ω)z̃(θω)| depends of ω only. It follows that, if we

set ϕ(ω) = Log|a1(ω)z̃(θω)|, Snϕ(ω) =
n−1
Σ
0
ϕ ◦ θk(ω), we have, with γ = a1 · · · an−1 ∈ Γ

and x = z(θnω) ∈ Λ(Γ), Snϕ(ω) = Log|γx|.
Then if ψ is Hölder on Ω, we define a Hölder function ψ on Λ(Γ) by ψ(z(ω)) = ψ(ω) and
we have ψ(ω)−ψ(θnω) = ψ(γ.x)−ψ(x). In particular, if ω is periodic with period p, and ϕ
is as above then z̃(ω) is a dominant eigenvector of γ = a1 · · · ap−1 with Log|λγ | = Spϕ(ω).
If SΓ = {0}, then Lemma 2.17 implies the existence of u continuous on Λ(Γ) such that
|γx|u(γ.x) = u(x) for γ ∈ Γ, x ∈ Λ(Γ), which contradicts Corollary 2.13.
If SΓ does not generate a dense subgroup of R, then for some c > 0, SΓ ⊂ cZ hence
Spϕ(ω) ∈ cZ for any periodic point ω and we can apply Lemma 2.17 to the function c−1ϕ.

In particular the function e2iπc
−1ϕ can be written in the form e2iπ(ψ−ψ◦θ) where ψ is a

Hölder function on Ω. We can define ψ as above and write u = e2iπψ. Then u is continuous
and we have with γ = a1 · · · an, x = z(θnω), |γx|2iπc−1

= u(γ.x)u−1(x). Then we have for

17



any x ∈ Λ(Γ), γ ∈ Γ : |γx|2iπc−1

= u(γ.x)u−1(x) hence Corollary 2.13 implies 2iπc−1 = 0,
and this is impossible. �

Now we consider Lyapunov exponents and spectral gap properties for a more general situ-
ation than above (see [31]). They will be useful for large deviations results and for extreme
value theory of affine random walks. Let s ≥ 0 and let us define a kind a Mellin transform

of µ ∈ M1(GL(V )), by k(s) = lim
n→∞

(∫
|g|sdµn(g)

)1/n

. Since the function g → |g|s is

submultiplicative and s→ |g|s is Log-convex, k(s) exists and is finite for s in an interval Iµ
of the form [0, s∞] or [0, s∞[ with k(s) = ∞ for s > s∞. For z ∈ C the operator Pµ acting
on C(V \ {0}) leaves invariant the space Cz(V ) of z-homogeneous continuous functions f
i.e f ∈ Cz(V ) means f(λv) = |λ|zf(v) for λ 6= 0, v 6= 0. The action of Pµ on Cz(V ) reduces
to an operator P zµ on C(P(V )) : (P zµϕ)(x) =

∫
|g x̃|zϕ(g.x)dµ(g) where x̃ ∈ S(V ) has

projection x in P(V ). We denote z = s+ it where s > 0, t ∈ R and our main result here is
a spectral gap result for the operator P sµ (see [31]).

Theorem 2.20 Assume d > 1 and the semigroup generated by supp(µ) satisfies condition
(I-P). Then for any s ∈ Iµ, there exists a unique probability measure νs on P(V ), a unique
positive continuous function es ∈ C(P(V )) with νs(es) = 1, P sµν

s = k(s)νs, P sµe
s = k(s)es.

For s ∈ Iµ, if
∫
|g|sγδ(g)dµ(g) < ∞ for some δ > 0, then for ε sufficiently small we have

on Hε(P(V )) : P sµ = k(s)(νs ⊗ es + U s) where νs ⊗ es is the projection on Ces defined
by ϕ → νs(ϕ)es and U s is an operator with spectral radius less than 1 which satisfies
U s(νs ⊗ es) = (νs ⊗ es)U s = 0. Furthermore the function k(s) is analytic, strictly convex
on ]0, s∞[ and the function s → νs ⊗ es from ]0, s∞[ to End(Hε(P(V )) is analytic. If
t = Imz 6= 0, the spectral radius of P zµ is less than k(s).

The proof follows the same lines as in Theorem 2.9. We give below corresponding indica-
tions.
The following lemmas and Propositions are basic.

Lemma 2.21 Assume σ ∈M1(P(V )) is not supported by an hyperplane and s > 0. There
there exists Cs(σ) > 0 such that for any u ∈ End V :

∫
|ux|sdσ(x) ≥ Cs(σ)|u|s

Proof : By homogeneity it suffices to show the above inequality if |u| = 1.
The function u →

∫
|ux|sdσ(x) is continuous on the unit sphere Σ of End V . Since

Σ is compact, this function reaches its infimum Cs(σ) at u0 ∈ Σ. If Cs(σ) = 0, then∫
|u0x|dσ(x) = 0, hence supp(σ) ⊂ Ker u0, which contradicts the hypothesis on σ. �

Lemma 2.22 If s ∈ Iµ, there exists σ ∈M1(P(V )), k > 0 such that P sµσ = kσ. We have
k(s) = k and σ is not supported on a hyperplane. Furthermore for any n ∈ N :

∫
|g|sdµn(g) ≥ kn(s) ≥ Cs(σ)

∫
|g|sdµn(g)
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Proof : We consider the non linear operator P̂ s onM1(P(V )) defined by P̂ sσ = (P sµσ(1))
−1P sσ.

Since s ∈ Iµ this operator is continuous on the compact convex set M1(P(V )) endowed
with the weak topology, hence Schauder-Tychonov theorem implies the existence of k > 0
and σ ∈M1(P(V )) with P̂ sσ = σ, P sµσ = kσ, hence k = (P sµσ)(1).
For such a σ the equation kσ(ϕ) =

∫
ϕ(g.x)|gx̃|sdµ(g)dσ(x) implies g.x ∈ supp(σ), µ− a.e

if x ∈ supp(σ), hence for any g ∈ supp(µ) : g.supp(σ) ⊂ supp(σ). Then the projective
subspaceW generated by supp(σ) is [supp(µ)]-invariant and ifW is proper this contradicts
condition (I-P). Since k ≤ (

∫
|g|sdµn(g))1/n the two sided inequality for k follows from

Lemma 2.21, hence k = k(s). �

The dual version σ′ of the measure σ considered above is useful to construct a P sµ-
eigenfunction as follows.

Lemma 2.23 Assume σ′ ∈ M1(P(V ∗)) and k′ > 0 satisfy ∗P sµσ
′ = k′σ′. Then k′ = k(s)

and the function es0 on P(V ) defined by :

es0(x) =

∫
|〈x̃, ỹ〉|sd σ′(y),

where |x̃| = |ỹ| = 1, satisfies P sµe
s
0 = k(s)es0. Furthermore es0 is positive and Hölder of order

s̄ = inf(s, 1)

Proof : Since |g∗| = |g|, we have
∫
|g|sdµn(g) =

∫
|g∗|sdµn(g), hence using the dual version

of Lemma 2.22 we get k′ = k(s). Also :

|g x̃|ses0(g.x) =
∫

|〈x̃, g∗.ỹ〉|s|g∗ỹ|sdσ′(y), ∗P sµσ
′ = k′σ′

hence, P sµe
s
0(x) = k′

∫
|〈x̃, ỹ〉|sdσ′(ỹ) = k(s)es0(x). If es0(x) = 0 for some x, then 〈x̃, ỹ〉 = 0

σ′ − a.e, hence supp(σ′) is contained in the hyperplane of P(V ∗) orthogonal to x. Since
[supp(µ)] satisfies (I-P), this contradicts the dual version of Lemma 2.22. Hence es0 is
positive. The Hölder property of es0 follows from the inequality |as − bs| ≤ ŝ|a− b|s̄ where
a, b ∈ [0, 1]. �

For s ∈ Iµ we define qsn(x, g) = k−n(s)|gx̃|ses0(g.x)(es0(x))−1, qs(x, g) = qs1(x, g) and we
observe that Lemma 2.23 implies

∫
qsn(x, g)dµ

n(g) = 1. Also we consider the Markov
operator Qs on P(V ) defined by Qsϕ(x) =

∫
ϕ(g.x)qs(x, g)dµ(g) hence (Qs)nϕ(x) =∫

ϕ(g.x)qsn(x, g)dµ
n(g). For z = s+ it, t ∈ R, s ∈ Iµ we write :

(Qzϕ)(x) =

∫
ϕ(g.x)qs(x, g)|gx̃|itdµ(g).

Then we have the following simple lemmas which allow to control the iterates (Qs)n.
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Lemma 2.24 If f ∈ C(P(V )) is real valued and satisfies Qsf ≤ f , then f is constant on
Λ([suppµ]) and equal to its infimum on P(V ).

Lemma 2.25 For any g ∈ SL(V ) x, y ∈ V with |x| = |y| = 1 :
||gx|s − |gy|s| ≤ (s+ 1)|g|sδ̃s̄(x, y), δ̃(g.x, g.y) ≤ 2|g||gx|−1δ̃(x, y),
|qs(x, g)− qs(y, g)| ≤ bs|g|sk−1(s)δ̃s̄(x, y) with bs > 0.

To go further, in analogy with the case s = 0 in Theorem 2.9, we need to consider a
dynamical system (Ω, θ,Qs) where Ω = ĜN, θ is the shift and Qs is a Markov mea-
sure defined as follows. We denote by πs a Qs-invariant extremal probability on P(V ),
we observe that with ω = (g1, · · · , gn) ∈ Ωn = G̃⊗n, Sn(ω) = gn · · · g1 ∈ G̃ we have

qsn(x, Sn(ω)) =
n
Π
k=1

qs(sk−1.x, gk),
∫
qsn(x, Sn(ω))dµ

⊗n(ω) = 1.

Definition 2.26 We denote by Qs
x ∈M1(Ω) the limit of the projective system of probabil-

ities qsn(x, .)µ
⊗n on Ωn, and we write Qs =

∫
Qs
xdπ

s(x).

We observe that Qs is invariant under the shift θ on Ω, we write Es for the corresponding
expectation : Es(ϕ) =

∫
Esx(ϕ)dπ

s(x) where Esx is the expectation with respect to Qs
x.

Since πs is extremal, it follows that Qs is θ-ergodic. Using the above Lemmas it is easy to
show the following.

Proposition 2.27 There exists a constant b > 0 such that for any x, y ∈ P(V ) the total
variation measure of Qs

x−Qs
y is bounded by bδs̄(x, y)Qs. For any x ∈ P(V ), Qs

x is equivalent
to Qs.

Using the Markov operator ∗Qs on P(V ∗), given by

∗Qsϕ(x) =
∫

∗qs(x, g)ϕ(g∗.x)dµ(g)

where ∗qs is the dual analogue of qs, the corresponding ∗Qs-invariant measure ∗πs and
function ∗es0 on P(V ∗), one obtains a ∗P sµ-eigenmeasure by the formula ∗νs = (∗es0)

−1 ∗πs.

Then the positive kernel x→ νsx from P(V ) to P(V ∗) given by νsx = |〈x,.〉|s
es
0
(x)

∗νs is continuous

in variation and satisfies
∫
g∗.νsg.xq

s(x, g)dµ(g) = νsx, hence S
∗
n.ν

s
Sn.x

is a bounded martin-
gale with respect to Qs

x and the natural filtration. Then, in analogy with Theorem 2.11 we
have the following.

Proposition 2.28 The martingale S∗
n.ν

s
Sn.x

converges Qs
x−a.e to a Dirac measure δz∗s (ω),

the law of z∗s (ω) is
∗πs, ∗πs is proper, g∗1.z

∗
s (θω) = z∗(ω) Qs − a.e and if < x, z∗(ω) > 6= 0,

then lim
n→∞

σ(Sn, ξ) = 0 Qs− a.e. In particular, ∗πs is the unique ∗Qs-invariant probability.
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Then we deduce the following (see [31]).

Theorem 2.29 The Lyapunov exponents L1
µ(s), L

2
µ(s) of Sn(ω) satisfy L

1
µ(s) > L2

µ(s).

One has, using the same arguments, the analogues of Theorem 2.9, Corollary 2.10.
(See [31], Theorem 3.17).

Theorem 2.30 Assume that µ ∈ M1(G̃) satisfies
∫
|g|sγδ(g)dµ(g) < ∞ for some δ > 0,

s ∈ Iµ and [suppµ] satisfies (I-P). Then for ε sufficiently small one has

ρs(ε) = lim
n→∞

sup
(x,y)

(
Esx

(
δε(Sn.x, Sn.y)

δε(x, y)

))1/n

< 1

and the operator Qs on Hε(P(V )) satisfies (D-F). For z = s+ it, t 6= 0, s ∈ Iµ the operator
Qz on Hε(P(V )) satisfies r(Qz) < 1.

Then the spectral gap property of P sµ, P
z
µ stated in Theorem 2.20 follows. The analyticity

of the function s→ k(s) follows from perturbation theory. The inequality r(Qz) < 1, hence
r(P zµ) < k(s), is a consequence of the geometric Corollary 2.13.

3 Local limit theorems for some transfer operators

In this section we concentrate mainly on random walks on some homogeneous spaces. For
analogous methods developed in the context of hyperbolic transformations or expanding
transformations see [25] , [7].
We apply the general local limit theorems 1.5, 1.7 to the specific situations detailed below.

For products of i.i.d matrices, with law µ ∈ M1(G̃), and with the notations of section 1
we observe that precise large deviations can also be considered as local limit theorems for
the function f(x, g) = Log|gx| on G̃ × P(V ) and suitable centerings. We begin with the
centering by L1

µ which corresponds to s = 0. In view of Theorem 2.9 and corollaries 2.10,
2.13, the conditions of Theorem 1.5 are satisfied, hence (see [42]) :

Theorem 3.1 Assume that d > 1, the semigroup [supp(µ)] satisfies condition (I-P) and
for some δ > 0

∫
γδ(g)dµ(g) < ∞. Then there exists σ > 0 such that for any ϕ ∈

C(P(V )), x ∈ P(V ) and ψ compactly supported on R and Riemann integrable, we have :

lim
n→∞

σ
√
2πn

∫
ϕ(g.x) ψ(Log|gx| − nL1

µ)dµ
n(g) = ν(ϕ)ℓ(ψ).

Remark 3.2 In [19] the central limit theorem for the diagonal component of Sn in the Car-
tan decompostion of SL(V ) is proved, under the condition of Zariski density of [supp(µ)].
In ([29], Theorem 3) this result is extended to a semi-simple group. The Gaussian law has
full dimension and the proof is based on the fact that the set {λγ ; γ ∈ [supp(µ)]prox} is large
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a property which is stronger than the density property stated in corollary 2.14. This allows
one to get a multidimensional local limit theorem which extends Theorem 3.1, under the
condition that [supp(µ)] has a Zariski dense projection in SL(V ).

Using the operators Qs+it(s ≥ 0, t ∈ R) and the probability Qsx of section 2 instead of Pµ,
Qitµ and P we get in the same way, using Theorem 2.30 and the ”anomalous” centering by
L1
µ(s) for s > 0:

Theorem 3.3 Assume d > 1, [supp(µ)] satisfies condition (I-P) and for some δ > 0, s ∈
Iµ,

∫
|g|sγδ(g)dµ(g) is finite. Then there exists σs > 0 such that for any ϕ ∈ C(P(V )), x ∈

P(V ) and any compactly supported function ψ on R which is Riemann integrable we have

lim
n→∞

σs
√
2πn kn(s)

∫
|gx|sψ[Log|gx|−n L1

µ(s)] ϕ(g.x)dµ
n(g) = ℓ(ψ)es(x)νs((es)−1ϕ).

This gives precise large deviations for the ”anomalous mean values” γs = L1
µ(s) of Log|Sn(ω)x|.

This corresponds to estimating the probability that Log|Sn(ω)x| belongs to an interval of
fixed length centered at nγs, and gives exponential speed k−n(s) of convergence. One can
show, using Theorem 2.9 and perturbation theory that there exists s1 < 0 such that Theo-
rem 3.2 remains walid for s ∈]s1, s∞[. We recall that L1

µ(s) = k′(s)k−1(s), hence the strict
convexity of Logk(s) implies that for s ≥ s1, L

1
µ(s) is increasing and takes only once any

value between L1
µ(s1) and lim

s→s∞
L1
µ(s). However, in general for s < 0, the function, k(s) as

defined above, loses its analyticity at a negative value of s, hence the analogue of Theorem
3.2 is no longer valid for any s ∈ R, and a general µ.
For an analogous statement see [43].

We consider now the following map θ of the circle T = {|z| = 1} ⊂ C defined by θ(z) = z2

and the C-valued function f(z) = z. We are interested in the asymptotic properties of the

Birkhoff sums Sn(z) =
n
Σ
1
z2

k

=
n−1
Σ
0
f(θkz).

Following [23], we sketch the proof of the following local limit in C :

Theorem 3.4 There exists a positive number σ > 0 such that, for any bounded Borel set
B ⊂ C with negligible boundary :

lim
n→∞

2π n σ m{z ∈ T ; Sn(z) ∈ B} = ℓ(B)

where ℓ(B) is the Lebesgue measure of B. In particular for m− a.e z ∈ T the sums Sn(z)
are dense in C.

Proof : We transfer the situation to the interval I = [0, 1], the map θ(x) = {2x} and the
function f(x) = e2iπx = (cos2πx, sin2πx), replacing m by Lebesgue measure m on I. Then
the adjoint Q of θ with respect to m is given by Qϕ(x) = 1

2(ϕ(ax)+ϕ(bx)) where ax = 1
2x,

bx = 1
2(x + 1). We write xk = ak · · · a1x (ai = a, b) for a trajectory of the Markov chain

on I defined by Q and Sn(x) =
n−1
Σ
k=0

f(xk). By stationarity the laws of Sn(z) and Sn(x) are

the same, hence it suffices to show :
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lim
n→∞

2π n σ m{x ∈ I ; Sn(x) ∈ B} = ℓ(B).

As in [23] the recurrence and density properties of Sn(z) follow.
The function f is R2-valued and we admit the multidimensional extension of Theorem 1.5.
Here aperiodicity of f means that for λ ∈ R2 \ {0}, α ∈ R the equation :

(1) e2iπ〈λ,f〉 = e2iπα(u ◦ a)u−1 = e2iπα(u ◦ b)u−1

has no Hölder solution u. We write here Qiλϕ = Q(e2iπ〈λ,f〉ϕ). The Lipchitz coefficients
of ϕ, Qϕ, Qiλϕ satisfy.

[Qϕ]1 ≤ 1
2 [ϕ]1, |Qiλϕ]1 ≤ 1

2 [ϕ]1 + 2π|λ||ϕ|∞,

hence condition (D-F) is satisfied by Q, Qiλ on H1(I), C(I). Clearly Q is ergodic as is
θ. Then, the local limit theorem will follow from Theorem 1.7 if f is aperiodic. Since
f(0) = f(1), from equation (1) we get u(0) = u(1), hence we can write u = e2iπv where
v is a Hölder 1-periodic function on R. Then, using (1), the aperiodicity of f is not
valid if there exists α ∈ R, such a v and a Z-valued function k(x) with 〈λ, f〉(2x) =
α+ v(x)− v(2x)) + k(x). By continuity we get that k(x) is independant of x. Integrating
with respect to m, we get 〈λ, f〉(2x) = v(x) − v(2x). Now with λ = (a, b) 6= (0, 0) we
write 〈λ, f〉(x) = a cos2πx + b sin 2πx, and we use the Fourier series expansion of v,

v(x) =
∞
Σ
−∞

cke
4iπkx. Then the above equation gives a = c1, b = c−1, c0 = 0, c2k = ck,

c2k+1 = 0. Hence c2k or c−2k is equal to a or b, which contradicts the fact that v is square
integrable on I. �

For the use of the Perron-Frobenius operator and spectral gaps on Sobolev spaces in the
more general situation of holomorphic endomorphisms of the complex projective space
Pd(C) see [9] and ([11], Theorem 1.83).
The following is useful in dealing with L2-spectral gaps in the two situations which follow,
i.e motion groups and nilmanifolds, but also in the general context of “strong mixing”. For
other examples see [10] where the following was proved in a slightly different form.

Proposition 3.5 Let (X,m) be a probability space, Γ a countable group acting on X by
measure preserving transformations, A a generating set for Γ, µ ∈ M1(Γ) a probability
measure on Γ with supp(µ) = A. Let c(a, x) = ca(x) (a ∈ A, x ∈ X) be a measurable
function with |c(a, x)| = 1, Q(resp Qc) the operator on L2(X,m) = L2(X) defined by
Qϕ = Σ

a∈A
µ(a)ϕ ◦ a (resp Qcϕ = Σ

a∈A
µ(a)caϕ ◦ a). Assume that the restriction Q0 of

Q to L2
0(X) satisfies r(Q0) < 1. Then one has r(Qc) = 1 if and only if there exists a

measurable function α(x) with value in [0, 2π[ and θ ∈ [0, 2π[such that for any a ∈ A
c(a, x) = ei(α(ax)−α(x)+θ) m− a.e. In particular any unimodular spectral value of Qc is an
eigenvalue of Qc.

Proof : The proof begins like the proof of Theorem 2.1. Assume r(Qc) = 1 and let eiθ be
a spectral value of Qc. Then, either the subspace Im(eiθ − Qc) is not dense in L2(X) or
there exists ϕn ∈ L2(X) with ‖ϕn‖2 = 1 such that lim

n→∞
‖Qcϕn − eiθϕn‖2 = 1. In the first
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case there exists ϕ ∈ L2(X) with eiθ(Qc)∗ϕ = ϕ. Since e−iθQc is a contraction of L2(X),
ϕ is also a fixed point of e−iθQc, hence Qcϕ = eiθϕ and it suffices to consider the second
case . We have :

0 ≤ ‖Qcϕn − eiθϕn‖2 = ‖Qcϕn‖22 + ‖ϕn‖22 − 2Re〈Qcϕn, eiθϕn〉,
0 ≤ 2− 2Re〈Qcϕn, eiθϕn〉.

Then the condition lim
n→∞

‖Qcϕn − eiθϕn‖ = 0 is equivalent to lim
n→∞

Re〈Qcϕn, eiθϕn〉 = 1

hence to lim
n→∞

〈Qcϕn, eiθϕn〉 = 1. Since ‖ϕn‖2 = 1 and |c(a, x)| = 1 we have :

|Qϕ|(x) ≤ Q|ϕ|(x), 0 ≤ |〈Qcϕn, eiθnϕn〉| ≤< Q|ϕn|, |ϕn| >≤ 1.
It follows lim

n→∞
〈Q|ϕn|, |ϕn|〉 = 1, i.e lim

n→∞
‖Q|ϕn| − |ϕn| ‖2 = 0.

We can write |ϕn| = 〈|ϕn|, 1〉+ψn where ψn := |ϕn|−〈|ϕn|, 1〉1 ∈ L2
0(X), hence lim

n→∞
‖(Q−

I)ψn‖2 = 0 and 〈|ϕn|, 1〉 ≤ ‖ϕn‖2 = 1, 1 = 〈ϕn, 1〉2 + ‖ψn‖22.
Since r(Q0) < 1, the restriction of Q − I to L2

0(X) is invertible, hence the condition
lim
n→∞

‖(Q − I)ψn‖2 = 0 implies lim
n→∞

‖ψn‖2 = 0. Hence lim
n→∞

‖ |ϕn| − 1‖2 = 0. On

the other hand, the condition lim
n→∞

〈Qcϕn, eiθϕn〉 = 1 can be written as lim
n→∞ Σ

a∈A
〈caϕn ◦

a, eiθϕn〉µ(a) = 1 with |〈caϕn ◦ a, eiθϕn〉| ≤ 1 for any a ∈ A. It follows lim
n→∞

‖caϕn ◦ a −
eiθϕn‖2 = 0.
We write ϕn = |ϕn|eiαn with αn(x) ∈ [0, 2π[, hence :

caϕn ◦ a− eiθϕn = cae
iαn◦a(|ϕn ◦ a| − 1)− eiθ(|ϕn| − 1)eiαn + (cae

iαn◦a − ei(αn+θ)).
From above we get lim

n→∞
‖caei(αn◦a−αn−θ) − 1‖2 = 0, therefore for a subsequence nk :

ca(x)e
−iθ = lim

k→∞
e−i(αnk

(ax)−αnk
(x), m− a.e.

Hence for any γ ∈ 〈A〉 = Γ, σ(γ, x) = lim
k→∞

e−i(αnk
(γx)−αnk

(x)) exists m − a.e and is a

T-valued cocycle. On the other hand, the spectral gap property r(Q0) < 1 implies the
strong ergodicity (see [47] Proposition 2.10) of the action of Γ on X, hence proposition 2.3
of [47] gives the existence of a measurable function α on X such that :

σ(γ, x) = cγ(x)e
−i|γ|θ = e−i(α(γx)−α(x)), m− a.e

with |γ| equal to the length of γ in A. The result follows. �

Remark 3.6 The proof of [47] shows that, up to unimodular coefficients, the sequence ϕn
converges in measure to an eigenfunction ϕ of Qc with eigenvalue eiθ.

We write the group of complex motions of Cd in semi-direct product formMd = SU(d)αCd,
we denote by µ a finitely supported probability on Md, and by µ its projection on SU(d) ;
let B = supp(µ), A = supp(µ). If A generates a dense subgroup of SU(d), i.e 〈A〉 = SU(d),
and if the elements of A have algebraic coefficients in some base of Cd, then it is known (see
[3]) that for d > 1 the convolution operator ρ0(µ) by µ on L2

0(S
2d−1) satisfies r(ρ0(µ)) < 1.

For d = 1, the problem of equidistribution of µn∗δv(v ∈ C) was considered by D.A Kazdhan
([36]). In this case M2 is solvable and µ̄ defines a random walk on T, which has no spectral
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gap in L2(T), in general ; however M2 is non-abelian and unitary representations are still
useful (see [21], [53]) and allow one to obtain equidistribution. For d > 1 the analogous
problem remained unsolved for a long time, and the corresponding question was asked by
G.-A Margulis. Using the result of [3] we give an affirmative answer (see [10]). We note
that the same question has been recently solved in full generality in [51] i.e without using
the spectral gap property in SU(d). Our method here is of general interest in the larger
context of Markov operators with a Hilbert space spectral condition, i.e Q strongly mixing
in the sense of [45].

Theorem 3.7 With the above notations and d > 1 assume that 〈B〉 =Md and A ⊂ SU(d)
consists of matrices with algebraic coefficients. Then there exists σ(µ) > 0 such that for
any continuous compactly supported function ϕ on Cd, any v ∈ Cd,

lim
n→∞

σ(µ)(2πn)d(µn ∗ δv)(ϕ) = ℓ(ϕ)

where ℓ is Lebesgue measure on Cd ≃ R2d.

Proof : We recall some notations from unitary representations of Md, where Cd is in-
dentified with V = R2d. The Fourier transform of ϕ ∈ L1(V ) is given by ϕ̂(x) =∫
ϕ(v)e2iπ〈x,v〉dℓ(v). For x = tu with t > 0, u ∈ S2d−1 we write ϕt(u) = ϕ̂(tu) so that the

Fourier inversion formula for ϕ gives ϕ(v) =
∫
ϕt(u)e

−2iπt〈u,v〉dℓ(x). If h ∈Md is given by
hv = av + b where a ∈ SU(d), b ∈ V , we get ϕ(h−1v) =

∫
ϕt(a

−1u)e2iπt〈u,b〉e−2iπt〈u,v〉dℓ(x)
so that the function ϕ ◦ h−1 has t-Fourier component given by

(ρt(h)ϕt)(u) = ϕt(a
−1u)e2iπt〈u,b〉.

For t > 0 the map h → ρt(h) is a unitary representation of Md in the Hilbert space
L2(S2d−1) which is irreducible. We denote by Q(resp Qit) the operator on L2(S2d−1) given
by

Qϕ(u) = Σ
a∈A

ϕ(a−1u)µ(a) (resp Qitϕ(u) = Σ
h∈B

e2iπt〈u,b〉ϕ(a−1u)µ(h))

so that Qit = ρt(µ), µ̌
n ∗ δv(ϕ) =

∫
((Qit)nϕt)(u)e

−2iπt〈u,v〉dℓ(x). With the notation of
Proposition 3.4 we have X = Sd−1, Qit = Qc where c(u, h) = e2iπt〈u,b〉.
In view of Theorem 1.7, in order to prove the statement, it suffices to show that the
restriction Q0 of Q to L2

0(S
2d−1) satisfies r(Q0) < 1, and r(Qit) < 1 if t 6= 0. Since

< A >= SU(d) and A has algebraic coefficients the first assertion follows from [3]. Using
strict convexity in L2(S2d−1), the second assertion follows from Proposition 3.4 if there is
no function ϕt ∈ L2(S2d−1) such that for some θ ∈ R, t > 0, any h ∈ B : ρt(h

−1)ϕt = eiθϕt.
But this relation implies that the group ρt(〈B〉) = ρt(Md) has a one dimensional invariant
subspace ; since the representation ρt of Md is irreducible, this is impossible. �

Let X = N/∆ be a compact nilmanifold, H a subgroup of the automorphism group Aut(X)
ofX,m the Haar measure onX. It is known (see [1]) that, if there is noN -equivariant torus
factor T of X such that the projection of H in Aut(X) is virtually abelian, then the natural
representation ρ0 of H in L2

0(X) does not weakly contain the identity representation. It
follows that if A ⊂ H generates H and µ ∈M1(A) is aperiodic, i.e supp(µ) is not contained
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in a coset of a proper subgroup of H, then the corresponding Markov operator Q0 = ρ0(µ)
satisfies r(Q0) < 1. We recall that a finitely generated group Γ is said to be virtually abelian
if it contains a normal group Zr such that the quotient group Γ/Zr is finite. We consider
the random walk on X defined by µ and we denote by xn = an · · · a1x (ai ∈ suppµ, x ∈ X)
its trajectories, where x is distributed according to m. Let f be an R-valued function on

X with m(f) = 0, m(f2) <∞ and let us consider the Birkhoff sums Sn(x, ω) =
n−1
Σ
0
f(xk)

with respect to the product measure Pm = m ⊗ P on X × HN. We denote by Em the
corresponding expectation symbol. Then Theorem 1.7 gives :

Theorem 3.8 With the above notations, assume that the group H = 〈supp(µ)〉 ⊂ Aut X
is ergodic on X, that µ is aperiodic on H and there is no N -equivariant torus factor of
X such that the corresponding projection of H is virtually abelian. Let f ∈ L2

0(X) be such
that the equation eitf(x) = eiθ is not satisfied m− a.e for any (t, θ) ∈ R2 \ {0}.

Then there exists σ(µ, f) > 0 such that for any ϕ ∈ L2(X) any ψ continuous with
compact support on R :

lim
n→∞

σ(µ, f)
√
2πnEm(ϕ(xn)ψ(Sn)) = m(ϕ)ℓ(ψ).

We observe that there are natural subgroups of automorphims of X without any hyperbolic
element which satisfy the above hypothesis (see [10]).

Proof of Theorem 3.6 As in the above example we use Theorem 1.7. The condition
r(Q0) < 1 follows from [1]. Here we have Qitϕ(x) = Σ

a∈A
ϕ(ax)eitf(ax)µ(a). Hence the

condition r(Qit) < 1 for t 6= 0 from Proposition 3.4 will be satisfied if there is no t 6= 0,
ϕt ∈ L2(X), θ ∈ R such that, for any a ∈ supp(µ) and m− a.e :

eitf(ax) = eiθ
ϕt(ax)

ϕt(x)

This equation implies eitf(ax)ϕ−1
t (ax) = eiθϕ−1

t (x), hence eitf(ax)ϕ−1
t (ax) is independant of

a ∈ suppµ. Since (supp(µ)) (supp(µ))−1 generatesH andH is ergodic we get eitf(x)ϕ−1
t (x) =

c,m−a.e with |c| = 1. It follows eiθϕ−1
t (x) = c, hence ϕt(x) = c−1eiθ, eitf(x) = eiθ,m−a.e,

which is excluded. �

4 Extreme value theory for affine random walks.

We consider the affine group H of the vector space V = Rd, a probability λ on H with
projection µ on G̃ = GL(V ). We denote by P̂ the product measure λ⊗N on Ω̂ = HN,
we consider the dynamical system (Ω̂, θ̂, P̂) where θ̂ is the shift on Ω̂, and we study some
limit theorems for the stochastic recursion xn+1 = gn+1xn + bn+1, x0 = x where (gn, bn)
are i.i.d random variables with law λ. Under hypothesis (C) below there exists a unique
λ-invariant probability ρ on V . We recall below the ”homogeneity at infinity” property of
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ρ (see [31], [32]), first observed in [38] in a weak form, and we describe its consequences for
extreme value theory of the process (xn)n∈N. The proofs of homogeneity are given here in
a restricted setting and are based on the properties of the operators P sµ already studied in
section 2. Here we consider also the case V = R ; then we say that a probability µ on R∗

is arithmetic if the semigroup [supp(µ)] is contained in a subgroup ±aZ of R∗(a > 0). If
d ≥ 1, our main hypothesis will be the existence of ρ, condition (I-P) for [supp(µ)] and the
existence of g, g′ in [supp(µ)] with r(g) < 1, r(g′) > 1. More precisely condition (C) is the
following.

a) The semigroup [supp(λ)] has no fixed point in V .

b) There exists α > 0 with k(α) = lim
n→∞

(∫
|g|αdµn(g)

)1/n

= 1.

c) For some δ > 0 we have :
∫ (

|g|αγδ(g) + |b|α+δ
)
dλ(h) <∞.

d) If d > 1, [supp(µ)] satisfies condition (I-P) and if d = 1, [supp(µ)] is non-arithmetic.

Condition (C) implies that Logk′(0) = lim
n→∞

1

n
Log|Sn| < 0. We observe that xn − Snx

has the same law as
n
Σ
k=1

g1 · · · gk−1bk, i.e as the partial sums of the convergent series R =

∞
Σ
1
g1 · · · gk−1bk. Since lim

n→∞
Snx = 0, we have the equation : R(ω) = g1R(θ̂ω)+b1, hence the

law ρ of R is the unique λ-invariant probability. We observe that the above formula for R
implies

∫
|x|sdρ(x) <∞ for s < α. Property b) of condition (C) implies the unboundedness

of supp(ρ). We denote by η → t.η the extension of the dilation v → tv to measures on V ,
by ℓs the measure dt

ts+1 on R+, by Λ̃([supp(µ)]) the inverse image in S(V ) of the limit set
Λ([supp(µ)]) ⊂ P(V ) considered in section 2. Then we have the following ”homogeneity
property of infinity” for ρ, which is basic for the whole development of extreme value theory
(see [41]) :

Theorem 4.1 Under condition (C), the λ-invariant probability ρ satisfies :

lim
t→0+

t−α(t.ρ) = cσ̃α ⊗ ℓα

where c > 0, σ̃α is a probability measure on Λ̃([supp(µ)]) and σ̃α ⊗ ℓα is a µ-harmonic
measure supported by RΛ̃([suppµ]). If [suppµ] has no proper convex invariant cone then
σ̃α is equal to ν̃α, the unique symmetric measure on S(V ) with projection να on P(V ). If
not, σ̃α is a convex combination of the two extremal Pα-invariant probabilities on S(V )
with projection να on P(V ).

We observe that, in various situations, ‘homogeneity at infinity” of solutions of the corre-
sponding functional equations can be deduced from the above theorem. This is the case (see
[8]) in the study of the multidimensional ”smoothing process” considered by Durett-Liggett
in the context of statistical mechanics.
Below, we assume condition (C) and we will restrict ourselves to the case where [supp(µ)]
has no proper convex invariant cone. The proof of Theorem 4.1 in the general case is
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long (see [31]). Here, with H+
v = {x ∈ V ; 〈x, v〉 ≥ 1} (v ∈ V \ {0}), we show only the

convergence of t−α(t.ρ)(H+
v ) under a reinforced hypothesis, and we deduce the homogeneity

at infinity of ρ if α /∈ N. The proof of the positivity of c in the general case is based on the
well known Kac’s return lemma and the method of ladder indices expounded in [14] for
the case of random walks on the line ; here we will give an analytic argument in case d = 1
only. If d ≥ 2 we observe that the above homogeneity of ρ is stable under perturbation
of λ in the weak topology ; it follows that convergence to Fréchet’s law for affine random
walks is robust if d ≥ 2. This is also the case for the convergence to stable laws associated
with affine random walks on Rd (see [17]).
In the special case considered above, the operator P̃ zµ defined by P̃ zµϕ(x) =

∫
|gx|zϕ(g.x)dµ(g)

(z = s+it , s ≥ 0, t ∈ R) on the unit sphere S(V ) has spectral properties similar to those of
P zµ in section 3. In particular, there exists a unique P̃ sµ-eigenmeasure (resp eigenfunction)

on S(V ) : P̃ sµ ν̃
s = k(s)ν̃s, P̃ sµ ẽ

s = k(s)ν̃s and ν̃s (resp ẽs) is the symmetric lift of νs (resp
es) to S(V ). The proof of Theorem 4.1 is based on a lemma and a proposition as follows.

Lemma 4.2 There exists an open set D ⊂ C which contains the set {Rez ∈]0, α]} such
that (I − P̃ zµ)

−1 is meromorphic in D with a unique simple pole at z = α. Furthermore :

lim
z→α

(α− z) (I − P̃ z)−1 = k′(α)−1(ν̃α ⊗ ẽα).

Proof : If d = 1, the lemma follows from elementary arguments and non-arithmeticity of
[supp(µ)]. We assume now d > 1. From the analogue of Theorem 2.20 in case S(V ) it follows
that for some ε > 0 and any z with |z − α| < ε, there exists a holomorphic function k(z)
such that k(z) is a dominant simple eigenvalue of P̃ zµ with k(z) = 1+k(α)(z−α)+◦(z−α).
Since k′(α) 6= 0, we have k(z) 6= 1 for z 6= α and |z − α| small. Also for |z − α| small we
have in Hε(S(V )) the decomposition P̃ zµ = k(z)ν̃z⊗ ẽz+U(z) where ν̃z⊗ ẽz is a projection
on Cẽz, U(z) satisfies U(z)(ν̃z ⊗ ẽz) = (ν̃z ⊗ ẽz)U(z) = 0, r(U(z)) < 1 and ν̃z ⊗ ẽz, U(z)
depend holomorphically on z. We write :

I − P̃ zµ = (1− k(z))(ν̃z ⊗ ẽz) + pz(I − U(z)),

where pz = I − ν̃z ⊗ ẽz. It follows (I − P̃ zµ)
−1 = (1 − k(z))−1(ν̃z ⊗ ẽz) + pz(I − U(z))−1,

hence lim
z→α

(α− z)(I − P̃ zµ)
−1 = k′(α)−1(ν̃α ⊗ ẽα) and (I − P̃ zµ)

−1 is meromorphic in a disk

D0 centered at α with radius ε′ ≤ ε, with unique pole at z = α. For z = α + it with
|t| ≥ ε′, from the last assertion in Theorem 2.20 we get that there exists a disk Dt centered
at α+it such that r(P̃ zµ) < 1 for z ∈ Dt, hence (I− P̃ zµ)−1 is a bounded operator depending

holomorphically on z for z ∈ Dt. If Rez ∈]0, α[, then r(P̃ zµ) ≤ r(P̃ sµ) < 1, hence I − P̃ zµ
is invertible and the function z → (I − P̃ zµ)

−1 is holomorphic in the domain Rez ∈]0, α[.
Then the open set (∪

t
Dt) ∪ {Rez ∈]0, α[} with t = 0 or |t| ≥ ε′ satisfies the conditions of

the lemma and the formula for lim
z→α

(α− z)(I − P̃ zµ)
−1 is valid. �

We note that R =
∞
Σ
1
g1 · · · gk−1bk satisfies the equation : R = g1R ◦ θ +B with B = b1
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We denote for v ∈ V ∗ and Rez = s ∈]0, α[ :
fz(v) = Ê(〈R, v〉z+), dz(v) = Ê(〈R, v〉z+ − 〈R−B, v〉z+). Then we have the

Proposition 4.3 We have the convergence :
lim
t→0+

t−α(t.ρ)(H+
u ) = c(ν̃α ⊗ ℓα)(H+

u ) = C(u) = α−1 lim
s→α−

(α− s)fs(u)

where |u| = 1, c ≥ 0 and ν̃α satisfies µ ∗ (ν̃α ⊗ ℓα) = ν̃α ⊗ ℓα.
We have C(u) = (αk′(α))−1 ∗ν̃α(d̄α) ∗ẽα(u) where d̄α is the restriction of dα to S(V ∗).

Proof : We write the above functional equation in the form R − B = g1R ◦ θ̂, hence for
Rez = s ∈]0, α[ we have 〈R−B, v〉z+ = 〈R◦θ̂, g∗1v〉z+, ∗Pµfz = f1z , with f

1
z (v) = Ê〈R−B, v〉z+,

i.e (I − ∗Pµ)fz = dz. By homogeneity of fz, dz and writing f̄z, d̄z for the restrictions of
fz, dz to S(V ) we get :

(I − ∗P zµ)f̄z = d̄z.

The function d̄z(u) is dominated by :

ε′(z)Ê(|B|s) + ε(z)Ê(|B|(|B|+ < R, u >+)
s−1)

where ε(z) = |z|1[1,s∞[(s), ε
′(z) = 1[0,1](s).

Hence, using the Hölder inequality and the moment hypothesis, we get that for u fixed the
function z → d̄z(u) is holomorphic in the domain Rez ∈]0, α + δ[ ; on the other hand the
above lemma shows the meromorphicity of z → (I−∗P zµ)

−1 in an open setD which contains
{Rez ∈]0, α]}. The above estimation of d̄z(u) shows that the same property is valid for

f̄z = (I−∗P̃
z

µ)
−1(d̄z). If we denote by ρu the law of < R, u >+, we have f̄s(u) =

∫
xsdρu(x),

hence f̄s(u) is the Mellin transform of the positive measure ρu. Then, since (I − ∗P̃
z

µ)
−1

has a simple pole at z = α, we can apply Wiener-Ikehara theorem (see [54]) to f̄s(u), ρu
and obtain the tail of ρu in the form : lim

t→∞
tαρu(t,∞) = lim

s→α−

α−1(α − s)f̄s(u). Hence,

using Lemma 4.2 :

lim
s→α−

(α− s)f̄s(u) = k′(α))−1∗ν̃α(d̄α)
∗ẽα(u).

Using the formula for ∗ẽα(u) given in Lemma 2.23, we get :

lim
s→α−

(α− s)f̄s(u) = αC(u) = αC(ν̃α ⊗ ℓα)(H+
u )

with C ≥ 0, C(u) ≥ 0 and µ ∗ (ν̃α ⊗ ℓα) = ν̃α ⊗ ℓα. �

For d = 1 and some additionnal hypothesis we show lim
t→∞

tαρ(t,∞) > 0, using an analytic

argument sketched in [27]. This argument uses a lemma of E. Landau (see [54]) which says
the following : if the Mellin transform of a positive measure ρ supported on [0,∞[ can be
extended holomorphically to a neighbourbood of α ∈ R+, containing [α, α + ε[ then we
have

∫∞
0 xsdρ(x) <∞ if s < α+ ε. Then we have the :
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Proposition 4.4 Assume d = 1, λ satisfies condition C, has compact support and supp(µ) ⊂
R+. Then if supp(ρ) ∩ R+ is unbounded, then :

lim
t→∞

tαρ(t,∞) = c+ > 0.

Proof : We know that R =
∞
Σ
0
g1 · · · gkbk+1 satisfies the equation : R− b1 = g1R ◦ θ̂. Since

g1 is positive here we get (R− b1)+ = g1R+ ◦ θ̂.
With f(z) = Ê(Rz+), f1(z) = Ê(R− b1)

z
+), d(z) = f(z)− f1(z), we get for s < α :

(E0) k(z)f(z) = f1(z), and (E) (1− k(z))f(z) = d(z).

Here we assume supp(µ) ⊂]0,K[, supp(λ) ⊂]0,K] × [−B,B], for some positive K and
B, hence the functions k(z) = Ê(gz1), Ê(|b1|z) are holomorphic for Rez > 0. Using the
mean value theorem we get |Rz+ − (R − b1)

z
+| ≤ Bs + |z|B(R+ + B)s−1, hence |d(z)| < ∞

for s < α + 1. Also, since k(α) = 1 and µ is non arithmetic we have |k(α + it)| < 1
for t 6= 0. Then equation (E) implies that f(z) extends meromorphically to an open set
U ⊃ {0 < Rez ≤ α}, with possibly a unique simple pole at z = α. Then, as in the proof of
Proposition 4.3 we get lim

t→∞
tαρ(t,∞) = α−1 lim

s→α
(α − s)f(s) = A. If A = 0, since k(s) > 1

for s > α, f(z) is holomorphic in a neighbourhood of ]0, α+ 1[, hence the Landau Lemma
quoted above implies that f(z) is holomorphic for 0 < Rez < α+ 1 and

∫∞
0 xsdρ(x) < ∞

for s < α + 1. Since k(s) > 1 for s > α, the function (1 − k(z))−1 is holomorphic in a
neighbourhood of R+. Then as above, the Landau Lemma and equation (E) imply that
the Mellin transform f(z) is holomorphic for Rez > 0, and f(s) =

∫∞
0 xsdρ(x) < ∞ for

s ≥ 0. Now equation (E0) gives for s ≥ 1
k1/s(s)f1/s(s) = Ê((R− b1)

s
+)

1/s ≤ Ê(Rs+)
1/s +B.

Hence (k1/s(s)− 1) f1/s(s) ≤ B.
Since 1 < lim

s→∞
k1/s(s) = K1 ≤ K, it follows : lim

s→∞
f1/s(s) ≤ B(K1 − 1)−1 < ∞. Hence

we have : supp(ρ) ⊂] − ∞, B(K1 − 1)−1], which contradict the hypothesis supp(ρ) ∩ R+

unbounded. �

Proof of Theorem 4.1 We consider only the case where [supp(µ)] has no proper
convex invariant cone and α /∈ N. Then using Proposition 4.3, and the properties of Radon
transforms of positive measures studied in [2], we get the homogeneity at infinity result for
ρ if α /∈ N. For α ∈ N we use radial Fourier analysis (see [31]). �

Theorem 4.1 allows to describe the asymptotic behaviour of large values of xn, following
the framework of extreme value theory (see [40], [41]). We denote Mn = sup{|xi| ; 1 ≤
i ≤ n}. We recall that Fréchet’s law with parameters p, α is the probability measure Φα,p
on R+ given by Φα,p(0, t) = e−pt

−α
. For i.i.d random variables xk with law ν such that

lim
t→∞

tαν(t,∞) = c > 0, it was observed by M. Fréchet (see [41]) that the law of n−1/αMn

converges to Φα,c. For affine random walks it can be shown (see [31]) that Fréchet’s law is
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still valid but with a parameter 0 < p < c, an inequality due to the clustering of extreme
values, which corresponds to the mixing with speed properties of the weakly dependant
sequence xn (see Lemma 4.7 below). For analogous results on different homogeneous spaces
see [39].

Proposition 4.5 With the notations and hypothesis of Theorem 4.1, the law of n−1/α Mn

converges to the Fréchet law Φα,p with p < c.

As observed in [44] in the case of geodesic flow on the modular surface, the famous Sullivan’s
logarithm law (see [50]) is a simple consequence of such a result. Here we have the

Corollary 4.6 For any v ∈ V , x0 = v, we have the P̂− a.e convergence :

lim sup
n→∞

Log|xn|
Logn

=
1

α
.

The proofs of extreme value properties for the sequence xn are based on the nice spectral
properties of the family of operators P f,t defined below. Let f be a Lipchitz function which
compact support on [0, 1] × V . For χ > 0, and ϕ ∈ C(V ), we write |ϕ|χ = sup |ϕ(v)|

(1+|v|)χ .

For ε ∈]0, 1[, λ ≥ 0 with λ + ε < χ we write [ϕ]ε,λ = sup |ϕ(x)−ϕ(y)|
|x−y|ε(1+|x|)λ(1+|y|λ) , we define

the space Hχ,ε,λ by |ϕ|χ + [ϕ]ε,λ < ∞ and we norm Hχ,ε,λ by : ‖ϕ‖ = |ϕ|χ + [ϕ]ε,λ. Then
Hχ,ε,λ endowed with this norm is a Banach space and for suitable values of χ, ε, λ the
”Laplace operator” P f,t defined by P f,tϕ(v) =

∫
e−f(t,hv)ϕ(hv)dλ(h) acts continuously on

it. The use of the spectral properties of operators P f,t allows one to prove multiple mixing
properties of the sequence xn, in particular the following Lemma 4.7 below.
We consider the Markov probability P̂ρ on the product space V N∪{0}, associated with the
affine random walk defined by λ and the invariant probability ρ. We denote rn = [n]s with
0 < s < α and fj,n(v, ω) = exp(−f(n−1j, n−1/α < v, xj >) (1 ≤ j ≤ n).

Lemma 4.7 With rn, fj,n as above, kn = [nr−1
n ] we have :

lim
n→∞

∣∣∣∣∣P̂ρ
(

n
Π
j=1

fj,n

)
−

kn
Π
k=1

P̂ρ

(
krn
Π

j=1+(k−1)rn
fj,n

)∣∣∣∣∣ = 0

For the use of complex versions of the operators P f,t in the proofs of limit theorems, in

particular for spectral gap properties and convergence to stable laws of Birkhoff sums
n
Σ
j=1

xi,

after normalisation, see ([17],[28]).
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