
HAL Id: hal-01022383
https://hal.science/hal-01022383

Preprint submitted on 10 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular SIMD arithmetic in Mathemagix
Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin

To cite this version:
Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin. Modular SIMD arithmetic in Mathemagix.
2014. �hal-01022383�

https://hal.science/hal-01022383
https://hal.archives-ouvertes.fr

Modular SIMD arithmetic in Mathemagix

Joris van der Hoevena, Grégoire Lecerfb

Laboratoire d’informatique LIX, UMR 7161 CNRS
Campus de l’École polytechnique

Route de Saclay
91128 Palaiseau Cedex, France

a. Email: vdhoeven@lix.polytechnique.fr
b. Email: lecerf@lix.polytechnique.fr

Guillaume Quintin

Laboratoire XLIM, UMR 7252 CNRS
Université de Limoges

123, avenue Albert Thomas
87060 Limoges Cedex, France

Email: guillaume.quintin@unilim.fr

Version of June 29, 2014

Modular integer arithmetic occurs in many algorithms for computer algebra, cryp-
tography, and error correcting codes. Although recent microprocessors typically offer
a wide range of highly optimized arithmetic functions, modular integer operations
still require dedicated implementations. In this article, we survey existing algorithms
for modular integer arithmetic, and present detailed vectorized counterparts. We also
present several applications, such as fast modular Fourier transforms and multiplica-
tion of integer polynomials and matrices. The vectorized algorithms have been imple-
mented in C++ inside the free computer algebra and analysis system Mathemagix.
The performance of our implementation is illustrated by various benchmarks.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Parallel and vector implementations

General Terms: Algorithms, Performance

Additional Key Words and Phrases: modular integer arithmetic, fast Fourier transform, integer product,
polynomial product, matrix product, Mathemagix

1. Introduction

Motivations

During the past decade, major manufacturers of microprocessors have changed their focus
from ever increasing clock speeds to putting as many cores as possible on one chip and to
lower power consumption. One approach followed by leading constructors such as Intelr

and AMDr is to put as many x86 compatible processors on one chip. Another approach
is to rely on new simplified processing units, which allows to increase the number of cores
on each chip. Modern Graphics Processing Units (GPU) have been designed according to
this strategy.

1

As powerful as multicore architectures may be, this technology also comes with its
drawbacks. Besides the increased development cost of parallel algorithms, the main dis-
advantage is that the high degree of concurrency allowed by multicore architecture often
constitutes an overkill. Indeed, many computationally intensive tasks ultimately boil down
to classical mathematical building blocks such as matrix multiplication or fast Fourier
transforms (FFTs).

In many cases, the implementation of such building blocks is better served by sim-
pler parallel architectures, and more particularly by the Single Instruction, Multiple Data
(SIMD) paradigm. A limited support for this paradigm has been integrated into the
x86 processor families with the Intelr MMXTM and SSE (Streaming SIMD Extensions)
technologies. More recently, the advent of Intel AVX (Advanced Vector Extensions) and
AVX-512 has further empowered this model of computation. Historically speaking, vector
computers have played an important role in “High Performance Computing” (HPC). An
interesting question is whether more powerful SIMD instructions can also be beneficial to
other areas.

More specifically, this paper concerns the efficiency of the SIMD approach for doing
exact computations with basic mathematical objects such as integers, rational numbers,
modular integers, polynomials, matrices, etc. Besides high performance, we are therefore
interested in the reliability of the output. For this reason, we like to coin this area as High
Quality Computing (HQC).

One important mathematical building block for HQC is fast modular arithmetic. For
instance, products of multiple precision integers can be computed efficiently using FFTs
over finite fields of the form Fp with p=k 2l+1, where p typically fits within 32 or 64 bits,
and l is as large as possible under this constraint [55]. Similarly, integer matrices can be
multiplied efficiently using such FFTs or Chinese remaindering.

The aim of this paper is twofold. First of all, we adapt known algorithms for modular
integer arithmetic to the SIMD model. We carefully compare various possible implemen-
tations as a function of the bit-size of the modulus and the available SIMD instructions.
In the second part of the paper, we apply our implementations to several fundamental
algorithms for exact arithmetic, namely to the multiplication of integers, integer matrices,
modular polynomials and modular polynomial matrices. We show that our implementa-
tions based on modular arithmetic outperform existing implementations in many cases,
sometimes by one order of magnitude.

The descriptions of the algorithms are self-contained and we provide implementation
details for the SSE and AVX instruction sets. All implementations were done in C++
and our software is freely distributed within the computer algebra and analysis system
Mathemagix [41, 42, 44, 45, 51] (revision > 9170).

Related work

There is large literature on modular integer arithmetic. The main operation to be opti-
mized is multiplication modulo a fixed integer p > 1. This requires an efficient reduction
of the product modulo p. The naive way of doing this reduction would be to compute
the remainder of the division of the product by p. However, divisions tend to be more
expensive than multiplications in current hardware. The classical solution to this problem
is to pre-compute the inverse p−1 so that all divisions by p can be transformed into
multiplications.

2 Modular SIMD arithmetic in Mathemagix

In order to compute the product c of a and bmodulo p, it suffices to compute the integer
floor part q of the rational number a b p−1 and to deduce c= a b¡ q p. The most obvious
algorithm is to compute q using floating point arithmetic. However, this approach suffers
from a few drawbacks. First, in order to ensure portability, the processor should comply to
the IEEE-754 standard, which ensures that rounding errors are handled in a predictable
way. Secondly, the size of the mantissa can be twice as large as the size of the modulus.
Back and forth conversions from and to integers may then be required, which are expensive
on some platforms. For more details we refer the reader to [22, Chapter 14] and [3, 4].
Many recent processors contain fused multiply-add instructions (FMA), which facilitate
taking full advantage of floating point operations; see for instance [60, Chapitre 14].

Barrett’s algorithm [7] provides an alternative to the floating point approach. The idea
is to rescale the floating point inverse of p−1 and to truncate it into an integer type. For
some early comparisons between integer and floating point operations and a branch-free
variant, we refer to [32]. This approach is also discussed in [23, Section 16.9] for particular
processors. For multiple precision integers, algorithms were given in [6, 39].

Another alternative approach is to precompute the inverse p−1 of the modulus p as
a 2-adic integer. This technique, which is essentially equivalent to Montgomery’s algo-
rithm [52], only uses integer operations, but requires p to be odd. Furthermore, modular
integers need to be encoded and decoded (with a cost similar to one modular product),
which is not always convenient. Implementations have been discussed in [49]. A generaliza-
tion to evenmoduli was proposed in [48]. It relies on computing separately modulo 2k and p̃
(such that p̃ is odd, and p=2k p̃) via Chinese remaindering. Unfortunately, this leads to
a significant overhead for small moduli. Comparisons between Barrett’s and Montgomery’s
product were given in [15] for values of k corresponding to a few machine words. A recent
survey can be found in [54] with a view towards hardware implementation.

Modular arithmetic and several basic mathematical operations on polynomials and
matrices have been implemented before on several types of parallel hardware (multicore
architectures and GPUs); see for instance [8, 9, 29, 33]. Although the present article
focuses on x86 compatible processor families and their recent extensions, the algorithms
we describe are intended to be useful for all platforms supporting SIMD technology.

Our applications to matrix product over large polynomials or integers are central tasks
to many algorithms in computer algebra [2, 12, 26, 50]. For a sample of recent targeted
implementations, the reader might consult [30, 38, 53].

Our contributions

One difficulty with modular arithmetic is that the most efficient algorithms are strongly
dependent on the bit-size of the modulus p, as well as the availability and efficiency of
specific instructions in the hardware. This is especially so in the case of SIMD processors,
for which the precise instruction sets still tend to evolve rather quickly. In this paper, we
have attempted to be as exhaustive as possible: we implemented all classical strategies,
while hand optimizing all algorithms as a function of the available SIMD instructions.

The fast sequential algorithms for modular reduction from the previous section all
involve some branching in order to counterbalance the effect of rounding. Our first contri-
bution is to eliminate all branching so as to make vectorization possible and efficient. Our
second contribution is a complete implementation of the various approaches as a function
of the available SIMD instructions. For Barett’s andMontgomery’s algorithms, we consider
both the SSE 4.2 and AVX 2 instruction sets, for all types of supported integers. For
the floating point approach, we have implementations with and without SSE 4.1, AVX,
and FMA extensions. We finally provide detailed benchmarks for the performance of
the different approaches in practice. The observed speedups with respect to the “scalar”
versions (i.e. without vectorization) nearly reflect theoretical expectations.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 3

High performance libraries such as GMP [31], MPIR [35], MPFR [24], FLINT [34]
for computing with large integers, floating point numbers in arbitrary precision, poly-
nomials and matrices are written in C and mostly aim at providing users with very fast
mathematical operations. In fact, the internal representations and algorithms operating
on them are not expected to be accessed nor replaced a posteriori . Instead, the C++
libraries of Mathemagix provide users with high level interfaces to data structures and
mathematical objects, but also with interfaces to internal representations and algorithms.
Users can assemble algorithms for specific purposes, fine tune thresholds, and can easily
replace an algorithm by another one a posteriori . In Section 4, we explain the main design
principles. In particular, we show how our modular numbers are implemented and how
our approach makes it simple to develop SIMD variants of algorithms which benefit from
hardware vectorization features.

A third contribution of this article is the application of our modular arithmetic to an
SIMD version of the fast Fourier transform algorithm in a prime field of the form Z/pZ,
where p¡1 is a multiple of a large power of two. Our implementations outperform existing
software and we report on timings and comparisons for integer, polynomial and matrix
products.

Besides low level software design considerations, our main research goals concern algo-
rithms for solving polynomial systems, for effective complex analysis, and error correcting
codes. Mathemagix includes several of our recent algorithms [5, 10, 11, 43]. From our
experience, a strict bottom-up approach to mathematical software design prevents users
from implementing high level algorithms efficiently. In other words, assembling algorithms
from a strict mathematical point of view does not always lead to the best performance.
Interfaces to algorithms and the ability to reassemble them for higher level operations with
a sufficient level of genericity turns out to be very useful. For instance multiplying integer
matrices by performing integer products and additions in sequence according to the school-
book algorithm can be improved if one has access to relatively generic implementations of
the low level integer product sub-functions. This specific example is adressed in our last
section.

Conventions

Throughout this article, timings are measured on a platform equipped with an Intelr

CoreTM i7-4770 CPU @ 3.40 GHz and 8 GB of 1600 MHz DDR3 . It runs the Jessie
GNU Debianr operating system with a Linuxr kernel version 3.12 in 64 bit mode. Care
has been taken for avoiding CPU throttling issues while measuring timings. Nevertheless
timings often vary in a non negligible range sometimes over 20% and we thus measure
average timings. We compile mainly with GCC [27] version 4.8.2. For pseudocode we use
the operators of the C99 language with their exact meanings and the usual integer types
from inttypes.h. Note also that integer promotions do not invalidate the algorithms and
proofs in this paper. We refer the reader to the C99 (ISO/IEC 9899:1999) standard Sec-
tions 6.2.5 and 6.3.1.1 for further details [16]. For simplicity we assume that the operator >>
always implements the right arithmetic shift.

Brief survey of SIMD technology

For completeness, we conclude this introduction with recalling basic facts on SIMD tech-
nology. This technology can be seen as a type of parallelism where multiple processing
units simultaneously execute the same instruction on multiple data. We can think of an
SIMD processor as a single CPU which operates on registers which are really vectors of
scalar data. The main basic characteristics of SIMD processors are the following:

� The scalar data types which are supported;

4 Modular SIMD arithmetic in Mathemagix

� The total bit-size b of vector registers;

� The number v of vector registers;

� For each scalar data type T , the instruction set for vector operations over T ;

� The instruction set for other operations on SIMD registers, such as communication
with the main memory or permutations of entries.

Modern SIMD processors typically support both floating point types (float and double)
and integer types (8, 16, 32, and 64-bit integers). For a scalar type T of bit-size n, we
operate on vectors of b/n coefficients in T .

Currently, the most common SIMD technologies are SSE (with b= 128 and v = 16),
AVX (with b= 256 and v= 16) and AVX-512 (with b= 512 and v= 32). For instance, an
AVX enabled processor can execute an operation on a vector of 16 integers of bit-size 16 in
unit time. It should be noticed that these bit-sizes b 6 512 are rather modest in comparison
to their historical ancestors, such as the CDC star-100 and Crayr vector computers
(CDCwas a trademark of Control Data Corporation). One advantage of shorter vec-
tors is that it remains feasible to provide instructions for permuting the entries of vectors in
quite general ways (i.e. “communications” remain relatively inexpensive, whenever needed).

In this paper, our SIMD algorithms are described using compiler intrinsics. Most
of the time, the semantics of the SIMD types and instructions in this paper is quite
straightforward. Let us give a few examples:

� The types __m128i and __m128d correspond to packed 128-bit integer and floating point
vectors. They are supported by SSE enabled processors.

� The instruction _mm_add_epi64 corresponds to the addition of two vectors of 64-bit
signed integers of type __m128i (so the vectors are of length 2).

� The predicate _mm_cmpgt_epi64 corresponds to a component-wise> test on two vectors
of 64-bit signed integers of type __m128i. The boolean results true and false are
encoded by the signed integers -1 and 0.

� The instruction _mm_mul_pd corresponds to the multiplication of two vectors of double
precision floating point numbers of type __m128d (so the vectors are of length 2).

We notice that all floating point arithmetic conforms to the IEEE-754 standard. In par-
ticular, results of floating point operations are obtained through correct rounding of their
exact mathematical counterparts, where the global rounding mode can be set by the
user. Some processors also provide fused multiply add (FMA) and subtract instructions
_mm_fmadd_pd and _mm_fmsub_pd which are useful in Section 3. Another less obvious
but useful instruction that is provided by some processors is:

� _mm_blendv_pd (x~, y~, m~) returns a vector z~ with zi= yi whenever the most signif-
icant bit of mi is set and zi= xi otherwise (for each i). For floating point numbers, it
should be noticed that the most significant bit of mi corresponds to the sign bit.

For more details about SSE and AVX intrinsics we refer to the Intelr intrinsic guides [46,
47], and also to [21] for useful comments and practical recommendations.

Let us mention that a standard way to benefit from SIMD technology is to rely on
auto-vectorization features of compilers. Languages such as C and C++ have not yet
been extended to support SIMD technology in a standard and more explicit manner. In
particular, current SIMD types are not even bona fide C/C++ types. Programming via
intrinsics contains a certain number of technical pitfalls. In particular streaming load and
store instructions are slowed down whenever memory addresses are not aligned on the size
of the vectors. It is therefore left to the programmer to wrap memory allocation functions
or to rely on specific features of the compiler.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 5

2. Modular operations via integer types

If a and b are nonnegative integers, then a quo b and a rem b represent the quotient and
the remainder in the long division of a by b respectively. We let U denote an unsigned
integer type of bit-size n assumed to be at least 2 for convenience. This means that all the
integers in the range from 0 to 2n¡ 1 can be represented in U by their binary expansion.
The corresponding type for signed integers of bit-size n is written I: all integers from
¡2n−1 to 2n−1 ¡ 1 can be represented in I. The type L represents unsigned integers of
size at least 2 n. Let p be a nonnegative integer of bit-size at most m with m 6 n. For
efficiency reasons we consider that n and m are quantities known at compilation time,
whereas the actual value of p is only known at execution time. In fact, deciding which
elementary modular arithmetic algorithm to use at runtime according to the bit-size of p is
of course too expensive. For convenience we identify the case p=0 to computing modulo 2n.
Modulo p integers are stored as their representative in f0, ..., p¡ 1g.

2.1. Modular sum

Although modular sum seems rather easy at first look, we quickly summarize the known
techniques and pitfalls.

2.1.1. Unvectorized implementations

Given x and y modulo p, in order to compute (x+ y) rem p, we can first compute x+ y

in U and subtract p when an overflow occurs or when x+ y > p, as detailed in the following
function:

Function 1

Input. Integers x and y modulo p.
Output. (x+ y) rem p.

U add_mod (U x, U y) {

1. U a = x + y;

2. if (a < x) return a - p;

3. return (a >= p) ? a - p : a; }

Of course, when m 6 n¡ 1, no overflow occurs in the sum of line 1, and line 2 is useless. If
branching is more expensive than shifting and if m 6 n¡ 1, then one can compute I a =

x + y - p and return a + ((a >> (n-1)) & p), where we recall that >> implements
the right arithmetic shift. It is important to program both versions and determine which
approach is the fastest for a given processor. Negation and subtraction can be easily
implemented in a similar manner.

2.1.2. Implementations with SSE 4.2 and AVX 2

Arithmetic operations on packed integers are rather well supported by SSE 4.2, uniformly
for various types of integers. Let p~ represent the packed n-bit integer of type __m128i,
whose entries are filled with p. In order to avoid branching in Function 1, one can com-
pute U a = x + y and return min (a, a - p) when m 6 n ¡ 1. This approach can be
straightforwardly vectorized for packed integers of bit-sizes 8, 16 and 32, as exemplified in
the following function:

Function 2

Input. Packed 32-bit integers x~ and y~ modulo p~ , assuming m 6 n¡ 1.
Output. (x~ + y~) rem p~ .

6 Modular SIMD arithmetic in Mathemagix

__m128i add_mod_1_epu32 (__m128i x~, __m128i y~) {

1. __m128i a~ = _mm_add_epi32 (x~, y~);

2. return _mm_min_epu32 (a~, _mm_sub_epi32 (a~, p~)); }

Since the min operation does not exist on packed 64-bit integers, we use the following
function, where 0~ represents the packed n-bit integer of type __m128i filled with 0:

Function 3

Input. Packed 64-bit integers x~ and y~ modulo p~ , assuming m 6 n¡ 1.
Output. (x~ + y~) rem p~ .

__m128i add_mod_1_epu64 (__m128i x~, __m128i y~) {

1. __m128i a~ = _mm_sub_epi64 (_mm_add_epi64 (x~, y~), p~);

2. __m128i b~ = _mm_cmpgt_epi64 (0~, a~);

3. return _mm_add_epi64 (b~, _mm_and_si128 (b~, p~)); }

If m=n, we can proceed as follows: max (x, p¡ y) equals x if, and only if, x > p¡ y. In the
latter case (x+ y) rem p can be obtained as x¡ (p¡ y), and otherwise as x¡ (p¡ y)+ p. If
p=2n, an overflow only occurs when y=0. Nevertheless, max (x, p - y) equals x when
computed in U and x - (p - y) is the correct value. These calculations can be vectorized
for packed integers of bit-size 8, 16, and 32 as follows:

Function 4

Input. Packed 32-bit integers x~ and y~ modulo p~ .
Output. (x~ + y~) rem p~ .

__m128i add_mod_epu32 (__m128i x~, __m128i y~) {

1. __m128i a~ = _mm_sub_epi32 (p~, y~);

2. __m128i b~ = _mm_cmpeq_epi32 (_mm_max_epu32 (x~, a~), x~);

3. __m128i c~ = _mm_andnot_si128 (b~, p~);

4. return _mm_add_epi32 (_mm_sub_epi32 (x~, a~), c~); }

The minimum operator and comparisons do not exist for packed 64-bit integers so we
declare the function _mm_cmpgt_epu64 (__m128i a~, __m128i b~) as:

_mm_cmpgt_epi64 (_mm_sub_epi64 (a~, 263), _mm_sub_epi64 (b~, 263))

where 263 represents the packed 64-bit integer filled with 263. The modular addition can
be realized as follows:

Function 5

Input. Packed 64-bit integers x~ and y~ modulo p~ .
Output. (x~ + y~) rem p~ .

__m128i add_mod_epu64 (__m128i x~, __m128i y~) {

1. __m128i a~ = _mm_add_epi64 (x~, y~);

2. __m128i b~ = _mm_or_si128 (_mm_cmpgt_epu64 (x~, a~),

_mm_cmpgt_epu64 (a~, p~ - 1~));

3. return _mm_sub_epi64 (a~, _mm_and_si128 (b~, p~)); }

It is straightforward to adapt these functions to the AVX 2 instruction set.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 7

2.1.3. Timings

Table 1 displays timings for arithmetic operations over integer types of all possible
bit-sizes n supported by the compiler. Timings are the average number of clock cycles
when applying the addition on two vectors of byte-size 4096 aligned in memory, and writing
the result into the first vector. In particular, timings include load and store instructions.
The row Scalar corresponds to disabling vectorization extensions with the command line
option -fno-tree-vectorize of the compiler. For better performance, loops are unrolled
and the optimization option -O3 of the compiler is used. For conciseness, we restrict
tables to addition; subtraction and negation behave in a similar way. Operations which
are not supported are indicated by n/a, meaning Non Applicable. In the other rows of the
table we indicate timings obtained by the vectorized algorithms according to the instruc-
tion set. Let us mention that the vectorization process is not left to the compiler. In fact
we implemented a dedicated framework in Mathemagix, which is detailed in Section 4.

n 8 16 32 64 128
Scalar 1.6 1.5 1.7 1.6 4.0
SSE 4.2 0.075 0.17 0.34 0.89 N/A

AVX 2 0.044 0.093 0.18 0.59 N/A

Table 1. Sum of vectors of integers in CPU clock cycles.

Table 2 shows timings for modular sums. In absence of vectorization, 8-bit and 16-bit
arithmetic operations are in fact performed by 32-bit operations. Indeed, 8-bit and 16-bit
arithmetic is handled in a suboptimal way by current processors and compilers. For the
vectorized implementations, we observe significant speedups whenm 6 n¡1. Nevertheless,
when m = n, the lack of performance is not dramatic enough to justify the use of larger
integers and double memory space.

n 8 16 32 64 128
m 7 8 15 16 31 32 63 64 127 128
Scalar 2.3 2.3 2.4 2.4 2.4 2.5 2.6 2.9 12 16
SSE 4.2 0.13 0.20 0.31 0.45 0.60 0.86 1.7 2.0 n/a n/a

AVX 2 0.081 0.12 0.16 0.23 0.31 0.44 1.1 1.6 n/a n/a

Table 2. Modular sum in CPU clock cycles.

2.2. Barrett’s product

The first modular product we describe is the one classically attributed to Barrett. It has
the advantage to operate on integer types with no assumption on the modulus. For any
nonnegative real number x, we write bxc for the largest integer less or equal to x, and dxe
for the smallest integer greater or equal to x. We use the following auxiliary quantities:

� the nonnegative integer r := dlog p/log 2e of p with 2r−1< p 6 2r;

� nonnegative integers s and t such that t > r and s+ t 6 n+ r¡ 1;

� the integer q :=
j

2s+t

p

k

represents an approximation of a rescaled numerical inverse of p.

Since 2s+t/p < 2n+r−1/2r−1= 2n, the integer q fits in U. We call q the pre-inverse of p.
Since s+ t 6 2 n¡1, the computation of q just requires one division in L. In this subsection
both integers p and q are assumed to be of type U. We describe below how to set suitable
values for s and t in terms of r (see Table 3).

8 Modular SIMD arithmetic in Mathemagix

2.2.1. Reduction

Let � be one more auxiliary quantity with � 2t 6 22n. If a is an integer such that 0 6 a<� p,
Barrett’s algorithm computes a rem p as follows:

Function 6

Input. An integer a such that 0 6 a<�p, with p, q, r, s, t and � as above.
Output. a rem p.

U reduce_barrett (L a) {

1. L b = a >> s;

2. L c = (b * q) >> t;

3. L d = a - c * p;

4. while (d >= p) d = d - p;

5. return d; }

Proposition 1. Function 6 is correct. The number of iterations in the “while” loop of

step 4 is at most h, where h :=
l

2s

2r−1
+

� 2r

2s+t

m

if s > 1 and h :=
l

� 2r

2t

m

if s=0. In addition,

b q and c p fit in L.

Proof. From a < � p, it follows that b q 6 a q /2s < � p q /2s 6 � 2t. Therefore, b q has
bit-size at most 2n, and c<�. Since r 6 t the product c p fits in L. From

c¡
�

a

p

�

=

��

b q

2t

�

¡ b q

2t

�

+
q

2t

�

b¡ a

2s

�

+
a

2s+t

�

q¡ 2s+t

p

�

+

�

a

p
¡
�

a

p

��

,

we obtain ¡1¡ q

2t
¡ a

2s+t
<c¡

� a

p

�

<1. If s > 1, then q

2t
+

a

2s+t
6 h, so that ¡h 6 c¡

� a

p

�

6 0,

whence the conclusion follows. If s=0, then b= a, and we still have ¡h 6 c¡
� a

p

�

6 0. �

If z is an integer modulo p, and (xi)i∈{1,...,l} and (yi)i∈{1,...,l} are sequences of integers
modulo p, computing (z + x1 y1 + ��� + xl yl) mod p is a central task to matrix and
polynomial products. In order to minimize the number of reductions to be done, we wish to
take � as large as possible. In general, in Barrett’s algorithm, we can always take �=2n,
t=n and s=r¡1, which leads to h=3. When r�n¡1, we can achieve h=2 if we restrict
to �=2n−1 with t=n and s= r¡ 1. When 2 6 r�n¡ 2, it is even better to take t=n+1
and s= r ¡ 2 so that h= 1 when �= 2n−2. When r 6 1, then we let t= n+ 1 and s= 0
when �=2n−2 to get h=1. These possible settings are summarized in Table 3.

m 6 n¡ 2 m 6 n¡ 1 m 6 n

� 2n−2 2n−1 2n

s max (r¡ 2, 0) r¡ 1 r¡ 1
t n+1 n n

h 1 2 3

Table 3. Values for α, s, t, and h.

We could consider taking q̄ := d2s+t / pe instead of q. From s + t 6 n + r ¡ 1 and
2n > 2r−1 + 1 we obtain 2s+t 6 2n+r−1 6 2n+r−1 + 2n ¡ 2r−1 ¡ 1 = (2n ¡ 1) (2r−1 + 1).

Therefore the inequalities 2s+t

p
6 2s+t

2r−1+1
6 2n ¡ 1 imply that q̄ fits in U. Using q̄ instead

of q in Function 6 leads to the following inequalities:

¡1¡ q̄

2t
<c¡

�

a

p

�

<
a

2s+t
+1¡ 1

p
.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 9

If s= 0, then the term q̄

2t
disappears. If r is sufficiently small, then a

2s+t
can be bounded

by 1

p
. Therefore line 4 of Function 6 can be discarded. More precisely, if we assume that

m 6 (n¡1)/2 and letting s=0, t :=n+ r¡1, and q̄ := d2t/pe, then we have the following
faster function:

Function 7

Input. An integer a with 0 6 a<2(n−1)/2 p, and p, q̄, t=n+ r¡ 1, m 6 n− 1

2
as above.

Output. a rem p.

U reduce_barrett_half (U a) {

1. U c = (a * ((L) q̄)) >> t;

2. return a - c * p; }

Proposition 2. Function 7 is correct.

Proof. Letting � := 2(n−1)/2, the proof follows from ¡1 < c ¡
j

a

p

k

<
a

2t
+ 1 ¡ 1

p
and

a p

2t
<

� p2

2t
6 � 22r−t 6 � 2r−n+1 6 1. �

Remark 3. With recent compilers, 128-bit integers are available, which eases this imple-
mentation up to 64-bit. But if U is the largest type of integers supported by the compiler,
then q has to be computed by alternative methods such as the classical Newton-Raphson
division [57] (see also our implementation in numerix/modular_int.hpp inside Math-
emagix, with the necessary proofs in the documentation).

2.2.2. Several products by the same multiplicand

Assume that we wish to compte several modular products, where one of the multiplicands
is a fixed modular integer y 2Z/pZ. A typical application is the computation of FFTs,
where we need to multiply by roots of unity that only depend on the size of the transformer
and can thus be computed once and cached into memory. Then one can pre-compute
 := b(2n y) / pc < 2n and obtain a speed-up within each product by y thanks to the
following function:

Function 8

Input. Integers x, y, and in f0, ..., p¡ 1g, with p and as above.
Output. (x y) rem p.

U mul_mod_barrett (U x, U y, U) {

1. U c = (x * ((L))) >> n;

2. L d = ((L) x) * y - ((L) c) * p;

3. return (d >= p) ? d - p : d; }

Proposition 4. Function 8 is correct.

Proof. From c ¡
j

x y

p

k

=
�j

x

2n

k

¡ x

2n

�

+
x

2n

�

 ¡ 2n y

p

�

+
�

x y

p
¡

j

x y

p

k�

we obtain

¡1¡ x

2n
<c¡

j

x y

p

k

< 1, whence the correctness. �

Notice that Function 8 does not depend on q, r, s or t. If m 6 n ¡ 1, then line 2 can
be replaced by U d = x * y - c * p. If m 6 n/2, then ̄ := d(2n y)/ pe fits in U since
(2n y)/p 6 2n¡2n/p, and Function 8 can be improved along the same lines as Function 7:

10 Modular SIMD arithmetic in Mathemagix

Function 9

Input. Integers x, y, ̄ in f0, ..., p¡ 1g, with p and ̄ as above, and where m 6 n/2.
Output. (x y) rem p.

U mul_mod_barrett_half (U x, U y, U ̄) {

1. U c = (x * ((L) ̄)) >> n;

2. return x * y - c * p; }

Proposition 5. Function 9 is correct.

Proof. Similarly to previous proofs, we have ¡1 < c ¡
j

x y

p

k

<
x

2n
+ 1 ¡ 1

p
, whence the

correctness. �

2.2.3. Implementations with SSE 4.2 and AVX 2

Function 6 could be easily vectorized if all the necessary elementary operations were avail-
able within the SSE 4.2 or AVX 2 instruction sets. Unfortunately this is not so for all
integer sizes, which forces us to examine different cases. As a first remark, in order to
remove the branching involved in line 4 of Function 6, we replace it by d= min (d, d - p)

as many times as specified by Proposition 1. In the functions below we consider the case
when m>n/2. The other case is more straightforward. The packed 2 n-bit integer filled
with q (resp. p) seen of type L is written qL~ (resp. p~L). The constant 2n¡ 1L corresponds
to the packed 2n-bit integer filled with 2n¡ 1. We start with the simplest case of packed
16-bit integers. If x~ and y~ are the two vectors of scalar type U to be multiplied modulo p,
then we unpack each of them into two vectors of scalar type L, we perform all the needed
SIMD arithmetic over L, and then we pack the result back to vectors over U.

Function 10

Input. Packed 16-bit integers x~ and y~ modulo p~ , assuming m 6 n¡ 2.
Output. (x~ y~) rem p~ .

__m128i mul_mod_2_epu16 (__m128i x~, __m128i y~) {

1. __m128i x~ l = _mm_unpacklo_epi16 (x~, 0~);

2. __m128i x~h = _mm_unpackhi_epi16 (x~, 0~);

3. __m128i y~l = _mm_unpacklo_epi16 (y~, 0~);

4. __m128i y~h = _mm_unpackhi_epi16 (y~, 0~);
5. __m128i a~ l = _mm_mullo_epi32 (x~ l , y~l);

6. __m128i a~h = _mm_mullo_epi32 (x~h, y~h);

7. __m128i b~l = _mm_srli_epi32 (a~ l , s);

8. __m128i b~h = _mm_srli_epi32 (a~h, s);

9. __m128i c~l = _mm_srli_epi32 (_mm_mullo_epi32 (b~l , q~L), t);

10. __m128i ch~ = _mm_srli_epi32 (_mm_mullo_epi32 (b~h, q~L), t);

11. __m128i c~ = _mm_packus_epi32 (c~l, c~h);

12. __m128i d~ = _mm_sub_epi16 (_mm_mullo_epi16 (x~, y~),

_mm_mullo_epi16 (c~, p~);

13. return _mm_min_epu16 (d~, _mm_sub_epi16 (d~, p~));

If m 6 n ¡ 1, then the computations up to line 10 are the same but the lines after are
replaced by:

11. __m128i d~ l = _mm_sub_epi32 (a~ l , _mm_mullo_epi32 (c~l , p~L));

12. __m128i d~h = _mm_sub_epi32 (a~h, _mm_mullo_epi32 (c~h, p~L));

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 11

13. d~ l = _mm_min_epu32 (d~ l , _mm_sub_epi32 (d~ l , p~L));

14. d~h = _mm_min_epu32 (d~h, _mm_sub_epi32 (d~h, p~L));

15. __m128i d~ = _mm_packus_epi32 (d~ l , d~h);

16. return _mm_min_epu16 (d~, _mm_sub_epi16 (d~, p~));

Under the only assumption that m 6 n, ones needs to duplicate latter lines 13 and 14.
For packed 8-bit integers since no packed product is natively available, we simply

perform most of the computations over packed 16-bit integers as follows:

Function 11

Input. Packed 8-bit integers x~ and y~ modulo p~ , assuming m 6 n¡ 2.
Output. (x~ y~) rem p~ .

__m128i muladd_mod_2_epu8 (__m128i x~, __m128i y~) {

1. __m128i x~ l = _mm_unpacklo_epi8 (x~, 0~);

2. __m128i x~h = _mm_unpackhi_epi8 (x~, 0~);

3. __m128i y~l = _mm_unpacklo_epi8 (y~, 0~);

4. __m128i y~h = _mm_unpackhi_epi8 (y~, 0~);
5. __m128i a~ l = _mm_mullo_epi16 (x~ l , y~l);

6. __m128i a~h = _mm_mullo_epi16 (x~h, y~h);

7. __m128i b~l = _mm_srli_epi16 (a~ l , s);

8. __m128i b~h = _mm_srli_epi16 (a~h, s);

9. __m128i c~l = _mm_srli_epi16 (_mm_mullo_epi16 (b~l , q~L), t);

10. __m128i c~h = _mm_srli_epi16 (_mm_mullo_epi16 (b~h, q~L), t);

11. __m128i d~ l = _mm_sub_epi16 (a~ l , _mm_mullo_epi16 (c~l , p~L));

12. __m128i d~h = _mm_sub_epi16 (a~h, _mm_mullo_epi16 (c~h, p~L));

13. __m128i d~ = _mm_packus_epi16 (d~ l , d~h);

14. return _mm_min_epu16 (d~, _mm_sub_epi8 (d~, p~));

If m 6 n ¡ 2 does not hold, then the same modifications as with packed 16-bit integers
are applied.

For packed 32-bit integers, a similar extension using packing and unpacking instructions
is not possible. We take advantage of the _mm_mul_epu32 instruction. If m 6 n¡ 2, then
we use the following code:

Function 12

Input. Packed 32-bit integers x~ , y~ modulo p~ , assuming m 6 n¡ 2.
Output. (x~ y~) rem p~ .

__m128i mul_mod_2_epu32 (__m128i x~, __m128i y~) {

1. __m128i a~ l = _mm_mul_epu32 (x~, y~);

2. __m128i b~l = _mm_srli_epi64 (a~ l , s);

3. __m128i c~l = _mm_srli_epi64 (_mm_mullo_epi32 (b~l , q~L), t);

4. __m128i x~h = _mm_srli_si128 (x~, 4);

5. __m128i y~h = _mm_srli_si128 (y~, 4);

6. __m128i a~h = _mm_mul_epu32 (x~h, y~h);

7. __m128i b~h = _mm_srli_epi64 (a~h, s);

8. __m128i c~h = _mm_srli_epi64 (_mm_mullo_epi32 (b~h, q~L), t);

9. __m128i a~ = _mm_blend_epi16 (a~ l, _mm_slli_si128 (a~h, 4),4+8+64+128);

10. __m128i c~ = _mm_or_si128 (c~l, _mm_slli_si128 (c~h, 4));

12 Modular SIMD arithmetic in Mathemagix

11. __m128i d~ = _mm_sub_epi32 (a~, _mm_mullo_epi32 (c~, p~));

12. return _mm_min_epu32 (d~, _mm_sub_epi32 (d~, p~));

When m 6 n¡ 1, the same kind of modifications as before have to be done: d~ must be
computed with vectors of unsigned 64-bit integers. Since these vectors do not support the
computation of the minimum, one has to use _mm_cmpgt_epi64.

2.2.4. Timings

In Table 4 we display timings for multiplying machine integers, using the same conventions
as in Table 1. Recall that packed 8-bit integers have no dedicated instruction for multipli-
cation: it is thus done through the 16-bit multiplication via unpacking/packing.

n 8 16 32 64 128
Scalar 1.8 1.6 1.6 1.6 5.3
SSE 4.2 0.20 0.17 0.55 N/A N/A

AVX 2 0.11 0.10 0.27 N/A N/A

Table 4. Product of integers in CPU clock cycles.

Table 5 shows the performance of the above algorithms. The row “Naive” corresponds
to the scalar approach using the C++ operator % to compute remainders. Up to 32-bit
integers, arithmetic is handled via 32 and 64-bit registers. The row “Barrett” contains
timings for the scalar implementation of Barrett’s product. Notice that the case m=n¡ 2
is significantly faster than the case m=n.

In the scalar approach, compiler optimizations and hardware operations are not always
well supported for small sizes, so it makes sense to perform computations on a larger size.
On our test platform, 32-bit integers typically provide the best performance. The resulting
timings are given in the row “padded Barrett”. For 8-bit integers, the best strategy is in fact
to use lookup tables yielding 2.4 cycles in average, but this strategy cannot be vectorized.
Finally the last two rows correspond to the vectorized versions of Barrett’s approach.

n 8 16 32
m 2 6 7 8 6 14 15 16 14 30 31 32
Naive 8.1 8.1 8.1 8.1 9.4 10 10 10 9.4 23 23 23
Barrett 3.4 8.5 9.7 13 3.2 6.2 8.3 10 3.2 6.1 8.3 10.6
Padded Barrett 3.1 3.1 3.1 3.1 3.1 3.1 3.1 5.9
SSE Barrett 0.78 0.78 0.86 1.1 0.76 1.9 2.4 2.7 2.3 3.3 3.6 7.1
AVX Barrett 0.40 0.40 0.45 0.54 0.41 1.0 1.2 1.4 1.3 1.8 2.1 4.0

Table 5. Modular product in CPU clock cycles.

For larger integers, the performance is shown in Table 6. Let us mention that in the
row “Barrett” with n= 64 we actually make use of __int128 integer arithmetic.

n 64 128
m 30 62 63 64 62 126 127 128
Naive 22 91 91 91 92 520 710 500
Barrett 8.2 15 25 32 71 98 144 154

Table 6. Modular product in CPU clock cycles.

Table 7 shows the average cost of one product with a fixed multiplicand. In comparison
with Table 5, we notice a significant speedup, especially for the vectorial algorithms.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 13

n 8 16 32 64 128
m 7 8 15 16 31 32 63 64 127 128
Padded Barrett 3.0 3.0 3.0 3.0 3.9 3.8 3.9 8.3 36 110
SSE Barrett 0.59 0.59 0.52 1.9 1.8 4.6
AVX Barrett 0.38 0.39 0.36 0.94 1.1 2.4

Table 7. Modular product for a fixed multiplicand in CPU clock cycles.

Remark 6. Our vectorized modular operations can easily be adapted to simultaneously
compute modulo several moduli, say p1, p2, p3, p4, assuming they share the same para-
meters r, s and t. Nevertheless, instead of using vectors p~L filled with the same modulus,
this requires one vector of type L to be filled with p1 and p3 and a second one with p2 and
p4; the same consideration holds for q~L. These modifications involve to cache more pre-
computations and a small overhead in each operation.

2.3. Montgomery’s product

For Montgomery’s algorithm [52], one needs to assume that p is odd. Let m be such that
r 6 m 6 n and let a<2m p. We need the auxiliary quantities � and � defined by 0<�<2m,
0 < � < p, and � 2m ¡ � p = 1. They can be classically computed with the extended
Euclidean algorithm [26, Chapter 3].

2.3.1. Reduction

For convenience we introduce � := 2m ¡ 1. The core of Montgomery’s algorithm is the
following reduction function:

Function 13

Input. An integer a such that 0 6 a< 2m p, with p odd, and m as above.
Output. (a �) rem p.

U reduce_montgomery (U a) {

1. U b = (a * �) & �;

2. L c = a + b * p;

3. U d = c >> m;

4. if (c < a) return d - p;

5. return (d >= p) ? d - p : d; }

Proposition 7. Function 13 is correct. If m 6 n¡ 1, then line 4 can be discarded.

Proof. First one verifies that b pmod 2m= a � pmod 2m=¡amod 2m. Therefore a+ b p

is a multiple of 2m. If m 6 n ¡ 1, then no overflow occurs in the sum of line 2, and the
division in line 3 is exact. We then have d 2mmod p= amod p, and the correctness follows
from 0 6 c< 2m p+2m p and thus 0 6 d< 2 p. If m=n, then the casual overflow in line 2
is tested in line 4, and d is the value in U of (a+ b p)/2m. �

Let x be a modulo p integer. We say that x is in Montgomery’s representation if stored
as (x 2m) rem p. The product of two modular integers x and y, of respective Montgomery’s
representations x̃ and ỹ, can be obtained in Montgomery’s representation x y 2m rem p by
applying Function 13 to x̃ ỹ since x y 2mmod p=(x 2m) (y 2m) �mod p.

If m=n, then the mask in line 1 can be avoided, and the shift in line 3 might be more
favorable than a general shift, according to the compiler. In total, if m=n or m=n¡ 1,
Montgomery’s approach is expected to be faster than Barrett’s one. Otherwise costs should
be rather similar. Of course these cost considerations are rather informal and the real cost
very much depends on the processor and the compiler.

14 Modular SIMD arithmetic in Mathemagix

Remark 8. As for Barrett’s algorithm one could be interested in simplifying Mont-
gomery’s product when performing several products by the same multiplicand y. Writing
' = (� y) rem 2m, the only simplification appears in line 1, where b can be obtained
as (x ') rem 2m, which saves one product in U. Therefore Barrett’s approach is expected
to be always faster for this task. Precisely, if m 6 n ¡ 1, this is to be compared to
Function 8 which performs only one high product in line 1.

Remark 9. Up to our best knowledge, it is not known whether Montgomery’s product
can be improved in a similar way as we did for Barrett’s product, in the case whenm 6 n/2.

2.3.2. Timings

Table 8 contains timings measured in the same manner as in the previous subsection.
Compared to Tables 5 and 6 we observe that Montgomery’s product is not interesting in
the scalar case for 8 and 16-bit integers but it outperforms Barrett’s approach in larger
sizes, especially when m= n. Compared to Table 7, Montgomery’s product is only faster
for when n=m= 64 and n=m= 128.

n 8 16 32 64 128
m 7 8 15 16 31 32 63 64 127 128
Montgomery 6.0 6.3 5.3 5.9 5.3 5.5 7.4 7.2 92 92
SSE Montgomery 0.75 1.1 2.2 3.2 3.4 5.0
AVX Montgomery 0.41 0.59 1.2 1.7 1.8 2.8

Table 8. Montgomery’s product in CPU clock cycles.

3. Modular operations via numeric types

Instead of integer types, we can use numeric types such as float or double to perform
modular operations. Let us write F such a type, and let ` > 3 represent the size of the
mantissa of F minus one, i.e. 23 bits for float and 52 bits for double. This number of
bits corresponds to the size of the so called trailing significant field of F, which is explicitly
stored. The modular product of xmod p and ymod p begins with the computation of an
integer approximation c of x y/p. Then d= x y ¡ c p is an approximation of x y rem p at
distance O(p). The constant hidden behind the latter O depends on rounding modes. In
this section we conform to IEEE-754 standard. We first analyze the case when p fills less
than half of the mantissa. We next propose a general algorithm using the fused multiply-
add operation.

3.1. Notations

The following notations are used until the end of the present section. We write u for the
value of 1 / p computed in F by applying the division operator on 1.0 and (F) p. Still
following IEEE-754, the trailing significant field of u is written � and its exponent e. These
quantities precisely depend on the active rounding mode used to compute u. But for all
rounding modes, they satisfy the following properties:

0 6 � < 2`, u=
2`+�
2e

,

�

�

�

�

1
p
¡ u

�

�

�

�

<
1
2e
. (1)

From the latter inequality we obtain

2`¡ 1 6 ¡1+2`+� <
2e

p
< 1+2`+ � 6 2`+1,

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 15

and thus
p

2e
<

1

2`¡ 1 . (2)

Let a be a real number of type F, and let F b = a * u be the approximation of a u
computed in F. Again, independently of the rounding mode, there exist integers � and f ,
for the trailing significant field and the exponent of b, such that

0 6 � < 2`, b=
2`+ �

2f
, ja u¡ bj< 1

2f
. (3)

From 2`¡ 1< 2f a u 6 2`+1 we deduce

1

2f
<

au

2`¡ 1 . (4)

We also use the approximation ū of 1.0 / ((F) p) computed in F with rounding mode
set towards infinity, so that ū > 1/p holds.

3.2. Reduction in half size

When p fills no more than half of the mantissa, that is when m 6 `/2, it is possible to
perform modular products in F easily. Let the floor function return the largest integral
value less than or equal to its argument, as defined in C99.

Function 14

Input. An integer a such that 0 6 a<�p, where � := 2`/2, and m 6 `/2.
Output. a rem p.

F reduce_numeric_half (F a) {

1. F b = a * u;

2. F c = floor (b);

3. F d = a - c * p;

4. if (d >= p) return d - p;

5. if (d < 0) return d + p;

6. return d; }

Proposition 10. Function 14 is correct for any rounding mode. In addition, if ū is used
instead of u in line 1, and if the rounding mode is set towards infinity, then line 4 can be
discarded.

Proof. Using (1) and (2) we obtain a u= a

p
u p<�

¡

1+
p

2e

�

< 2`/2
�

1+
1

2`− 1

�

, hence the

floor function actually returns bbc in c. From the decomposition

c¡
�

a

p

�

=(bbc¡ b)+ (b¡ a u)+ a
�

u¡ 1
p

�

+

�

a

p
¡
�

a

p

��

, (5)

we deduce

¡1¡ 1

2f
¡ �p

2e
<c¡

�

a

p

�

<
1

2f
+
�p

2e
+1.

From (2), we have � p

2e
< 1 / 2, and from (4) we deduce 1

2f
<

au

2`− 1
6 � p (1/p+1/2e)

2`− 1
6

�+� p/2e

2`− 1
6 2`/2+1/2

2`− 1
<

1

2
. It follows that

�

�

�c¡
j

a

p

k
�

�

�< 2 hence that
�

�

�c¡
j

a

p

k
�

�

� 6 1.

If using ū instead of u, and if the rounding mode is set towards infinity, then b > a ū,
and then 0 6 c¡

j

a

p

k

6 1, which allows us to discard line 4. �

16 Modular SIMD arithmetic in Mathemagix

In the same way we did for Barrett’s product, and under mild assumptions, we can improve
the latter function whenever m 6 (`¡ 1)/2.

Function 15

Input. An integer a such that 0 6 a<�p, where � := 2(`−1)/2 and m 6 (`¡ 1)/2.
Hypothesis. The current rounding mode rounds towards infinity.
Output. a rem p.

F reduce_numeric_half_1 (F a) {

1. F b = a * ū;

2. F c = floor (b);

3. return a - c * p; }

Proposition 11. Function 15 is correct.

Proof. We claim that
1

2f
+
�p¡ 1
2e

6
1
p
. (6)

By (2) and (4), the claim is satisfied as soon as (� p− 1) (1+ p/2e)

2`− 1
+

� p− 1

2`− 1
6 1, which is itself

implied by (2`−1¡ 1)
�

1+
1

2`− 1

�

+2`−1¡ 1 6 2`¡ 1, that is correct since it rewrites into
2`−1− 1

2`− 1
6 1 by expanding the product.

From 0 6 a

p
¡
j

a

p

k

6 1¡ 1

p
and (5) we deduce that

¡1<c¡
�

a

p

�

< 1+
1

2f
+
�p¡ 1
2e

¡ 1
p

6 1,

which proves the correctness. �

Remark 12. The hypothesis on the rounding mode can be dropped if a = 0 or p does
not divide a. This is in particular case, if p is prime and a is the product of two numbers
in f0, ..., p¡1g. Indeed, if a=0, then the algorithm is clearly correct. If p does not divide a,

then we have 1

p
6 a

p
¡
j

a

p

k

6 1¡ 1

p
. Combining the latter inequality with ¡ 1

2f
<b¡a u< 1

2f

and
�

�

�a u¡ a

p

�

�

�<
� p− 1

2f
yields

¡1¡ 1

2f
¡ �p¡ 1

2f
+
1
p
< b¡

�

a

p

�

< 1+
1

2f
+
�p¡ 1
2e

¡ 1
p
.

Inequality (6) finally implies ¡1<b¡
j

a

p

k

< 1.

3.3. Larger modular products via FMA

Until now we have not exploited the whole mantissa of F. To release the assumption
m 6 ` / 2 in Function 14, the value for d could be computed over a sufficiently large
integer type. Over double one can use 64-bit integers, as implemented for instance in [58].
The drawbacks of this approach are the extra conversions between numeric and integer
types, and the fact that the vectorization is compromised since 64-bit integer products are
not natively available in the SSE or AVX instruction sets. In what follows we describe
a modular product in the case when m 6 ` ¡ 2, using the fused multiply-add operation
from the IEEE 754-2008 standard. We write fma (x, y, z) for the evaluation of x y+ z
using the current rounding mode.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 17

Function 16

Input. Integers a1 and a2 such that 0 6 a1 a2<�p, where � := 2`−2, and m 6 `¡ 2.
Output. (a1 a2) rem p.

F mul_mod_fma (F a1, F a2) {

1. F h = a1 * a2;

2. F l = fma (a1, a2, ¡h);
3. F b = h * u;

4. F c = floor (b);

5. F d = fma (¡c, p, h);

6. F e = d + l;

7. if (e >= p) return e - p;

8. if (e < 0) return e + p;

9. return e; }

Proposition 13. Function 16 is correct for any rounding mode. If ū is used instead of u
in line 3, and if the rounding mode is set towards infinity, then line 7 can be discarded.

Proof. Let a :=a1 a2. We have jh¡aj<22r−` 6 2`−4, so that h+ l=a. We also verify that

a u=
a

p
u p<�

¡

1+
p

2e

�

<2`−2
�

1+
1

2`− 1

�

, which implies that c= bbc. Using (5) again, the

following inequalities hold:

¡1¡ 1

2f
¡ �p

2e
<c¡

�

a

p

�

<
1

2f
+
�p

2e
+1.

From (2) we have � p

2e
6 2`−2

2`− 1
<

1

2
, and from (4) we deduce 1

2f
6 au

2`− 1
6 � (1+ p/2e)

2`− 1
<

2`−2+1/2

2`− 1
6 1

2
. It follows that¡1 6 c 6 1. In particular this implies ja1 a2¡c pj<2 p, whence

jh¡ c pj 6 l+ 2 p < 2`. This proves that d= h¡ c p and therefore e= d+ l= h¡ c p+ l=
a¡ c p, which finally implies the correctness of Function 16.

Now suppose that ū is used and that the rounding mode is set towards infinity. Then
ū > 1/p, h > a and b > h ū so that b > a ū, and therefore 0 6 c 6 1. �

Remark 14. Let I be a type of signed integers of at least n>` bits. In the above functions
the executable code generated for the floor instruction heavily depends on the compiler,
its version, and its command line arguments. This makes timings for this numeric approach
rather unpredictable. We have run tests with GCC version > 4.7 and CLANG [17] ver-
sion > 3.4 and observed that c = (F) ((I) b) always generates cvttsd2si, cvtsi2sd
instructions which are the x86 cast instructions, whereas c = floor (b) is compiled into
a call to the floor function from the math library. In order to force the compiler to use
a special purpose instruction such as roundsd from SSE 4.1, the -O3 -msse4.1 -fno-

trapping-math arguments must be passed to gcc. In the case of clang, the options -O3
-msse4.1 are sufficient.

3.4. Vectorized implementations

For efficiency, we assume that SSE 4.1 is available. Our modular addition and subtraction
functions can benefit from _mm_blendv_pd as follows:

18 Modular SIMD arithmetic in Mathemagix

Function 17

Input. Packed doubles x~ and y~ modulo p~ , assuming m 6 `¡ 1.
Output. (x~ + y~) rem p~ .

__m128d add_mod_1 (__m128d x~, __m128d y~) {

1. __m128d a~ = _mm_add_pd (x~, y~);

2. __m128d b~ = _mm_sub_pd (a~, p~);

3. return _mm_blendv_pd (b~, a~, b~); }

Assuming that FMA instructions are available, Function 16 is implemented as follows:

Function 18

Input. Packed doubles x~ and y~ modulo p~ , assuming m 6 `¡ 2.
Output. (x~ y~) rem p~ .

__m128d mul_mod_1 (__m128d x~, __m128d y~) {

1. __m128d h~ = _mm_mul_pd (x~, y~);

2. __m128d l~ = _mm_fmsub_pd (x~, y~, h~);

3. __m128d b~ = _mm_mul_pd (h~, u~);

4. __m128d c~ = _mm_floor (b~);

5. __m128d d~ = _mm_fnmadd_pd (c~, p~, h~);

6. __m128d e~ = _mm_add_pd (d~, l~);

7. __m128d t~ = _mm_sub_pd (e~, p~);

8. e~ = _mm_blendv_pd (t~, e~, t~);

9. t~ = _mm_add_pd (e~, p~);

10. return _mm_blendv_pd (e~, t~, e~); }

Our AVX based implementation is the same, mutatis mutandis.

3.5. Timings

Table 9 is obtained under similar conditions as Tables 1 and 4, but for the types float and
double. The row “Scalar” corresponds to the unvectorized implementation with unrolled
loops, and preventing the compiler from using auto-vectorization. The next rows concern
timings using SSE 4.1 and AVX instructions with unrolled loops on aligned data.

Operation sum product
Type float double float double

Scalar 1.1 1.1 1.1 1.1
SSE 0.32 1.0 0.30 1.0
AVX 0.19 0.55 0.16 0.55

Table 9. Floating point operations in CPU clock cycles.

In Table 10 we have shown timings for the modular sum and product functions from
this section. The row “Scalar” excludes auto-vectorization and does not use the processor
built-in FMA unit.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 19

Operation sum product
Type float double float double

m 21 50 11 21 25 26 50
Scalar 2.0 2.1 4.7 8.1 4.7 6.4 7.5
SSE & FMA 0.60 1.3 1.0 1.5 2.0 2.8 3.0
AVX & FMA 0.33 0.75 0.54 0.8 1.2 1.8 1.9

Table 10. Modular operations in CPU clock cycles.

We notice that the timings in Table 10 are interesting when compared to those in
Table 5. However, for multiplications with a fixed multiplicand, the approach from Table 7
becomes more attractive, and this will indeed be used in Section 5 below.

We also notice that efficient hardware quadruple precision arithmetic would allow us
to consider moduli with larger bit sizes. An alternative to hardware quadruple precision
arithmetic would be to provide an efficient “three-sum” a+ b+ c instruction with correct
IEEE-754 rounding. This would actually allow for the efficient implementation of more
general medium precision floating point arithmetic.

4. Implementation design in C++

The C++ libraries ofMathemagix are not only oriented towards mathematical interfaces
but also towards reusability of generic low level implementations. Advanced users can
not only build on existing algorithms, but also replace them a posteriori by more efficient
implementations for certain special cases. We heavily rely on C++ template programming.
This section surveys some of the design principles behind our implementation of modular
numbers but also of polynomials, matrices and other objects in Mathemagix. Our tech-
niques turn out to be especially useful for implementing the scalar and SIMD algorithms
in a unified framework.

4.1. Data structures and top level functions

Consider a typical template class in Mathemagix, such as modulus, vector, matrix,
polynomial or series. Besides the usual template parameters, such as a coefficient type C,
such classes generally come with a special additional parameter V, called the implemen-
tation variant. The parameter V plays a similar role as traits classes in usual C++
terminology [1, Chapter 2]. The variant V does not impact the internal representation
of instances of the class, but it does control the way in which basic functions manip-
ulate such instances.

For example, the class vector<C,V> (defined in basix/vector.hpp) corresponds to
dense vectors with entries in C, stored in a contiguous segment of memory. A vector of this
type consists of a pointer of type C* to the first element of the vector, the size n of the
vector, and the size l of the allocated memory. For the sake of simplicity we omit that our
vectors are endowed with reference counters. At the top level user interface, for instance,
the sum of two vectors is defined as follows:

template<typename C, typename V>

vector<C,V> operator + (const vector<C,V>& v, const vector<C,V>& w) {

typedef implementation<vector_linear, V> Vec;

nat n= N(v); nat l= aligned_size<C,V> (n);

C* t= mmx_new<C> (l);

20 Modular SIMD arithmetic in Mathemagix

Vec::add (t, seg (v), seg (w), n);

return vector<C,V> (t, n, l); }

In this piece of code N(v) represents the size of v, aligned_size<C,V> (n) computes
the length to be allocated in order to store vectors of size n over C in memory. According
to the values of C and V, we can force the allocated memory segment to start at an
address multiple of a given value, such as 16 bytes when using SSE instructions, or 32
bytes when AVX support is enabled. The function mmx_new<C> is a reimplementation in
Mathemagix of the usual new function, which allows faster allocation of objects of small
sizes. Finally, the data t, n, l are stored into an instance of vector<C,V>. The allocated
memory is released once the vector is not used anymore, i.e. when its reference counter
becomes zero. The core of the computations is implemented in the static member function
add of the class implementation<vector_linear,V> explained in the next paragraphs.
At the implementation level, operations are usually performed efficiently on the object
representations. The expression seg (v) returns the first address of type C* of the memory
segment occupied by v.

4.2. Algorithms and implementations

The classes containing the implementations are specializations of the following class:

template<typename F, typename V, typename W=V> struct implementation;

The first template argument F is usually an empty class which names a set of func-
tionalities. In the latter example we introduced vector_linear, which stands for the
usual entry-wise vector operations, including addition, subtraction, component-wise pro-
duct, etc. The value of the argument V for naive implementations of vector operations
is vector_naive. The role of the third argument W will be explained later. The naive
implementation of the addition of two vectors is then declared as a static member of
implementation<vector_linear, vector_naive> as follows:

template<typename V>

struct implementation<vector_linear, V, vector_naive> {

static inline void

add (C* dest, const C* s1, const C* s2, nat n) {

for (nat i= 0; i < n; i++)

dest[i]= s1[i] + s2[i]; } ../..

Four by four loop unrolling can for instance be implemented within another variant, say
vector_unrolled_4, as follows:

template<typename V>

struct implementation<vector_linear, V, vector_unrolled_4> {

static inline void

add (C* dest, const C* s1, const C* s2, nat n) {

nat i= 0;

for (; i + 4 < n; i += 4) {

dest[i]= s1[i] + s2[i]; dest[i+1]= s1[i+1] + s2[i+1];

dest[i+2]= s1[i+2] + s2[i+2]; dest[i+3]= s1[i+3] + s2[i+3]; }

for (; i < n; i++)

dest[i]= s1[i] + s2[i]; } ../..

When defining a new variant we hardly ever want to redefine the whole set of func-
tionalities of other variants. Instead we wish to introduce new algorithms for a subset of
functionalities, and to have the remaining implementations inherit from other variants. We
say that a variant V inherits from W when the following partial specialization is active:

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 21

template<typename F, typename U>

struct implementation<F,U,V>: implementation<F,U,W> {};

For instance, if the variant V inherits from vector_naive, then the add function from
implementation<vector_linear,V> is inherited from implementation<vector_linear,

vector_naive>, unless the following partial template specialization is implemented:
template<typename U> implementation<vector_linear,U,V>.

It remains to explain the role of the three parameters of implementation. In fact the
second parameter keeps track of the top level variant from which V inherits. Therefore, in
a static member of implementation<F,U,V>, when one needs to call a function related to
another set of functionalities G, then it is fetched in implementation<G,U>. In order to
illustrate the interest of this method, let us consider polynomials in the next paragraphs.

Our class polynomial<C,V> (defined in algebramix/polynomial.hpp) represents
polynomials with coefficients in C using implementation variant V. Each instance of
a polynomial is represented by a vector, that is a pointer with a reference counter to
a structure containing a pointer to the array of coefficients of type C* with its allocated
size, and an integer for the length of the considered polynomial (defined as the degree
plus one). The set of functionalities includes linear operations, mainly inherited from
those of the vectors (since the internal representations are the same), multiplication, divi-
sion, composition, Euclidean sequences, subresultants, evaluations, Chinese remaindering,
etc. All these operations are implemented for the variant polynomial_naive (in the file
algebramix/polynomial_naive.hpp) with the most general but naive algorithms (with
quadratic cost for multiplication and division).

The variant polynomial_dicho<W> inherits from the parameter variant W and contains
implementations of classical divide and conquer algorithms: Karatsuba for the product,
Sieveking’s polynomial division, half-gcd, divide and conquer evaluation and interpola-
tions [26, Chapters 8–11]. Polynomial product functions belong to the set of functionalities
polynomial_multiply, and division functions to the set polynomial_divide. The division
functions of polynomial_dicho<W> are implemented as static members of

template<typename U, typename W>

struct implementation<polynomial_divide,U,polynomial_dicho<W> >

They make use of the product functions of implementation<polynomial_multiply,U>.
Let us now consider polynomials with modular integer coefficients and let us

describe how the Kronecker substitution product is plugged in. In a nutshell, the
coefficients of the polynomials are first lifted into integers. The lifted integer poly-
nomials are next evaluated at a sufficiently large power of two, and we compute the
product of the resulting integers. The polynomial product is retrieved by splitting
the integer product into chunks and reducing them by the modulus. For details we
refer the reader for instance to [26, Chapter 8]. As to our implementation, we first
create the new variant polynomial_kronecker<W> on top of another variant W (see file
algebramix/polynomial_kronecker.hpp), which inherits from W, but which only rede-
fines the implementation of the product in

template<typename U, typename W>

struct implementation<polynomial_multiply,U,polynomial_kronecker<W> >

When using the variant K defined by
typedef polynomial_dicho<polynomial_kronecker<polynomiam_naive> > > K;

the product functions in implementation<polynomial_multiply, K> correspond to the
Kronecker substitution. The functions in implementation<polynomial_division, K> are
inherited from

implementation<polynomial_division, K,

polynomial_dicho<polynomial_naive> >

22 Modular SIMD arithmetic in Mathemagix

and thus use Sieveking’s division algorithm. The divisions rely in their turn on the multipli-
cation from implementation<polynomial_multiply, K>, which benefits from Kronecker
substitution. In this way, it is very easy for a user to redefine a new variant and override
given functions a posteriori , without modifying existing code.

Finally, for a given mathematical template type, we define a default variant as a func-
tion of the remaining template parameters. For instance, the default variant of the
parameter V in vector<C,V> is typename vector_variant<C>::type which is intended
to provide users with reasonable performance. This default value is set to vector_naive,
but can be overwritten for special coefficients. The default variant is also the default
value of the variant parameter in the declaration of vector. Users can thus simply write
vector<C>. The same mechanism applies to polynomials, series, matrices, etc.

4.3. Modular integers

In Mathemagix, moduli are stored in the dedicated class modulus<C,V> (from
numerix/modulus.hpp). This abstraction allows us to attach extra information to the
modulus, such as a pre-inverse. Modular numbers are instances of modular<M,W> (from
numerix/modular.hpp), where M is a modulus type, and W is a variant specifying the
way how the modulus is stored (e.g. in a global variable, or as an additional field for
each modular number). Scalar arithmetic over integer (resp. numeric) types is implemented
in numerix/modular_int.hpp (resp. numerix/modular_double.hpp). For convenience,
packed integer and numeric types are wrapped into C++ classes so that modular oper-
ations can easily be implemented for them. Let us mention that vectors of modular
numbers have a specific implementation variant allowing to share the same modulus when
performing entry-wise operations. In this way we avoid fetching the modulus for each
arithmetic operation.

Operations on vectors of integer and numeric types are implemented in a hierarchy of
variants. One major variant controls the way loops are unrolled. Another important variant
is dedicated to memory alignement.

5. Fast Fourier transform and applications

In order to benefit from vectorized modular arithmetic within the fast Fourier transform,
we implemented a vectorized variant of the classical in-place algorithm. In this section, we
describe this variant and its applications to polynomial and matrix multiplication.

5.1. Vectorized truncated Fourier transform

Let K be a commutative field, let n=2k with k2N, and let !2K be a primitive n-th root
of unity, which means that !n=1, and !j=/ 1 for all j 2f1, ..., n¡1g. Let A be a K-vector
space. The fast Fourier transform (with respect to !) of an n-tuple (a0, ..., an−1) 2An is
the n-tuple (â0, ..., ân−1)=:FFT!(a)2An with

âi=
X

j=0

n−1

!ij aj.

In other words, âi=A(!i), whereA2A
K[X] denotes the element A(X) :=
P

i=0
n−1

ai
Xi.

If i 2 f0, ..., n¡ 1g has binary expansion i0+ i1 2 + i2 2
2+ ���+ ik−1 2

k−1, then we write
[i]k= ik−1+ ik−2 2+ ik−3 2

2+ ���+ i0 2k−1 for the bitwise mirror of i in length k. Following
the terminology of [40], the truncated Fourrier transform (TFT) of an l-tuple (a0, ...,
al−1)2Al (with respect to !) is

TFT!(a) := (â[0]k, ..., â[l−1]k)= (A(![0]k), ..., A(![l−1]k)).

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 23

The classical FFT and TFT algorithms (see [37, 40], for instance) do not directly
exploit low level vectorization. Let n1=2k1< l be a divisor of n. The following algorithm
reduces one TFT of size l over K into one TFT over Kn1 of size � := dl/n1e and into one
TFT of size n1 over K�.

Algorithm 1

Input. n = 2k, ! a n-th primitive root of unity, l 6 n, (a0, ..., al−1) 2 Kl, and an
integer n1=2k1 6 l. Let n2=2k2=n/n1.

Output. A
�

!
[i]k

�

for all i 2 f0, ..., (� ¡ 1) n1 ¡ 1g, where � := dl / n1e, and

A(X)= a0+ a1X + ���+ al−1X l−1.

For convenience we consider that ai=0 for all i2fl, ..., ng.
1. Let bj2 := (aj2n1, ..., a(j2+1)n1−1) for all j22f0, ..., �¡ 1g.

Compute
¡

b̂[0]k2, ..., b̂[�−1]k2

�

:=TFT!n1(b0, ..., b�−1).

2. Let cj1 :=
�

b̂[0]k2,j1!
j1[0]k2, b̂[1]k2,j1!

j1[1]k2, ..., b̂[�−1]k2,j1!
j1[�−1]k2

�

for all j12f0, ...,
n1¡ 1g.

3. Compute
¡

ĉ[0]k1, ..., ĉ[n1−1]k1

�

:=TFT!n2(c0, ..., cn1−1).

4. Return
¡

ĉ[0]k1,0
, ..., ĉ[n1−1]k1,0

, ĉ[0]k1,1
, ..., ĉ[n1−1]k1,1

, ..., ĉ[0]k1,�−1
, ..., ĉ[n1−1]k1,�−1

�

.

Proposition 15. Algorithm 1 is correct and takes at most
3

2
�n1 k+O(n) operations in

K, assuming given all the powers of !.

Proof. Let Bi(X)= b0,i+ b1,iX + ���+ b�−1,iX�−1 for i2f0, ..., n1¡ 1g, so that we have

A(X) = B0(X
n1) + B1(X

n1)X + ���+ Bn1−1(X
n1)Xn1−1 and b̂[j2]k2 =

�

B0

�

!
n1[j2]k2

�

, ...,

Bn1−1

�

!
n1[j2]k2

��

for all j22f0, ..., �¡ 1g. Let j12f0, ..., n1¡ 1g and j22f0, ..., �¡ 1g.
A straightforward calculation leads to A

¡

![j2n1+j1]k
�

=A
�

!
[j1]k1n2+[j2]k2

�

=

b̂[j2]k2,0+ b̂[j2]k2,1!
[j1]k1n2+[j2]k2+ ���+ b̂[j2]k2,n1−1!

([j1]k1n2+[j2]k2)(n1−1)

= b̂[j2]k2,0+
�

b̂[j2]k2,1!
[j2]k2

�

!
[j1]k1n2+ ���+

�

b̂[j2]k2,n1−1!
[j2]k2(n1−1)

�

!
[j1]k1n2(n1−1)

= c0,j2+ c1,j2!
[j1]k1n2+ ���+ cn1−1,j2![j1]k1n2(n1−1)= ĉ[j1]k1,j2.

By [40, Theorem 1] step 1 can be done with 3

2
n1 (� k2+n2)+n1/2 operations in K. Step 2

involves �n1 operations and step 3 takes 3

2
� (n1 k1+n1)+n2/2 more operations. �

Inverting Algorithm 1 is straightforward: it suffices to invert steps from 4 to 1 and use
the inverse of the TFT. If l=n, then Algorithm 1 can be used to compute the FFT. If n1
is taken to be the size corresponding to a machine vector, then most of the TFT can be
performed using SIMD operations. For sizes of order at most a few kilobytes we actually
use this strategy. In larger sizes it is preferable to take n1 much larger, for instance of order
n

p
, so that the TFT runs on rather large vectors. With n1 of order n

p
, this algorithm

is very close to the cache-friendly version of the TFT designed in [36].
A critical point in large sizes becomes the matrix transposition, necessary to reorganize

data in steps 1 and 4 of Algorithm 1. We designed ad hoc cache-friendly SIMD versions for
it. Table 11 reports on timings obtained in this way for K=Z/pZ with p= 469762049=
7� 226+ 1 in Mathemagix, with Barrett’s approach. All the necessary primitives roots
and powers are pre-computed and cached in memory. We observe significant speed-ups for
the SSE and AVX versions.

24 Modular SIMD arithmetic in Mathemagix

n 28 29 210 211 212 213 214 215 216 217 218 219 220

Scalar 3.0 6.7 15 33 73 160 340 730 1600 3300 7100 15000 32000
SSE 1.0 2.2 4.8 11 22 48 110 220 470 1100 2200 4700 11000
AVX 0.64 1.4 2.9 6.4 14 30 64 140 290 630 1400 3000 6800

Table 11. FFT of size n over Z/469762049 Z, user time in microseconds.

Table 12 concerns FFTs for K = Z / p Z and p = 1108307720798209. We compare
NTL 6.1.0 with our FFT implementation, relying on AVX and FMA.

n 28 29 210 211 212 213 214 215 216 217 218 219 220

NTL 2.2 4.5 9.8 21 51 110 250 540 1200 2400 5300 12000 30000
Mathemagix 1.2 2.5 5.6 12 26 57 120 270 580 1200 2600 6100 15000

Table 12. FFT of size n over Z/1108307720798209 Z, user time in microseconds.

For the sake of comparison, we also report on the performance of the FFT over complex
numbers in double precision. Table 13 compares timings provided by the command test/

bench bundled with FFTW version 3.3.4 [25] (configured with the --enable-avx option),
to the Mathemagix implementation in algebramix/fft_split_radix.hpp.

n 28 29 210 211 212 213 214 215 216 217 218 219 220

FFTW3 0.42 0.96 2.4 5.6 14 35 84 190 410 880 2500 8000 19000
Mathemagix 0.48 1.0 2.3 5.7 14 33 77 200 410 900 2100 6100 15000

Table 13. FFT for complex of double of size n, user time in microseconds.

5.2. Polynomial matrix product

One major application of the TFT is the computation of polynomial products. In Table 14
we provide timings for multiplying two polynomials of degrees<d over Z/469762049 Z. For
this task, we compare NTL and FLINT 2.4.3 [34] to our implementations. The row “Kro-
necker” corresponds to the classical Kronecker substitution algorithm [26, Section 8.4] that
reduces the product to one integer product, for which we appeal to GMP version 6.0.0a [31].
The last row concerns the AVX 2 version of our modular TFT. Here an important fact
must be noticed. Previous timings of TFT were obtained as average on several runs on
the same input. An overhead thus applies when performing a polynomial product where
two direct TFT and one inverse TFT have to be performed. Taking also into account
zero padding and the entry-wise vector product in between, the total time sensibly exceeds
three times the one displayed in Table 11.

d 28 29 210 211 212 213 214 215 216 217 218 219 220

NTL 0.059 0.18 0.24 0.52 1.1 2.4 5.2 11 23 49 100 250 580
FLINT 0.017 0.043 0.11 0.29 0.71 1.8 4.6 11 22 48 110 290 610
Kronecker 0.031 0.076 0.19 0.46 1.2 2.6 5.8 12 30 60 140 310 680
Math. 0.0068 0.013 0.026 0.054 0.11 0.24 0.51 1.1 2.5 5.4 12 26 60

Table 14. Polynomial product for degrees <d over Z/469762049 Z, user time in milliseconds.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 25

If K is a field with sufficiently many primitive roots of unity of order a power of two,
then two n�n matrices A and B with coefficients in K[x] of degrees <d can be multiplied
by performing TFT transforms of length 2 d on each of the coefficients of A and B, by
multiplying 2 d matrices over K, and finally by recovering the matrix product through
coefficient-wise inverse transforms. This requires O(d n! + n2 d log d) operations in K,
where ! 6 3 is the exponent of n�n matrix multiplication over K. In general, most of the
time is spent in the matrix products over K. Nevertheless, if n remains sufficiently small
with respect to d, then most of the time is spent in the fast Fourier transforms, and our
method becomes most efficient. Table 15 compares this approach to naive multiplication,
and to FLINT.

n 1 2 4 8 16 32
Naive 0.0012 0.098 0.079 0.65 5.2 40
FLINT 0.011 0.086 0.70 5.6 45 361
Mathemagix 0.0012 0.0067 0.031 0.15 0.80 4.7

Table 15. Polynomial matrix product over Z / 469762049 Z for degrees d < 215, user time in
seconds.

5.3. Integer matrix product

Another important application of fast Fourier transforms is integer multiplication. The
method that we have implemented is based on Kronecker segmentation and the three-
prime FFT (see [55] and [26, Section 8.3]). Let p1, p2 and p3 be three prime numbers.
The two integers a and b of at most N bits to be multiplied are split into chunks of
a suitable bit-size h and converted into polynomials A and B of Z[X] of degrees <d,
with A(2h) = a, B(2h) = b and d = dN / he. The maximum bit-size of the coefficients
of the product C(X) = A(X) B(X) is at most H = 2 h + dlog(d + 1) / log 2e. The
parameter h is taken such that d is minimal under the constraint that 2H < p1 p2 p3. The
polynomial C can then be recovered from its values computed modulo p1, p2 and p3
using TFT multiplications. Table 16 shows the performance obtained by this approach for
p1=998244353, p2=985661441 and p3=943718401. We comparewith the timings ofGMP.

n 28 29 210 211 212 213 214 215 216 217 218 219 220

GMP 0.0060 0.017 0.045 0.12 0.32 0.81 1.9 4.2 9.7 21 48 110 240
Mathemagix 0.028 0.053 0.11 0.21 0.44 0.92 2.0 4.6 10 21 46 91 200

Table 16. Integer product in bit-size 32× 2n, user time in milliseconds.

Similarly to polynomial matrices, small matrices over large integers can be multiplied
efficiently using modular TFTs. In Table 17, the row “Mathemagix” shows timings for
this approach. The row “Naive” corresponds to the classical product calling GMP functions
directly. We also compare to FLINT and LinBox version 1.3.2 [18] (using NTL and
FFlas-FFpack 1.6.0 [19, 20]).

n 1 2 4 8 16 32
Naive 0.0042 0.033 0.27 2.2 17 140
LinBox 0.0042 0.033 0.27 2.2 17 140
Flint 0.0042 0.036 0.29 2.3 19 150
Mathemagix 0.0060 0.022 0.095 0.44 2.3 13

Table 17. Integer matrix product in bit-size 32× 215, user time in seconds.

26 Modular SIMD arithmetic in Mathemagix

Conclusion

Nowadays SIMD technology has widely proved to be extremely efficient for numerical com-
putations. A major conclusion of the present work is that modular integers, and therefore
exact and symbolic computations can also greatly benefit from this technology via integer
types, and even in small sizes. We believe that the dissemination of the recent AVX-512
and other forthcoming extensions with wider vectors will be very profitable.

The use of C++ as a programming language allowed us to develop generic template
libraries insideMathemagix, which are both efficient and uniform. Nevertheless, ensuring
good performance for the implementations presented here was not an easy task. Depending
on the presence or absence of specific SIMD instructions, we had to implement a large
number of variants for the same algorithms. Template programming turns out to be essen-
tial to control loop unrolling and memory alignment. Furthermore, the efficiency of several
elementary routines for small fixed sizes could only be ensured through hand optimization
of very specific pieces of code. For instance, several FFTs in small fixed sizes, say the size
of SIMD registers, cannot be easily vectorized optimally. Here hardware transposition
routines would be helpful, for example for 8� 8 matrices of 32-bit integers using AVX 2
registers. On the longer run, we expect that part of the work that we did by hand could
be done by an optimizing compiler. One major challenge for compilers and the design of
programming languages is the automatic generation of FFTW3-style codelets.

As a final comment we would like to emphasize that SIMD technology can be seen
as a low level way to parallelize computations. We believe that bringing easy access to
this technology in Mathemagix will be fruitful to non specialist computer algebra devel-
opers. Currently, such developers are faced to monolithic software such as MapleTM [28]
or Magma [14], which very well cover low and high user-level mathematical functions,
but lack of general lower level programming facilities. Some recent C++ and Python
projects [56] aim at providing frameworks for large scale scientific programming, such
as [13, 59], but all gaps have not been filled yet. One example of an interesting practical
challenge is the multiplication of dense matrices with large integer coefficients. Indeed, this
was one of the programming contest of the PASCO 2010 conference, and our benchmarks
in Section 5.3 show that there was indeed room for progress.

Bibliography

[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond . Addison Wesley, 2004.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer algorithms.
Addison-Wesley series in computer science and information processing. Addison-Wesley Pub. Co.,
1974.

[3] R. Alverson. Integer division using reciprocals. In Proceedings of the Tenth Symposium on Computer
Arithmetic , pages 186–190. IEEE Computer Society Press, 1991.

[4] H. G. Baker. Computing A*B (mod N) efficiently in ANSI C. SIGPLAN Not., 27(1):95–98, 1992.
[5] B. Bank, M. Giusti, J. Heintz, G. Lecerf, G. Matera, and P. Solernó. Degeneracy loci and polynomial

equation solving. Accepted for publication to Foundations of Computational Mathematics. Preprint
available from http://arxiv.org/abs/1306.3390, 2013.

[6] N. Bardis, A. Drigas, A. Markovskyy, and J. Vrettaros. Accelerated modular multiplication algo-
rithm of large word length numbers with a fixed module. In M. D. Lytras, P. Ordonez de Pablos,
A. Ziderman, A. Roulstone, H. Maurer, and J. B. Imber, editors, Organizational, Business, and

Technological Aspects of the Knowledge Society , volume 112 of Communications in Computer and
Information Science , pages 497–505. Springer Berlin Heidelberg, 2010.

[7] P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a
standard digital signal processor. In A. Odlyzko, editor, Advances in Cryptology – CRYPTO’ 86 ,
volume 263 of Lect. Notes Comput. Sci., pages 311–323. Springer Berlin Heidelberg, 1987.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 27

[8] D. J. Bernstein, Hsueh-Chung Chen, Ming-Shing Chen, Chen-Mou Cheng, Chun-Hung Hsiao, Tanja
Lange, Zong-Cing Lin, and Bo-Yin Yang. The billion-mulmod-per-second PC. In SHARCS’09 Spe-

cial-purpose Hardware for Attacking Cryptographic Systems: 131 , 2009. http://cr.yp.to/djb.html.
[9] D. J. Bernstein, Tien-Ren Chen, Chen-Mou Cheng, Tanja Lange, and Bo-Yin Yang. ECM on graphics

cards. In A. Joux, editor, Advances in Cryptology - EUROCRYPT 2009 , volume 5479 of Lect. Notes
Comput. Sci., pages 483–501. Springer Berlin Heidelberg, 2009.

[10] J. Berthomieu, G. Lecerf, and G. Quintin. Polynomial root finding over local rings and application
to error correcting codes. Appl. Alg. Eng. Comm. Comp., 24(6):413–443, 2013.

[11] J. Berthomieu, J. van der Hoeven, and G. Lecerf. Relaxed algorithms for p-adic numbers. J. Théor.
Nombres Bordeaux , 23(3):541–577, 2011.

[12] D. Bini and V. Y. Pan. Polynomial and Matrix Computations: Fundamental Algorithms. Progress
in Theoretical Computer Science. Birkhauser Verlag GmbH, 2012.

[13] Boost team. Boost (C++ libraries). Software available at http://www.boost.org, from 1999.
[14] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J.

Symbolic Comput., 24(3-4):235–265, 1997.
[15] A. Bosselaers, R. Govaerts, and J. Vandewalle. Comparison of three modular reduction functions. In

D. R. Stinson, editor, Advances in Cryptology — CRYPTO’ 93 , volume 773 of Lect. Notes Comput.

Sci., pages 175–186. Springer Berlin Heidelberg, 1994.
[16] British Standards Institution. The C standard: incorporating Technical Corrigendum 1: BS ISO/IEC

9899/1999 . John Wiley, 2003.
[17] CLANG, a C language family frontend for LLVM. Software available at http://clang.llvm.org,

from 2007.
[18] J.-G. Dumas, T. Gautier, C. Pernet, and B. D. Saunders. LinBox founding scope allocation, par-

allel building blocks, and separate compilation. In K. Fukuda, J. van der Hoeven, M. Joswig, and
N. Takayama, editors, Mathematical Software – ICMS 2010 , volume 6327 of Lect. Notes Comput.

Sci., pages 77–83. Springer Berlin Heidelberg, 2010.
[19] J.-G. Dumas, P. Giorgi, and C. Pernet. FFPACK: Finite field linear algebra package. In J. Schicho,

editor, Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation ,
ISSAC ’04, pages 119–126. ACM Press, 2004.

[20] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime fields: The FFLAS
and FFPACK packages. ACM Trans. Math. Softw., 35(3):19:1–19:42, 2008.

[21] A. Fog. Instruction tables. Lists of instruction latencies, throughputs and micro-operation breakdowns

for Intel, AMD and VIA CPUs . http://www.agner.org/optimize, Copenhagen University College
of Engineering, 2012.

[22] A. Fog. Optimizing software in C++. An optimization guide for Windows, Linux and Mac platforms .
http://www.agner.org/optimize, Copenhagen University College of Engineering, 2012.

[23] A. Fog. Optimizing subroutines in assembly language. An optimization guide for x86 platforms .
http://www.agner.org/optimize, Copenhagen University College of Engineering, 2012.

[24] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision
binary floating-point library with correct rounding. ACM Trans. Math. Software, 33(2), 2007. Soft-
ware available at http://www.mpfr.org.

[25] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proc. IEEE , 93(2):216–
231, 2005.

[26] J. von zur Gathen and J. Gerhard. Modern computer algebra . Cambridge Univ. Press, 2nd edition,
2003.

[27] GCC, the GNU Compiler Collection. Software available at http://gcc.gnu.org, from 1987.
[28] K. Geddes, G. Gonnet, and Maplesoft. Maple (TM). http://www.maplesoft.com/products/maple,

from 1980.
[29] P. Giorgi, Th. Izard, and A. Tisserand. Comparison of modular arithmetic algorithms on GPUs. In

B. Chapman, F. Desprez, G. R. Joubert, A. Lichnewsky, F. Peters, and Th. Priol, editors, Parallel
Computing: From Multicores and GPU’s to Petascale , volume 19 of Advances in Parallel Computing ,
pages 315–322. IOS Press, 2010.

[30] P. Giorgi and R. Lebreton. Online order basis algorithm and its impact on block Wiedemann algo-
rithm. In Proceedings of the 2014 International Symposium on Symbolic and Algebraic Computation ,
ISSAC ’14. ACM Press, 2014. To appear.

[31] T. Granlund et al. GMP, the GNU multiple precision arithmetic library, from 1991. Software avail-
able at http://gmplib.org.

[32] T. Granlund and P. L. Montgomery. Division by invariant integers using multiplication. In Proceed-

ings of the ACM SIGPLAN 1994 conference on Programming language design and implementation ,
PLDI ’94, pages 61–72, New York, NY, USA, 1994. ACM Press.

28 Modular SIMD arithmetic in Mathemagix

[33] Sardar Anisul Haque and Marc Moreno Maza. Plain polynomial arithmetic on GPU. Journal of

Physics: Conference Series , 385(1):012014, 2012.
[34] W. Hart and the FLINT Team. FLINT: Fast Library for Number Theory, from 2008. Software

available at http://www.flintlib.org.
[35] W. Hart and the MPIR Team. MPIR, Multiple Precision Integers and Rationals, from 2010. Software

available at http://www.mpir.org.
[36] D. Harvey. A cache-friendly truncated FFT. Theoret. Comput. Sci., 410(27–29):2649–2658, 2009.
[37] D. Harvey and D. S. Roche. An in-place truncated Fourier transform and applications to polynomial

multiplication. In S. M. Watt, editor, Proceedings of the 2010 International Symposium on Symbolic

and Algebraic Computation , ISSAC ’10, pages 325–329, New York, NY, USA, 2010. ACM Press.
[38] D. Harvey and A. V. Sutherland. Computing Hasse–Witt matrices of hyperelliptic curves in average

polynomial time. Algorithmic Number Theory 11th International Symposium (ANTS XI), 2014. To
appear.

[39] W. Hasenplaugh, G. Gaubatz, and V. Gopal. Fast modular reduction. In P. Kornerup and J.-M.
Muller, editors, 18th IEEE Symposium on Computer Arithmetic, ARITH ’07 , pages 225–229. IEEE
Computer Society, 2007.

[40] J. van der Hoeven. The truncated Fourier transform and applications. In J. Schicho, editor, Pro-
ceedings of the 2004 International Symposium on Symbolic and Algebraic Computation , ISSAC ’04,
pages 290–296. ACM Press, 2004.

[41] J. van der Hoeven and G. Lecerf. Interfacing Mathemagix with C++. In M. Monagan, G. Coop-
erman, and M. Giesbrecht, editors, Proceedings of the 2013 International Symposium on Symbolic

and Algebraic Computation , ISSAC ’13, pages 363–370. ACM Press, 2013.
[42] J. van der Hoeven and G. Lecerf. Mathemagix User Guide . HAL, 2013.

http://hal.archives-ouvertes.fr/hal-00785549.
[43] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial and series multiplica-

tion. J. Symbolic Comput., 50:227–254, 2013.
[44] J. van der Hoeven, G. Lecerf, B. Mourain, Ph. Trébuchet, J. Berthomieu, D. Diatta, and

A. Mantzaflaris. Mathemagix, the quest of modularity and efficiency for symbolic and certified
numeric computation. ACM SIGSAM Communications in Computer Algebra, 177(3), 2011. In Sec-
tion "ISSAC 2011 Software Demonstrations", edited by M. Stillman, p. 166–188.

[45] J. van der Hoeven, G. Lecerf, B. Mourrain, et al. Mathemagix, 2002–2014. Software available at
http://www.mathemagix.org.

[46] Intel Corporation. Intel (R) intrinsics guide. Version 3.0.1, released 7/23/2013.
http://software.intel.com/en-us/articles/intel-intrinsics-guide.

[47] Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA 95052-8119, USA. Intel (R) Archi-

tecture Instruction Set Extensions Programming Reference , 2013. Ref. 319433-015.
http://software.intel.com/en-us/intel-isa-extensions.

[48] Ç. Kaya Koç. Montgomery reduction with even modulus. IEE Proceedings - Computers and Digital

Techniques , 141(5):314–316, 1994.
[49] Ç. Kaya Koç, T. Acar, and Jr. Kaliski, B. S. Analyzing and comparing Montgomery multiplication

algorithms. Micro, IEEE , 16(3):26–33, 1996.
[50] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms . Pearson

Education, 3rd edition, 1997.
[51] G. Lecerf. Mathemagix: towards large scale programming for symbolic and certified numeric com-

putations. In K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, editors, Mathematical

Software - ICMS 2010, Third International Congress on Mathematical Software, Kobe, Japan, Sep-

tember 13-17, 2010 , volume 6327 of Lect. Notes Comput. Sci., pages 329–332. Springer, 2010.
[52] P. L. Montgomery. Modular multiplication without trial division. Math. Comp., 44(170):519–521,

1985.
[53] M. Moreno Maza and Y. Xie. FFT-Based Dense Polynomial Arithmetic on Multi-cores. In D. J. K.

Mewhort, N. M. Cann, G. W. Slater, and T. J. Naughton, editors, High Performance Computing

Systems and Applications , volume 5976 of Lect. Notes Comput. Sci., pages 378–399. Springer Berlin
Heidelberg, 2010.

[54] N. Nedjah and L. de Macedo Mourelle. A review of modular multiplication methods and respective
hardware implementations. Informatica, 30(1):111–129, 2006.

[55] J. M. Pollard. The fast Fourier transform in a finite field. Math. Comp., 25(114):365–374, 1971.
[56] G. van Rossum and J. de Boer. Interactively testing remote servers using the Python programming

language. CWI Quarterly , 4(4):283–303, 1991. Software available at http://www.python.org.
[57] M. J. Schulte, J. Omar, and E. E. Jr. Swartzlander. Optimal initial approximations for the Newton-

Raphson division algorithm. Computing , 53(3-4):233–242, 1994.

Joris van der Hoeven, Grégoire Lecerf, Guillaume Quintin 29

[58] V. Shoup. NTL: A Library for doing Number Theory , 2014. Software, version 6.1.0.
http://www.shoup.net/ntl.

[59] W. A. Stein et al. Sage Mathematics Software. The Sage Development Team, from 2004. Software
available at http://www.sagemath.org.

[60] E. Thomé. Théorie algorithmique des nombres et applications à la cryptanalyse de primitives cryp-
tographiques. http://www.loria.fr/~thome/files/hdr.pdf, 2012. Mémoire d’habilitation à diriger
des recherches de l’Université de Lorraine, France.

Registered trademarks. Intel, Xeon, Intel Core, and MMX are trademarks of Intel Corpo-
ration in the U.S. and/or other countries. AMD is a trademark of Advanced Micro Devices, Inc.

Debian is a registered trademark of Software in the Public Interest, Inc. in the U.S., the European
Union, China, Japan, and Brazil. Linux is a registered trademark of Linus Torvalds in the U.S. and
other countries. Cray is a trademark of Cray Computer Corporation in the U.S. and other countries.
Maple is a trademark of Waterloo Maple Inc. Other trademarks used on this article are the property
of their respective owners.

30 Modular SIMD arithmetic in Mathemagix

	1. Introduction
	Motivations
	Related work
	Our contributions
	Conventions
	Brief survey of SIMD technology

	2. Modular operations via integer types
	2.1. Modular sum
	2.1.1. Unvectorized implementations
	2.1.2. Implementations with SSE 4.2 and AVX 2
	2.1.3. Timings

	2.2. Barrett's product
	2.2.1. Reduction
	2.2.2. Several products by the same multiplicand
	2.2.3. Implementations with SSE 4.2 and AVX 2
	2.2.4. Timings

	2.3. Montgomery's product
	2.3.1. Reduction
	2.3.2. Timings

	3. Modular operations via numeric types
	3.1. Notations
	3.2. Reduction in half size
	3.3. Larger modular products via FMA
	3.4. Vectorized implementations
	3.5. Timings

	4. Implementation design in C++
	4.1. Data structures and top level functions
	4.2. Algorithms and implementations
	4.3. Modular integers

	5. Fast Fourier transform and applications
	5.1. Vectorized truncated Fourier transform
	5.2. Polynomial matrix product
	5.3. Integer matrix product

	Conclusion
	Bibliography

