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This paper investigates hybrid kinetic-MHD models, where a hot plasma (governed by a kinetic
theory) interacts with a fluid bulk (governed by MHD). Different nonlinear coupling schemes are
reviewed, including the pressure-coupling scheme (PCS) used in modern hybrid simulations. This
latter scheme suffers from being non-Hamiltonian and to not exactly conserve total energy. Upon
adopting the Vlasov description for the hot component, the non-Hamiltonian PCS and a Hamiltonian
variant are compared. Special emphasis is given to the linear stability of Alfvén waves, for which it
is shown that a spurious instability appears at high frequency in the non-Hamiltonian version. This
instability is removed in the Hamiltonian version.

I. INTRODUCTION

Several configurations in plasma physics involve the
interaction of a hot plasma species with a lower tem-
perature bulk component. Typical examples are those
of nuclear fusion devices, in which the energetic alpha
particles produced by the fusion reactions interact with
the ambient plasma, and those of space plasmas, involv-
ing the interaction between the energetic solar wind and
Earth’s magnetosphere. Such plasmas have been studied
for decades and yet continue to be the subject of current
research.

For such configurations, one is first interested in ascer-
taining the stabilizing or destabilizing effects that the en-
ergetic component can have on the overall system. In or-
der to address this question, various mathematical mod-
els have been formulated to include the combined effects
of both the energetic particles and the bulk plasma. Al-
though the bulk can be well described by ordinary magne-
tohydrodynamics (MHD), adequately modeling the hot
species requires the use of kinetic theory. This multiscale,
multi-physics approach leads to the formulation of hybrid
kinetic-MHD models that couple the MHD equations to
a kinetic equation for the hot component. Then, the
question of which kinetic equation to use for the hot par-
ticles arises. Typically drift-kinetic, gyrokinetic, or the
full Vlasov system are used. In plasma fusion, the first
two options are used most often, while the full Vlasov
description is needed for e.g. reverse field pinch plasmas
[11]. The full Vlasov description solves for effects at all
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scales and thus is less convenient when the hot particle
gyromotion can be averaged out, in favor of drift-kinetic
and gyro-kinetic models. Nevertheless, this paper aims
to account for hot particle effects at all possible scales,
so that the full Vlasov description is adopted.
Another more important question emerges in the for-

mulation of hybrid kinetic-MHD models, viz., the partic-
ular type of coupling scheme that should be used in the
model. Two coupling schemes are present in the litera-
ture: the current-coupling scheme (CCS), found for ex-
ample in Refs. [1, 3, 30] and the pressure coupling scheme
(PCS), examples of which are used in Refs. [4, 7, 12].
While the CCS involves the hot momentum and density

K =

∫
p f(x,p) d3p , (1)

n =

∫
f(x,p) d3p , (2)

the PCS involves the following tensor:

P =
1

mh

∫
pp f(x,p) d3p , (3)

which is the pressure tensor of the hot component, cal-
culated with respect to a zero mean velocity. All these
quantities are defined as above in terms of moments of the
kinetic probability density f(x,p) on phase space. Here,
p denotes the kinetic momentum p = mhv, whilemh and
qh denote the hot particle mass and charge, respectively.
Normally, the PCS is derived from the CCS [24, 25], un-
der the assumption that the hot component is rarefied,
so that its density levels are much lower than those of the
MHD component. Also, the PCS often appears in two
different versions depending on whether the definition of
the pressure tensor involves the absolute [4, 7] or relative
[12, 29] velocity.
All of the nonlinear PCS models commonly found in

the plasma physics literature suffer from the defect that
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they do not exactly conserve energy. Indeed, exact en-
ergy conservation is lost when the assumption of a rar-
efied hot component is inserted as an approximation in
the equations of motion of the model. Consequently,
these models are not Hamiltonian field theories, ones
that are expected to have noncanonical Poisson brack-
ets akin to those introduced into plasma physics in [21]
for MHD and [19, 20] for the Vlasov equation. Since such
a Hamiltonian structure occurs for all good plasma mod-
els, in their non-dissipative limit,(see [16, 17, 19]), this
would suggest there should be a Hamiltonian model for
the PCS, and indeed this was shown to be the case in the
recent literature [10, 23, 31]. This new model not only
conserves energy, but also conserves the cross-helicity
invariants (which are also lost in the non-Hamiltonian
case).
A main goal of the present paper is to compare the

Hamiltonian and non-Hamiltonian PCS models, with em-
phasis on linear stability analyses. It is important to
make clear that we are not arguing that dissipation is
unimportant and that the Hamiltonian description is the
most apt description of hybrid plasmas; clearly this is
not always the case – collisional effects, albeit small, can
give rise to important consequences, as is evident, for
instance, from the massive body of reconnection studies
in the literature. Rather, the goal here is to investigate
some consequences of nonphysical dissipation (or drive)
that exists in hybrid models when all the clearly iden-
tifiable physical dissipative terms are set to zero. This
fake dissipation may also be small, as is often the case
for physical dissipation, but could lead to substantial yet
erroneous consequences. Indeed, we discover a spurious
instability in the non-Hamiltonian model.
The remainder of the paper is organized as follows.

In Sec. II we review the two hybrid coupling schemes:
the CCS and PCS models are derived from first prin-
ciples and general comments about their structure are
made. This is followed in Sec. III by a general treat-
ment of the linear problem for the incompressible PCS
models expanded about homogeneous equilibria in a uni-
form external magnetic field, by integration over orbits.
This is followed, in Sec. IV, by a study of the dispersion
relation for transverse disturbances parallel to the mag-
netic field. It is in this special case that we compare the
Hamiltonian and non-Hamiltonian PCS models and dis-
cover the spurious instability. For completeness we also
compare with the CCS models. The dispersion relation
is analyzed numerically and analytically and shown to
have a crossover to instability at high frequencies. Next,
in Sec. V, comments are made about the behavior of per-
pendicular disturbances. Finally, in Sec. VI we summa-
rize and conclude. The paper contains two appendices
that are included for completeness. In Appendix A the
noncanonical Poisson brackets for the Hamiltonian hy-
brid models are given, while Appendix B records some
details of our calculations leading to the dispersion rela-
tion used in Sec. IV.

II. HYBRID COUPLING SCHEMES

Turning now to the two coupling schemes, we first con-
sider the CCS, then the PCS.

A. Current-coupling schemes

In order to derive the hybrid CCS model [25], one
starts with the equations of motion for a multifluid
plasma in the presence of an energetic component. Upon
formally neglecting the vacuum permittivity (see e.g.
[5]), one writes

ρs

(
∂us

∂t
+ us · ∇us

)
= −∇ps

+ ρsas (E+ us ×B) , (4)

∂ρs
∂t

+∇ · (ρsus) = 0 , (5)

∂f

∂t
+

p

mh
· ∂f
∂x

+ qh

(
E+

p

mh
×B

)
· ∂f
∂p

= 0 ,

∇×B = µ0J

= µ0

∑

s

asρsus + µ0 ahK , (6)

∂B

∂t
= −∇×E , (7)

0 =
∑

s

asρs + qhn , ∇ ·B = 0 , (8)

where as = qs/ms is the charge-to-mass ratio for the
fluid species s, while ρs and us are its mass density and
velocity, respectively. The symbol ps, on the other hand,
indicates the partial pressure of the fluid species s, which
is assumed to be a function of ρs, through the relation
ps = ρ2s∂Us/∂ρs, with Us(ρs) indicating the correspond-
ing specific internal energy.
For simplicity, we consider from now on, the case in

which the bulk plasma is composed by two species, one
consisting of ions and the second one of electrons. It
is customary to reduce the two-fluid system by neglect-
ing the inertia of the electron species (taking the limit
m2 → 0), thereby obtaining a one-fluid momentum equa-
tion. With this assumption, summation of Eqs. (4) for
s = 1, 2 produces

ρ1

(
∂u1

∂t
+ u1 · ∇u1

)
= (a1ρ1 + a2ρ2)E

+ (a1ρ1u1 + a2ρ2u2)×B−∇p , (9)

where p = p1 + p2. Then, upon using Ampère’s law (6)
and the quasineutrality relation of (8), Eq. (9) becomes

ρ1

(
∂u1

∂t
+ u1 · ∇u1

)
= −qhnE

+ (J− ahK)×B−∇p , (10)

while Eq. (4) for the second species yields

E = −u2 ×B+
1

a2ρ2
∇p2

=
1

a2ρ2
(a1ρ1u1 + ahK− J)×B+

1

a2ρ2
∇p2 .

Next, one imitates the derivation of ideal MHD [5] and
assumes that J×B and∇p2 are both negligible compared
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to the Lorentz force a1ρ1u1 × B. This step leads to an
Ohm’s law of the form

E = −
(
a1ρ1u1 + qhnV

a1ρ1 + qhn

)
×B , (11)

where V = m−1
h K/n is the hot mean velocity. Note, this

means magnetic flux is frozen-in at a velocity given by

W =
a1ρ1u1 + qhnV

a1ρ1 + qhn
. (12)

However, if V and u1 are comparable and a1ρ1 ≫ qhnh,
then one can replace (11) by the Ohm’s law of ideal MHD,

E = −u1 ×B , (13)

and the magnetic flux is then frozen into the MHD bulk
flow. Finally, inserting (13) into Eqs. (10), (5), and (7)
yields the Hamiltonian CCS:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p (14)

+ (qhnu− ahK+ J)×B ,

∂ρ

∂t
+∇ · (ρu) = 0 , (15)

∂f

∂t
+

p

mh
· ∂f
∂x

+ qh

(
p

mh
− u

)
×B · ∂f

∂p
= 0 , (16)

∂B

∂t
= ∇× (u×B) , (17)

where the subscript 1 has been dropped. The sys-
tem (14)-(17) is identical to the current-coupling hybrid
scheme presented in [1, 3, 25], except for the fact that the
hot particle dynamics is governed by the Vlasov equation
rather than gyrokinetic or drift-kinetic counterparts.

Note, we always assume that the mean velocity V =
m−1

h K/n of the energetic component is either very low
or at most comparable with the MHD fluid velocity u.
This is consistent with the hypothesis of energetic parti-
cles, since the latter hypothesis involves the temperature
rather than the mean velocity. Denoting the tempera-
tures of the hot and fluid components by Th and Tf , re-
spectively, we have Th ≫ Tf (see [4]). With the definition
of the temperature Th = (mh/3nkB)

∫
|v − V |2f d3v

(where kB denotes Boltzmann’s constant), the assump-
tion on the energetic component amounts to an assump-
tion on the trace of the second-order moment of the
Vlasov density with no assumption on the mean velocity,
which is actually low for hot particles close to isotropic
equilibria [29].

Notice that equation (14) involves the Lorentz force
term qhnu×B, which should normally be negligible for
consistency with the approximation mhn ≪ ρ, which
yields Eq. (13) from Eq. (11). A variant of the above
CCS also exists [30], which, by virtue of the approxima-
tion mhn ≪ ρ neglects the term qhnu × B, but on the
other hand retains the term K×B even though the two
terms are in principle of the same order (as long as V is
comparable with u) .

One can check directly that the hybrid CCS model of

(14)-(17) exactly conserves the following total energy:

E =
1

2

∫
ρ|u|2d3x+

1

2mh

∫
f |p|2 d3xd3p

+

∫
ρU(ρ) d3x+

1

2µ0

∫
|B|2 d3x , (18)

(see [30]) where U(ρ) is the internal energy per unit mass,
from which the pressure is determined by p = ρ2∂U/∂ρ.
Moreover, this system is Hamiltonian, with a noncanon-
ical Poisson bracket [31] (recorded for completeness in
Appendix A) and it conserves the usual cross-helicity in-
variant

∫
u ·B d3x [10].

B. Pressure-coupling schemes

Let us consider now the two models that use the PCS
– first the non-Hamiltonian version then the Hamiltonian
one.

1. Non-Hamiltonian PCS

Once the CCS has been obtained, the pressure-
coupling scheme can be derived by computing the evolu-
tion of the total momentum

M := ρu+K =: ρU , (19)

which gives (cf. Eq. (1) of [25])

∂K

∂t
+ ρ

(
∂u

∂t
+ u · ∇u

)
= −∇ · P−∇p+ J×B . (20)

Since ∂tK = ρ ∂t(K/ρ) + (divu)K/ρ, inserting the as-
sumption K/ρ ≪ u yields

ρ

(
∂U

∂t
+ u · ∇u

)
= −∇ · P−∇p+ J×B . (21)

Then, upon writing U ∼ u, we obtain the system with
the non-Hamiltonian PCS:

ρ

(
∂U

∂t
+U · ∇U

)
= −∇p−∇ · P+ J×B (22)

∂ρ

∂t
+∇ · (ρU) = 0 (23)

∂f

∂t
+

p

mh
· ∂f
∂x

+ qh

(
p

mh
−U

)
×B · ∂f

∂p
= 0 (24)

∂B

∂t
= ∇× (U ×B) , (25)

Notice that Eq. (22) is identical to the bulk momen-
tum equation of the hybrid PCS of Fu and Park (see
equations (1) in [7, 8]), which also includes (23) and
(25) (while replacing Vlasov dynamics by its gyroki-
netic approximation). Analogous PCS models with the
same fluid equation (22) have been formulated by Cheng
[4] (see equation (1) therein) and Park et al. [25] (see
equation (3) therein). In some situations, the tensor
(3) in (22) is replaced by the relative pressure tensor
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P̃ = m−1
h

∫
(p−mhV ) (p−mhV ) f d3p (e.g., the PCS

model proposed by Kim, Sovinec and Parker [11, 12, 29]).
All the above mentioned PCS models suffer from not

conserving the total energy exactly. Indeed, if we assume
that the total energy is still given by (18), Eqs. (22)-

(25) give Ė =
∫
U · ∂tK d3x, so that the total energy

would only be nearly conserved if ∂tK is small. Under
this assumption, the CCS and the PCS are completely
equivalent, since (16) yields

∂K

∂t
= −∇ · P+ ahK×B− qhnu×B . (26)

However, the assumption that ∂tK is negligible is not

compatible with (16), since the time variation of K may
indeed play a role in the general case.

2. Hamiltonian PCS

The issue of exact energy conservation was raised in
[31], where an alternative Hamiltonian version of the PCS
was presented. Besides conserving the energy (18) ex-
actly, this model possesses a Poisson bracket structure,
which was derived by using well established Hamiltonian
techniques in geometric plasma dynamics [14–21, 27, 28].
In order to derive the Hamiltonian PCS model of [31],

one expresses the Hamiltonian structure of the CCS (14)-
(17) in terms of the total momentum M in (19). Then,
instead of replacing U ∼ u (arising from the original
assumption mhn ≪ ρ) in the equations of motion, one
replaces U ∼ u directly in (18) and derives the equations
of motion from the Poisson bracket structure written in
terms of M (see Appendix A). This procedure ensures
that the chosen energy functional is always preserved,
as long as no approximations are made on the Poisson
bracket. At this point, one obtains the following set of
equations for the Hamiltonian PCS:

ρ

(
∂U

∂t
+U · ∇U

)
= −∇p−∇ · P+ J×B (27)

∂f

∂t
+

(
p

mh
+U

)
· ∂f
∂x

(28)

+
[
p×

(
ahB−∇×U

)
− p · ∇U

]
· ∂f
∂p

= 0 ,

∂ρ

∂t
+∇ · (ρU) = 0 ,

∂B

∂t
= ∇× (U ×B) . (29)

We see that the fluid equation (27) is identical to the cor-
responding equation (22) of the non-Hamiltonian model.
However, in the Hamiltonian model, hot particles move
with the relative velocity U + p/mh so that the term
∇U · p = p · ∇U + p × (∇ × U) appears as an in-
ertial force. Consequently, both Hamiltonian and non-
Hamiltonian PCS’ possess the same static equilibria, al-
though the dynamics in the vicinity of these equilibria
may be very different, depending on the particular situ-
ation under consideration. Also, we notice that, unlike
the CCS of (14)-(17) and the non-Hamiltonian PCS of
(22)-(25), the Hamiltonian equations of (27)-(29) involve
a nontrivial kinetic-fluid coupling, even in the absence of
magnetic fields.

III. LINEARIZED INCOMPRESSIBLE PCS

In this section, we consider the linearized equations of
motion for the incompressible limit (e.g. ∇ · U = 0) of
both Hamiltonian and non-Hamiltonian PCS’. For the
sake of simplicity, we shall set all physical constants to
unity (including mh, so that p = v), although we shall
restore them at a later time.

A. Equations of motion

Upon following the standard procedure, we linearize
each variable as A = A0 + A1, so that the subscripts
“0” and “1” denote an equilibrium and its perturbation,
respectively. As a result, we obtain

∂U1

∂t
= −∇p1 −∇ ·

∫
vvf1 d

3v + (∇×B1)×B0 ,

(30)

∂f1
∂t

+ v · ∂f1
∂x

+ v ×B0 ·
∂f1
∂v

= (31)

f ′
0 (αvv : ∇U1 + βv ·U1 ×B0) ,

∂B1

∂t
= ∇× (U1 ×B0) , ∇ ·U1 = 0 , (32)

where the parameters α and β = 1 − α are inserted
so that α = 1 gives the linearized Hamiltonian model,
while α = 0 gives the linearized non-Hamiltonian model.
In this way, it is clear that the α-terms identify the
Hamiltonian model, while the β-terms identify its non-
Hamiltonian counterpart. In Eqs. (30)-(32) we assumed
a static equilibrium so that U0 ≡ 0 and p0 ≡ 0. Also,
we consider a uniform magnetic field B0 (aligned with
the z-axis) and an isotropic equilibrium for the energetic
component, so that f0 = f0(v

2/2) with v2 = |v|2. Notice
that the special case B0 = 0 yields free transport for the
hot particles, in the case of the non-Hamiltonian model
(α = 0). Conversely, the Hamiltonian model (α = 1)
retains the fluid velocity terms in the kinetic equation,
even in the absence of the magnetic field (B0 = 0).

Notice that, although here we have chosen a Vlasov
equilibrium of the form f0 = f0(v

2/2), other more re-
alistic choices are also available. For example, in actual
hybrid simulations of the non-Hamiltonian PCS in fusion
devices, toroidal symmetry is involved and the use of spe-
cial equilibrium profiles becomes necessary [29]. Another
example arises in reversed field pinch plasmas, in which
finite Larmor radius effects allow for equilibria of the type
f0 = f0(x, v

2)− ω−1
c ∇f0 · v ×B (where ωc = qhB0/mh)

(see [11]). On the other hand, the aim here is not to
enter into detailed features of particular fusion devices,
but to provide insight into model differences. Therefore,
we focus on distributions of the type f0 = f0(v

2/2).

Assuming perturbations varying as A1 = Ã1e
i(k·x−ωt)

gives

ωŨ1 = k p̃1 +

∫
(k · v)vf̃1 d3v +B0 × (k× B̃1) , (33)

− ωB̃1 = (k ·B0)Ũ1 , k · Ũ1 = 0 . (34)
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Dotting Eq. (33) by k and using Eqs. (34) yields

p̃1 = − 1

|k|2
∫
(k · v)2 f̃1 dv +

1

ω
(k ·B0)(Ũ1 ·B0) ,

and the velocity equation becomes

ωŨ1 = −
∫ [

(k · v)2
|k|2 k− (k · v)v

]
f̃1 dv

+
1

ω
(k ·B0)

2
Ũ1 (35)

or, upon rearranging the various terms,

Ũ1 =
ω

(ω2 − k ·B0)2

[
1− kk

|k|2
]
(k · P̃1) , (36)

where P̃1 =
∫
vv f̃1 d

3v and 1 − kk/|k|2 projects trans-
verse to k.
It remains to express f̃1 in terms of Ũ1 in order to

obtain the dispersion relation. This step is performed
in Sec. III C, but first the next section contains some
relevant properties of the linearized equation of Vlasov
kinetic moments.

B. Remarks on linearized moment dynamics

Before analyzing the linear dynamics, it is of interest
to explore some roles played by the α and β terms. To
this end it is useful to introduce equilibrium moments

(
A(0)

n

)
i1i2...in

=

∫
vi1 . . . vin f0 d

3v .

Since f0 = f0(v
2/2), we notice that A

(0)
2n+1 = 0. Then,

Eq. (31) leads to the following conclusions about the

equations of motion for the kinetic moments A
(1)
k =∫

vkf1 d
3v:

• the α-term (of the Hamiltonian model) contributes
only to moments of even order 2n+2 (e.g. the pres-
sure tensor P1), i.e., the α-term does not contribute
to the dynamics of odd-order moments;

• the β-term (of the non-Hamiltonian model) con-
tributes only to moments of odd order 2n+ 1 (e.g.
the averaged momentum K1), i.e., the β-term does
not contribute to the dynamics of even-order mo-
ments;

• the first three moments obey the equations

∂tn1 +∇ ·K1 = 0

∂tK1 +∇ · P1 −K1 ×B0 = −βn0 U1 ×B0

∂tP1 +∇ ·A(1)
3 +

[
B̂0,P1

]
= −2α

(
(P0 · ∇)U1

+ ((P0 · ∇)U 1)
T
)
,

where [·, ·] denotes matrix commutator and we de-
fined the hat operator by ŵa := w × a (for any
two vectors w and a, so that ŵih = −ǫihkwk is an
antisymmetric matrix).

Thus, there is no contribution of the α-term to the lin-
earized fluid moments (i.e. zeroth and first order mo-
ments) of the kinetic component: indeed, the α-term
disappears in the linearized dynamics of the fluid closure
for the hot particles. The α-term contributes only to
the dynamics of perturbed moments at even order (e.g.
the pressure tensor). On the other hand, the β-term
contributes only to the dynamics of perturbed moments
with odd order, e.g. it has a non-zero contribution to
the first-order moment (which plays a crucial role in the
current-coupling scheme).

C. Solution of the linearized Vlasov equation

Now we solve the linearized kinetic equation (31) in
terms of the fluid velocity U1. This is done by invok-
ing the method of characteristics (integrating over orbits)
as is standard in plasma physics texts (e.g. [13]) for the
Maxwell-Vlasov system. Following this standard method
yields the solution of the Vlasov equation in the form

f1 =

∫ t

−∞

f ′
0 (α∇U

∗
1 : v∗v∗ − βU∗

1 · v∗ ×B0) dt
∗

+ f1(x
∗(−∞),v∗(−∞),−∞) ,

where f ′
0 means derivative of f0 with respect to its argu-

ment v∗2/2 and the variables (x∗(t∗),v∗(t∗), t∗) satisfy

ẋ∗(t∗) = v∗(t∗) , v̇∗(t∗) = v∗(t∗)×B0 ,

with x∗(t) = x, v∗(t) = v and the dot indicating the
derivative with respect to the evolution parameter t∗.
Then, upon introducing the notation ω

B0
= |B0| (i.e.

the cyclotron frequency, upon restoring physical quanti-
ties) and the planar rotation

R(τ) = exp(τB̂0) =




cos(ω
B0
τ) − sin(ω

B0
τ) 0

sin(ω
B0
τ) cos(ω

B0
τ) 0

0 0 1




and its antiderivative AR(τ), we have

x∗ = AR(τ)v + ω−2
B0

B0 × v + x ,

together with v∗ = R(τ)v and τ = t∗− t. Upon Fourier-
transforming in the spatial variable, we obtain

f̃1 =

∫ 0

−∞

f ′
0

(
iα(k · v∗)(Ũ1 · v∗) + βŨ1 ·B0 × v∗

)

× ei(k·X−ωτ)dτ

=

∫ 0

−∞

f ′
0

(
iα(k · R(τ)v)Ũ 1 − βB0 × Ũ1

)
· R(τ)v

× ei(k·X−ωτ)dτ ,

whereX := x∗−x and recall v∗z = vz and z∗(τ) = vzτ+z,

so that RB0 = B0 and (RŨ 1)z = Ũ1z. Thus, since R is
a rotation,

f̃1 =

∫ 0

−∞

∂f0
∂v

·
(
iα(k · R(τ)v)RT (τ)Ũ 1

− βB0 ×RT (τ)Ũ 1

)
ei(k·X−ωτ) dτ . (37)
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Finally, upon recalling the definition ŵa := w× a of hat
operator, the velocity equation becomes

(
ω2 − (k ·B0)

2
)
Ũ1 =

ω

[
1− kk

|k|2
]∫∫ 0

−∞

(k · v)
[
R
(
iα(k · Rv)

∂f0
∂v

+ βB̂0
∂f0
∂v

)
· Ũ1

]
vei(k·X−ωτ) dτ dv . (38)

and the dispersion relation is

det

(
k2
(
(k ·B0)

2 − ω2
)
1

− ωk̂2
∫∫ 0

−∞

(k · v)v
(
iα(k · Rv)1+ βB̂0

)

× R∂f0
∂v

ei(k·X−ωτ) dτ dv

)
= 0 (39)

At this point, one may write the general dispersion rela-
tion explicitly. However, we study the linearized system
in two particular cases where k⊥ = 0 and kz = 0, which
we turn to in the next sections.

IV. DISTURBANCES WITH k⊥ = 0

Now we specialize the preceding results to the special
case k⊥ = 0, thus giving the dispersion relation for par-

allel propagating transverse disturbances with k · Ẽ1 =

−k · Ũ1 ×B0 = 0.

A. Dispersion relation

After setting k⊥ = 0 in Eq. (38) it is useful to compute

the perturbed moment quantities K̃1 and k · P̃1. Notice

that k⊥ = 0 implies kzŨ1z = 0 ⇒ Ũ1z = 0. We com-

pute K̃1 by taking the first-order moment of (37). Upon
integrating by parts and recalling RTk = Rk = k, we
have

K̃1 =

∫
v f̃1(v) dv

=

∫
v
∂f0
∂v⊥

·
∫ 0

−∞

(
iαkzvzRT (τ)Ũ 1

− βB0 ×RT (τ)Ũ 1

)
ei(kzvzτ−ωτ) dτdv⊥dvz

=−
∫ ∫ 0

−∞

f0

(
iαkzvzRT (τ)Ũ 1

− βB0 ×RT (τ)Ũ 1

)
ei(kzvzτ−ωτ) dτdv

=−
∫ ∫ 0

−∞

f̄0(v
2
z/2)

(
iαkzvzRT (τ)Ũ 1

− βB0 ×RT (τ)Ũ 1

)
ei(kzvzτ−ωτ) dτdvz .

Hence,

K̃1z = 0 .

The above relation means that the momentum pertur-

bation K̃1 is coplanar with Ũ1, i.e., K̃1 × Ũ1 = 0
and therefore the density perturbation vanishes, since

ñ1 = −k · K̃1/ω ≡ 0. Here, we have introduced the no-
tation f̄0(v

2
z/2) =

∫
f0 dv⊥. Notice that, by proceeding

analogously, we have

k · P̃1 = −
∫∫ 0

−∞

f̄0(v
2
z/2) kzvz

(
iαkzvzRT

Ũ1

− βB0 ×RT
Ũ1

)
ei(kzvz−ω)τ dτdvz

At this point one needs to compute the matrix integral

A =

∫ 0

−∞

ei(kzvz−ω)τR(τ) dτ ,

whose components are

A11 = A22 = −i
kzvz − ω

(kzvz − ω)2 − ω2
B0

, (40)

A12 = −A21 =
ωc

(kzvz − ω)2 − ω2
B0

, (41)

A33 = − i

kzvz − ω
.

In the above equations, the integrations are defined for
Im(ω) > 0; following the standard procedure the solu-
tion is extended to the lower complex plane by analytical
continuation. In conclusion, we have

K̃1 = −
∫

f̄0(v
2
z/2)

(
iαkzvz1− βB̂0

)
AT

Ũ1 dvz ,

where we recall B̂0ij = −ǫijkB0k and (AŨ1)z = 0, so

that K̃1z = 0. Similarly, we obtain

k · P̃1 = −
∫

kzvz f̄0

(
iαkzvz1− βB̂0

)
AT

Ũ1 dvz . (42)

Once the moment quantities K̃1 and k · P̃1 are written
explicitly, one is ready to write the dispersion relation
for the case k⊥ = 0. Inserting the relation (42) into (36)
yields

(k2zb
2 − ω2)Ũ1 = ω

∫
kzvz f̄0

(
iαkzvzAT

Ũ1

− βB0 ×AT
Ũ1

)
dvz . (43)

Notice, since Ũ1z = (AT
Ũ1)z = (B0 ×AT

Ũ1)z = 0, this
relation only possesses planar components.
At this point, direct algebraic computations on the

above relation give the following dispersion relation:

D±(ω, kz) := ω2 − k2zv
2
A + ω(αω ∓ ωc)n0

(
1+

(ω ∓ ωc)

∫ ∞

−∞

F

kzvz − ω ± ωc
dvz

)
= 0 , (44)

where all physical constants have been restored: B0 =
B0ez, ωc = qhB0/mh is the cyclotron frequency of the en-
ergetic component, vA = B0/

√
µ0ρ indicates the Alfvén
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speed based on the constant equilibrium magnetic field
B0 and the constant bulk mass density ρ, and F := f̄0/n0

with n0 =
∫∞

−∞
f̄0dvz , so that n0 is a dimensionless num-

ber indicating the ratio between the equilibrium mass
density of the energetic component and that of the bulk
component. (For details of this calculation see Appendix
B.)

B. Analysis of dispersion relation

Next we analyze the dispersion relation (44). Recall, if
one sets α = 1 in (44), one obtains the dispersion relation
for the Hamiltonian model, whereas α = 0 gives that for
the non-Hamiltonian model. We will see that neglect-
ing the terms that make the starting model Hamiltonian
leads to important qualitative differences in the stability
properties.
Some consequences of the dispersion relation (44) are

immediate. In the absence of energetic particles (n0 = 0),
one recovers the dispersion relation ω = ±vAkz, de-
scribing Alfvén waves propagating along the z-direction.
Next, assume ‘cold hot’ particles, i.e., the case where F is
the Dirac delta function δ(vz). In this case the hot parti-
cle contribution again vanishes, indicating that thermal
effects are necessary to influence the Alfvén waves for
both the Hamiltonian and non-Hamiltonian models.
To further analyze the two PCS’ consider Fig. 1, where

results are displayed from a numerical solution of the
dispersion relation of (44) for the kappa distribution,

f
(κ)
0 =

n0

(πκv20)
3/2

Γ(κ+ 1)

Γ(κ− 1/2)

(
1 +

v2

κv20

)−(κ+1)

. (45)

Here v0 reflects the thermal velocity vth =
√
kBT/mh.

Note, for large values of κ the κ-distribution is indis-
tinguishable from the Maxwellian (see, e.g., [26]), and
we have verified this by direct calculation by comparing
the two for κ = 50. In Fig. 1, the imaginary part of
the frequency, γ, is plotted against the wavenumber, kz ,
suitably normalized, for the counter polarization, i.e., for
D+, which gives the weakest damping. In this figure we
consider a hydrogen bulk plasma with a particle density
of 1014cm−3, a magnetic field of 35 kgauss, and a alpha
particle component with temperature of 3.6 MeV and
fractional density n0 = 5× 10−3. This gives v0/vA = 1.2
and ωc = 8.4 × 107Hz. Since n0 ≪ 1, the real part
of the frequency corresponds nearly to the Alfven wave,
i.e., ωr ≈ kzvA, so it is not plotted. Figure 1(a) depicts
γ for the Hamiltonian PCS, while Fig. 1(b) shows the
corresponding plot for the non-Hamiltonian PCS. The
same behavior was found by varying n0 within the range
n0 ≈ 10−3 − 10−1, in agreement with the relations (48)-
(50) below, obtained by the small growth rate expansion.

The first observation to make is that both the Hamilto-
nian and usual non-Hamiltonian models have similar be-
havior for low frequencies. This is to be expected, since
the non-Hamiltonian pressure coupling model was first
developed to explore linear low frequency behavior. In
fact, for example in [4], low frequency ‘δW ’ type argu-
ments were given that indicate stability in this frequency
regime, which is consistent with the figures.

0 1 2 3 4
−6
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−4
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−2

−1

0
x 10

−3

k
z
v

A
/ω

c

γ/
ω

c
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(a)

0 1 2 3 4
−2
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1.5

2
x 10

−3

k
z
v

A
/ω

c

γ/
ω

c

 

 

κ = 1
κ = 10
κ = 50

(b)

Figure 1: Plots of the normalized damping/growth rates vs.
wavenumber kz for the PCS using the kappa distribution of
Eq. (45) for different values of κ. Here n0 = 5 × 10−3 and
v0/vA = 1.2. Panel 1(a) corresponds to the Hamiltonian
PCS, which shows the expected damping, while Panel 1(b)
corresponds to the non-Hamiltonian PCS, which depicts the
spurious instability for frequencies above ωc.

However, upon examinination of Fig. 1 for larger values
of kz or ωr ≈ kzvA, we see that Figs. 1(a) and 1(b) differ
as ωr approaches and exceeds ωc. Most significantly, we
see that the non-Hamiltonian PCS possess an instabil-
ity for frequencies greater than ωc, as is clearly evident
in Fig. 1(b). Since the equilibrium we are considering
has no available free energy, in either the bulk or in the
hot particles, this instability must be nonphysical and re-
flects the lack of energy conservation in non-Hamiltonian
PCS. For the Hamiltonian PCS displayed in Fig. 1(a),
the system damps as expected. The hot particles pro-
vide Landau damping, in much the way one expects for
electron Landau damping of Alfvén and whistler modes,
with the mode at ωc being undamped for one of the po-
larizations.
For κ = 1, it is easily shown by residue calculus that

∫ +∞

−∞

F

kzvz − ω ± ωc
dvz = − 1

ikzv0 + ω ∓ ωc
,

where we recall F = f̄0(v
2
z)/n0 and f̄0(v

2
z) is obtained
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from Eq. (44) for κ = 1 (i.e. f
(1)
0 (v2)), upon integrating

out the perpendicular components of the velocity. Thus
(44) becomes

ω2 − k2zv
2
A + in0ω

kzv0(αω ∓ ωc)

ikzv0 + ω ∓ ωc
= 0 .

From which one obtains for n0 ≪ 1, by expanding about
ω = kzvA + iγ + δωr, the perturbed frequency

γ = −n0

2

kzv0(αkzvA ∓ ωc)(kzvA ∓ ωc)

k2zv
2
0 + (kzvA ∓ ωc)2

(46)

δωr = −n0

2

k2zv
2
0(αkzvA ∓ ωc)

k2zv
2
0 + (kzvA ∓ ωc)2

. (47)

From (46) we see explicitly the spurious crossover to in-
stability at ωc observed in Fig. 1(b) that occurs for α = 0.
Similar, although progressively more complicated, formu-
lae exist for higher values of κ (see, e.g., relation (117) in
[26]), but we will not present these here.
Finally, we further explore the differences between the

Hamiltonian and non-Hamiltonian models for arbitrary
isotropic equilibria by examining the so-called small-γ ap-
proximation for each. Thus, we assume the resonant de-
nominator of (44) gives rise to weak damping, and write
ω = ωr + iγ, D = D±

r + iD±
i , and then expand as usual

to obtain

D±
r (ωr, kz) = 0 , γ = − D±

i (ωr, kz)

∂D±
r (ωr, kz)/∂ωr

. (48)

For n0 ≪ 1, ∂D±
r /∂ωr ≈ 2kzvA, and, thus, γ ≈

−D±
i (kvA, kz)/(2kvA). Using the Plemelj relations we

obtain the following form (44):

D±
i (ωr, kz) = (49)

πn0(αωr ∓ ωc)(ωr ∓ ωc)
ωr

kz
F

(
ωr ± ωc

kz

)
.

For the Hamiltonian PCS, α = 1 and

D±
i = πn0(ωr ∓ ωc)

2 ωr

kz
F

(
ωr ± ωc

kz

)
. (50)

which indicates damping for both polarizations, except
for the upper sign at ωr = kzvA = ωc where the damping
vanishes. However, upon setting α = 0 we obtain for the
non-Hamiltonian PCS, the following:

D±
i (ωr, kz) = πn0ωc(ωc ∓ ωr)

ωr

k
F

(
ωr ± ωc

kz

)
, (51)

which reveals the strange nonphysical crossover to insta-
bility for one of the polarizations when ωr > ωc.
For the record, a calculation similar to that for the

PCS gives for the CCS the dispersion relation

D±(kz , ω) = ω2 − k2zv
2
A (52)

+ωωcn0

(
ωc

∫ +∞

−∞

F

kzvz − ω ± ωc
dvz ∓ 1

)

whence we obtain for the Hamiltonian CCS, the following

D±
i (ωr, kz) = πn0ω

2
c

ωr

kz
F

(
ωr ± ωc

kz

)
. (53)

Although (53) indicates a damping rate that is different
from that of the Hamiltonian PCS, it does not possess the
spurious instability possessed by the non-Hamiltonian
PCS.
The damping rates indicated by (50), (51), and (53)

have several features in common. First, for low frequen-
cies, ωr ≪ ωc, their intended regime, they all agree.
Next, they all scale with F (as opposed to its derivative)
which is appropriate for parallel propagating transverse
waves for all isotropic equilibrium distribution functions
(not just Maxwellians) [13]. For higher frequencies, (50),
(51), and (53) disagree so it is useful to compare with
a full kinetic theory with electrons, ions, and hot parti-
cle components. For cold electron and ion temperatures,
only the hot species contributes to the damping, and it is
an elementary exercise to show that Di for this case be-
haves precisely as (53), the result for the CCS. Thus, in
this frequency range the CCS gives the best answer, al-
though the Hamiltonian PCS may be reasonable. Clearly,
the non-Hamiltonian result is unsatisfactory.

V. DISTURBANCES WITH kz = 0

This Section presents the dispersion relation for cer-
tain linear waves propagating transversely to the mag-
netic field. These modes are allowed by the Hamiltonian
PCS model (27)-(29) (with ∇ · U = 0), while they are
forbidden by the (incompressible) non-Hamiltonian vari-
ant (22)-(17). In particular, we study the special case

Ũ1⊥ = 0, which is consistent with the incompressibility

relation k · Ũ1 = 0.
In order to find the dispersion relation, we specialize

Eq. (36) by setting kz = 0. In turn, this affects the

Vlasov perturbation (37). Since Ũ1 = Ũ1z ez and

B0×RT (τ)Ũ 1 = Ũ1z (B0×RT (τ)ez) = Ũ1z (B0×ez) = 0 ,

the Vlasov perturbation (37) becomes

f̃1 = iα

∫ 0

−∞

(k · R(τ)v)

(
∂f0
∂v

· RT (τ)Ũ 1

)
ei(k·X−ωτ) dτ

= iαŨ1z
∂f0
∂vz

∫ 0

−∞

v⊥ · RT (τ)k ei(k⊥·X⊥−ωτ) dτ ,

which shows how the non-Hamiltonian model (α = 0)
precludes the existence of transversal modes such that

Ũ1⊥ = 0. In what follows, we consider the Hamiltonian
case by setting α = 1.
Notice that, sinceX⊥ does not depend on vz, the above

expression yields ñ1 =
∫
f̃1 d

3v = 0. Therefore, the rela-

tion ñ1 = k · K̃1 allows the case K̃1 = K̃1zez, where

K̃1z = iαŨ1z

∫∫
vz

∂f0
∂vz

∫ 0

−∞

v⊥ · RT (τ)k ei(k⊥·X⊥−ωτ)

× dτ dv⊥ dvz

= − iαŨ1z k⊥ ·
∫∫∫ 0

−∞

f0R(τ)v ei(k⊥·X⊥−ωτ) dτ d3v .

Then, combined with the velocity relation (36) and mak-
ing use of the moment equation for K1 in Section III B,
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the special case K̃1⊥ = 0 yields Ũ1z = K̃1z along with
the dispersion relation

1 + i

∫∫ 0

−∞

(k⊥ · R(τ)v) f0 e
i(k⊥·X⊥−ωτ) dτ d3v = 0 .

This is an expected Bessel function type of dispersion
relation and its detailed study is left for future work.

VI. SUMMARY AND CONCLUSIONS

After a review of hybrid kinetic-MHD models, we pre-
sented a comparative study of Hamiltonian and non-
Hamiltonian pressure-coupling schemes, where the latter
suffer by not conserving energy exactly. In particular,
the two models were compared from the point of view
of linear stability and their dispersion relations were pre-
sented and analyzed. The special cases of pure parallel
and perpendicular wave propagation were considered.
Upon considering κ equilibria for the hot component,

it was shown that the non-Hamiltonian PCS possesses
an instability absent in its Hamiltonian variant and in
the CCS, which is also Hamiltonian. We argued that
the instability emerging in the non-Hamiltonian model
is not physically viable. Extensive investigation of the
dispersion relation will be considered in future work.
Although the unstable mode is of large frequency

and thus outside the original intent of the PCS models,
which were developed to describe low frequency behav-
ior, their presence would suggest results obtained from
non-Hamiltonian PCS models extended into this regime
should be viewed with caution. Even if some artifice,
numerical or other, were used to suppress the unphysi-
cal linear instability, nonlinear coupling could give rise to
differences in their turbulent transport behavior.
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Appendix A: Poisson brackets for Hamiltonian

hybrid MHD models

A Hamiltonian system is a dynamical system gener-
ated by a given Hamiltonian (total energy) and a Poisson
bracket in the form ∂Ψ/∂t = {Ψ, H}, where Ψ denotes
the set of dynamical variables. The Poisson bracket {·, ·}
must be a bilinear, antisymmetric operator defined on

the space of function(al)s. In addition it must satisfy he
Leibniz property

{FG,H} = G{F,H}+ F{G,H}

as well as the Jacobi identity

{{F,G}, H}+ {{H,F}, G}+ {{G,H}, F} = 0 .

The Leibniz property, bilinearity, and antisymmetry are
easily built into the generic form of the Poisson bracket,
but the proof of the Jacobi identity may require some ef-
fort. (See [16–19] for review and the Appendix of Ref. [22]
for a particularly onerous direct proof.) Such Poisson
brackets need not have the canonical form of conventional
field theories and may possess degeneracy – because of
this they were called noncanonical in Ref.[21].
The Poisson brackets for the Hamiltonian models of the

present paper were given in [31], where it was also shown
how they may be used to formulate new hybrid MHD
models that conserve energy exactly. Indeed, while exact
conservation of (18) is guaranteed for the CCS model
(14)-(17) by its noncanonical Poisson bracket

{F,G}CCS =

∫
m ·

[
δF

δm
,
δG

δm

]
d3x (A1)

−
∫

ρ

(
δF

δm
· ∇δG

δρ
− δG

δm
· ∇δF

δρ

)
d3x

+ qh

∫
f B ·

(
δF

δm
× δG

δm

− δF

δm
× ∂

∂p

δG

δf
+

δG

δm
× ∂

∂p

δF

δf

)
d3xd3p

+

∫
f

({
δF

δf
,
δG

δf

}

+ qh B · ∂

∂p

δF

δf
× ∂

∂p

δG

δf

)
d3xd3p

+

∫
B ·

(
δF

δm
×∇× δG

δB
− δG

δm
×∇× δF

δB

)
d3x ,

the PCS models available in the literature fail to con-
serve energy exactly. For the Hamiltonian PCS (HPCS)
(27)-(29), exact conservation of (14)-(17) follows from
the Poisson bracket

{F,G}HPCS =

∫
M ·

[
δF

δM
,
δG

δM

]
d3x (A2)

−
∫

ρ

(
δF

δM
· ∇δG

δρ
− δG

δM
· ∇δF

δρ

)
d3x

+

∫
f

({
δF

δf
,
δG

δf

}

+ qh B · ∂

∂p

δF

δf
× ∂

∂p

δG

δf

)
d3xd3p

+

∫
f

({
δF

δf
,p · δG

δM

}
−
{
δG

δf
,p · δF

δM

})
d3xd3p

+

∫
B ·

(
δF

δM
×∇× δG

δB
− δG

δM
×∇× δF

δB

)
d3x .

In the above formulas, [X,Y ] := −(X · ∇)Y +(Y · ∇)X
is minus the commutator on vector fields. The proof that
the above bilinear, antisymmetric operators are indeed
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Poisson brackets (satisfying Leibniz and Jacobi) can be
carried out by explicit verification. However, upon recog-
nizing that these brackets are composed of terms of the
original bracket of MHD [21] and that of the Maxwell-
Vlasov system [14, 15, 19, 20], together with later work
on the two-fluid system [27, 28], it is not difficult to as-
certain the validity of the Jacobi identity.
Alternatively, one can begin with an action principle

and derive the Poisson brackets, thereby ensuring the
Jacobi identity. Such a Lagrangian formulation of the
PCS Eqs. (27)-(29) was given in [10]. We remark also
that an action principle derivation of a linearized PCS
model was presented in [2].

Appendix B: Derivation of dispersion relation for

k⊥ = 0

This appendix contains the main steps leading to the
dispersion relation (44). The starting point is the obser-

vation that Ũ1z = (AT
Ũ1)z = (B0 ×AT

Ũ1)z = 0 forces
relation (43) to possess only planar components. Then,
one can write the dispersion relation as

(
ω2 − k2zv

2
A

ω
−
∫
kz

∂f̄0
∂vz

(iαkzvzA11 + βvAA12) dvz

)2

=

(∫
kz

∂f̄0
∂vz

(iαkzvzA12 + βvAA11) dvz

)2

,

where we recall the definitions (40)-(41). (Notice that f̄0
denotes the distribution function divided by the constant

bulk particle density). Then, after some computations
and upon restoring physical constants, one is led to

ω2 − k2zv
2
A

ω
+ α

∫ ∞

−∞

(kzvz)
2f̄0

kzvz − ω ± ωc
dvz (B1)

= ±βωc

∫ ∞

−∞

kzvz f̄0
kzvz − ω ± ωc

dvz .

The integrals of (B1) are then rearranged as follows:

∫ ∞

−∞

k2zv
2
z f̄0

kzvz − ω ± ωc
dvz

= (ω ∓ ωc)

(
n0 + (ω ∓ ωc)

∫ ∞

−∞

f̄0
kzvz − ω ± ωc

dvz

)

∫ ∞

−∞

ωckzvz f̄0
kzvz − ω ± ωc

dvz

= ωc

(
n0 + (ω ∓ ωc)

∫ ∞

−∞

f̄0
kzvz − ω ± ωc

dvz

)
.

Finally, upon recalling that β = 1 − α, we write the
dispersion relation as

ω2 − k2zv
2
A

ω
=

(
± ωc(1 − α)− α(ω ∓ ωc)

)

×
(
n0 + (ω ∓ ωc)

∫ ∞

−∞

f̄0
kzvz − ω ± ωc

dvz

)
,

which eventually reduces to (44).
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