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Hybrid Vlasov-MHD models: Hamiltonian vs. non-Hamiltonian

This paper investigates hybrid kinetic-MHD models, where a hot plasma (governed by a kinetic theory) interacts with a fluid bulk (governed by MHD). Different nonlinear coupling schemes are reviewed, including the pressure-coupling scheme (PCS) used in modern hybrid simulations. This latter scheme suffers from being non-Hamiltonian and to not exactly conserve total energy. Upon adopting the Vlasov description for the hot component, the non-Hamiltonian PCS and a Hamiltonian variant are compared. Special emphasis is given to the linear stability of Alfvén waves, for which it is shown that a spurious instability appears at high frequency in the non-Hamiltonian version. This instability is removed in the Hamiltonian version.

I. INTRODUCTION

Several configurations in plasma physics involve the interaction of a hot plasma species with a lower temperature bulk component. Typical examples are those of nuclear fusion devices, in which the energetic alpha particles produced by the fusion reactions interact with the ambient plasma, and those of space plasmas, involving the interaction between the energetic solar wind and Earth's magnetosphere. Such plasmas have been studied for decades and yet continue to be the subject of current research.

For such configurations, one is first interested in ascertaining the stabilizing or destabilizing effects that the energetic component can have on the overall system. In order to address this question, various mathematical models have been formulated to include the combined effects of both the energetic particles and the bulk plasma. Although the bulk can be well described by ordinary magnetohydrodynamics (MHD), adequately modeling the hot species requires the use of kinetic theory. This multiscale, multi-physics approach leads to the formulation of hybrid kinetic-MHD models that couple the MHD equations to a kinetic equation for the hot component. Then, the question of which kinetic equation to use for the hot particles arises. Typically drift-kinetic, gyrokinetic, or the full Vlasov system are used. In plasma fusion, the first two options are used most often, while the full Vlasov description is needed for e.g. reverse field pinch plasmas [START_REF] Kim | Preliminary simulations of FLR effects on RFP tearing modes[END_REF]. The full Vlasov description solves for effects at all scales and thus is less convenient when the hot particle gyromotion can be averaged out, in favor of drift-kinetic and gyro-kinetic models. Nevertheless, this paper aims to account for hot particle effects at all possible scales, so that the full Vlasov description is adopted.

Another more important question emerges in the formulation of hybrid kinetic-MHD models, viz., the particular type of coupling scheme that should be used in the model. Two coupling schemes are present in the literature: the current-coupling scheme (CCS), found for example in Refs. [START_REF] Belova | Hybrid simulations of the effects of energetic particles on low-frequency MHD waves[END_REF][START_REF] Chen | Numerical study of the nonlinear evolution of toroidicity-induced Alfvén eigenmodes[END_REF][START_REF] Todo | Magnetohydrodynamic Vlasov simulation of the toroidal Alfvén eigenmode[END_REF] and the pressure coupling scheme (PCS), examples of which are used in Refs. [START_REF] Cheng | A kinetic-magnetohydrodynamic model for low-frequency phenomena[END_REF][START_REF] Fu | Nonlinear hybrid simulation of the toroidicity-induced Alfvén eigenmode[END_REF][START_REF] Kim | Hybrid kinetic-MHD simulations in general geometry[END_REF]. While the CCS involves the hot momentum and density

K = p f (x, p) d 3 p , (1) 
n = f (x, p) d 3 p , (2) 
the PCS involves the following tensor:

P = 1 m h pp f (x, p) d 3 p , (3) 
which is the pressure tensor of the hot component, calculated with respect to a zero mean velocity. All these quantities are defined as above in terms of moments of the kinetic probability density f (x, p) on phase space. Here, p denotes the kinetic momentum p = m h v, while m h and q h denote the hot particle mass and charge, respectively. Normally, the PCS is derived from the CCS [START_REF] Park | Plasma simulation studies using multilevel physics models[END_REF][START_REF] Park | Three-dimensional hybrid gyrokineticmagnetohydrodynamics simulation[END_REF], under the assumption that the hot component is rarefied, so that its density levels are much lower than those of the MHD component. Also, the PCS often appears in two different versions depending on whether the definition of the pressure tensor involves the absolute [START_REF] Cheng | A kinetic-magnetohydrodynamic model for low-frequency phenomena[END_REF][START_REF] Fu | Nonlinear hybrid simulation of the toroidicity-induced Alfvén eigenmode[END_REF] or relative [START_REF] Kim | Hybrid kinetic-MHD simulations in general geometry[END_REF][START_REF] Takahashi | Kinetic effects of energetic particles on resistive MHD stability[END_REF] velocity. All of the nonlinear PCS models commonly found in the plasma physics literature suffer from the defect that they do not exactly conserve energy. Indeed, exact energy conservation is lost when the assumption of a rarefied hot component is inserted as an approximation in the equations of motion of the model. Consequently, these models are not Hamiltonian field theories, ones that are expected to have noncanonical Poisson brackets akin to those introduced into plasma physics in [START_REF] Morrison | Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics[END_REF] for MHD and [START_REF] Morrison | Poisson brackets for fluids and plasmas[END_REF][START_REF] Morrison | The Maxwell-Vlasov equations as a continuous Hamiltonian system[END_REF] for the Vlasov equation. Since such a Hamiltonian structure occurs for all good plasma models, in their non-dissipative limit,(see [START_REF] Morrison | Hamiltonian and action principle formulations of plasma physics[END_REF][START_REF] Morrison | Hamiltonian description of the ideal fluid[END_REF][START_REF] Morrison | Poisson brackets for fluids and plasmas[END_REF]), this would suggest there should be a Hamiltonian model for the PCS, and indeed this was shown to be the case in the recent literature [START_REF] Holm | Euler-Poincaré formulation of hybrid plasma models[END_REF][START_REF] Morrison | Energy stability analysis for a hybrid fluid-kinetic plasma model in[END_REF][START_REF] Tronci | Hamiltonian approach to hybrid plasma models[END_REF]. This new model not only conserves energy, but also conserves the cross-helicity invariants (which are also lost in the non-Hamiltonian case).

A main goal of the present paper is to compare the Hamiltonian and non-Hamiltonian PCS models, with emphasis on linear stability analyses. It is important to make clear that we are not arguing that dissipation is unimportant and that the Hamiltonian description is the most apt description of hybrid plasmas; clearly this is not always the case -collisional effects, albeit small, can give rise to important consequences, as is evident, for instance, from the massive body of reconnection studies in the literature. Rather, the goal here is to investigate some consequences of nonphysical dissipation (or drive) that exists in hybrid models when all the clearly identifiable physical dissipative terms are set to zero. This fake dissipation may also be small, as is often the case for physical dissipation, but could lead to substantial yet erroneous consequences. Indeed, we discover a spurious instability in the non-Hamiltonian model.

The remainder of the paper is organized as follows. In Sec. II we review the two hybrid coupling schemes: the CCS and PCS models are derived from first principles and general comments about their structure are made. This is followed in Sec. III by a general treatment of the linear problem for the incompressible PCS models expanded about homogeneous equilibria in a uniform external magnetic field, by integration over orbits. This is followed, in Sec. IV, by a study of the dispersion relation for transverse disturbances parallel to the magnetic field. It is in this special case that we compare the Hamiltonian and non-Hamiltonian PCS models and discover the spurious instability. For completeness we also compare with the CCS models. The dispersion relation is analyzed numerically and analytically and shown to have a crossover to instability at high frequencies. Next, in Sec. V, comments are made about the behavior of perpendicular disturbances. Finally, in Sec. VI we summarize and conclude. The paper contains two appendices that are included for completeness. In Appendix A the noncanonical Poisson brackets for the Hamiltonian hybrid models are given, while Appendix B records some details of our calculations leading to the dispersion relation used in Sec. IV.

II. HYBRID COUPLING SCHEMES

Turning now to the two coupling schemes, we first consider the CCS, then the PCS.

A. Current-coupling schemes

In order to derive the hybrid CCS model [START_REF] Park | Three-dimensional hybrid gyrokineticmagnetohydrodynamics simulation[END_REF], one starts with the equations of motion for a multifluid plasma in the presence of an energetic component. Upon formally neglecting the vacuum permittivity (see e.g. [START_REF] Freidberg | Ideal megnetohydrodynamic theory of magnetic fusion systems[END_REF]), one writes

ρ s ∂u s ∂t + u s • ∇u s = -∇p s + ρ s a s (E + u s × B) , (4) 
∂ρ s ∂t + ∇ • (ρ s u s ) = 0 , (5) 
∂f ∂t + p m h • ∂f ∂x + q h E + p m h × B • ∂f ∂p = 0 , ∇ × B = µ 0 J = µ 0 s a s ρ s u s + µ 0 a h K , (6) 
∂B ∂t = -∇ × E , (7) 0 
= s a s ρ s + q h n , ∇ • B = 0 , (8) 
where a s = q s /m s is the charge-to-mass ratio for the fluid species s, while ρ s and u s are its mass density and velocity, respectively. The symbol p s , on the other hand, indicates the partial pressure of the fluid species s, which is assumed to be a function of ρ s , through the relation p s = ρ 2 s ∂U s /∂ρ s , with U s (ρ s ) indicating the corresponding specific internal energy.

For simplicity, we consider from now on, the case in which the bulk plasma is composed by two species, one consisting of ions and the second one of electrons. It is customary to reduce the two-fluid system by neglecting the inertia of the electron species (taking the limit m 2 → 0), thereby obtaining a one-fluid momentum equation. With this assumption, summation of Eqs. (4) for s = 1, 2 produces

ρ 1 ∂u 1 ∂t + u 1 • ∇u 1 = (a 1 ρ 1 + a 2 ρ 2 ) E + (a 1 ρ 1 u 1 + a 2 ρ 2 u 2 ) × B -∇p , (9) 
where p = p 1 + p 2 . Then, upon using Ampère's law [START_REF] Fu | Recent progress in linear and nonlinear studies of toroidal Alfvén eigenmodes[END_REF] and the quasineutrality relation of (8), Eq. ( 9) becomes

ρ 1 ∂u 1 ∂t + u 1 • ∇u 1 = -q h nE + (J -a h K) × B -∇p , (10) 
while Eq. ( 4) for the second species yields

E = -u 2 × B + 1 a 2 ρ 2 ∇p 2 = 1 a 2 ρ 2 (a 1 ρ 1 u 1 + a h K -J)× B + 1 a 2 ρ 2 ∇p 2 .
Next, one imitates the derivation of ideal MHD [START_REF] Freidberg | Ideal megnetohydrodynamic theory of magnetic fusion systems[END_REF] and assumes that J×B and ∇p 2 are both negligible compared to the Lorentz force a 1 ρ 1 u 1 × B. This step leads to an Ohm's law of the form

E = - a 1 ρ 1 u 1 + q h nV a 1 ρ 1 + q h n × B , (11) 
where V = m -1 h K/n is the hot mean velocity. Note, this means magnetic flux is frozen-in at a velocity given by

W = a 1 ρ 1 u 1 + q h nV a 1 ρ 1 + q h n . (12) 
However, if V and u 1 are comparable and a 1 ρ 1 ≫ q h n h , then one can replace [START_REF] Kim | Preliminary simulations of FLR effects on RFP tearing modes[END_REF] by the Ohm's law of ideal MHD,

E = -u 1 × B , (13) 
and the magnetic flux is then frozen into the MHD bulk flow. Finally, inserting (13) into Eqs. ( 10), [START_REF] Freidberg | Ideal megnetohydrodynamic theory of magnetic fusion systems[END_REF], and (7) yields the Hamiltonian CCS:

ρ ∂u ∂t + u • ∇u = -∇p (14) 
+ (q h nu -a h K + J) × B , ∂ρ ∂t + ∇ • (ρu) = 0 , (15) 
∂f ∂t + p m h • ∂f ∂x + q h p m h -u × B • ∂f ∂p = 0 , (16) 
∂B ∂t = ∇ × (u × B) , (17) 
where the subscript 1 has been dropped. The system ( 14)-( 17) is identical to the current-coupling hybrid scheme presented in [START_REF] Belova | Hybrid simulations of the effects of energetic particles on low-frequency MHD waves[END_REF][START_REF] Chen | Numerical study of the nonlinear evolution of toroidicity-induced Alfvén eigenmodes[END_REF][START_REF] Park | Three-dimensional hybrid gyrokineticmagnetohydrodynamics simulation[END_REF], except for the fact that the hot particle dynamics is governed by the Vlasov equation rather than gyrokinetic or drift-kinetic counterparts. Note, we always assume that the mean velocity V = m -1 h K/n of the energetic component is either very low or at most comparable with the MHD fluid velocity u. This is consistent with the hypothesis of energetic particles, since the latter hypothesis involves the temperature rather than the mean velocity. Denoting the temperatures of the hot and fluid components by T h and T f , respectively, we have T h ≫ T f (see [START_REF] Cheng | A kinetic-magnetohydrodynamic model for low-frequency phenomena[END_REF]). With the definition of the temperature

T h = (m h /3nk B ) |v -V | 2 f d 3 v
(where k B denotes Boltzmann's constant), the assumption on the energetic component amounts to an assumption on the trace of the second-order moment of the Vlasov density with no assumption on the mean velocity, which is actually low for hot particles close to isotropic equilibria [START_REF] Takahashi | Kinetic effects of energetic particles on resistive MHD stability[END_REF].

Notice that equation ( 14) involves the Lorentz force term q h nu × B, which should normally be negligible for consistency with the approximation m h n ≪ ρ, which yields Eq. ( 13) from Eq. [START_REF] Kim | Preliminary simulations of FLR effects on RFP tearing modes[END_REF]. A variant of the above CCS also exists [START_REF] Todo | Magnetohydrodynamic Vlasov simulation of the toroidal Alfvén eigenmode[END_REF], which, by virtue of the approximation m h n ≪ ρ neglects the term q h nu × B, but on the other hand retains the term K × B even though the two terms are in principle of the same order (as long as V is comparable with u) .

One can check directly that the hybrid CCS model of ( 14)-( 17) exactly conserves the following total energy:

E = 1 2 ρ|u| 2 d 3 x + 1 2m h f |p| 2 d 3 x d 3 p + ρ U(ρ) d 3 x + 1 2µ 0 |B| 2 d 3 x , (18) 
(see [START_REF] Todo | Magnetohydrodynamic Vlasov simulation of the toroidal Alfvén eigenmode[END_REF]) where U(ρ) is the internal energy per unit mass, from which the pressure is determined by p = ρ 2 ∂U/∂ρ. Moreover, this system is Hamiltonian, with a noncanonical Poisson bracket [START_REF] Tronci | Hamiltonian approach to hybrid plasma models[END_REF] (recorded for completeness in Appendix A) and it conserves the usual cross-helicity invariant u

• B d 3 x [10].

B. Pressure-coupling schemes

Let us consider now the two models that use the PCS -first the non-Hamiltonian version then the Hamiltonian one.

Non-Hamiltonian PCS

Once the CCS has been obtained, the pressurecoupling scheme can be derived by computing the evolution of the total momentum

M := ρu + K =: ρU , (19) 
which gives (cf. Eq. ( 1) of [START_REF] Park | Three-dimensional hybrid gyrokineticmagnetohydrodynamics simulation[END_REF])

∂K ∂t + ρ ∂u ∂t + u • ∇u = -∇ • P -∇p + J × B . ( 20 
)
Since ∂ t K = ρ ∂ t (K/ρ) + (div u)K/ρ, inserting the as- sumption K/ρ ≪ u yields ρ ∂U ∂t + u • ∇u = -∇ • P -∇p + J × B . (21) 
Then, upon writing U ∼ u, we obtain the system with the non-Hamiltonian PCS:

ρ ∂U ∂t + U • ∇U = -∇p -∇ • P + J × B ( 22 
)
∂ρ ∂t + ∇ • (ρU ) = 0 ( 23 
)
∂f ∂t + p m h • ∂f ∂x + q h p m h -U × B • ∂f ∂p = 0 (24) ∂B ∂t = ∇ × (U × B) , (25) 
Notice that Eq. ( 22) is identical to the bulk momentum equation of the hybrid PCS of Fu and Park (see equations ( 1) in [START_REF] Fu | Nonlinear hybrid simulation of the toroidicity-induced Alfvén eigenmode[END_REF][START_REF] Fu | Global hybrid simulations of energetic particle effects on the n=1 mode in tokamaks: Internal kink and fishbone instability[END_REF]), which also includes ( 23) and ( 25) (while replacing Vlasov dynamics by its gyrokinetic approximation). Analogous PCS models with the same fluid equation ( 22) have been formulated by Cheng [START_REF] Cheng | A kinetic-magnetohydrodynamic model for low-frequency phenomena[END_REF] (see equation ( 1) therein) and Park et al. [START_REF] Park | Three-dimensional hybrid gyrokineticmagnetohydrodynamics simulation[END_REF] (see equation ( 3) therein). In some situations, the tensor (3) in ( 22) is replaced by the relative pressure tensor

P = m -1 h (p -m h V ) (p -m h V ) f d 3 p (e.
g., the PCS model proposed by Kim, Sovinec and Parker [START_REF] Kim | Preliminary simulations of FLR effects on RFP tearing modes[END_REF][START_REF] Kim | Hybrid kinetic-MHD simulations in general geometry[END_REF][START_REF] Takahashi | Kinetic effects of energetic particles on resistive MHD stability[END_REF]).

All the above mentioned PCS models suffer from not conserving the total energy exactly. Indeed, if we assume that the total energy is still given by ( 18), Eqs. ( 22)- [START_REF] Park | Three-dimensional hybrid gyrokineticmagnetohydrodynamics simulation[END_REF] give Ė = U • ∂ t K d 3 x, so that the total energy would only be nearly conserved if ∂ t K is small. Under this assumption, the CCS and the PCS are completely equivalent, since [START_REF] Morrison | Hamiltonian and action principle formulations of plasma physics[END_REF] yields

∂K ∂t = -∇ • P + a h K × B -q h nu × B . (26) 
However, the assumption that ∂ t K is negligible is not compatible with ( 16), since the time variation of K may indeed play a role in the general case.

Hamiltonian PCS

The issue of exact energy conservation was raised in [START_REF] Tronci | Hamiltonian approach to hybrid plasma models[END_REF], where an alternative Hamiltonian version of the PCS was presented. Besides conserving the energy (18) exactly, this model possesses a Poisson bracket structure, which was derived by using well established Hamiltonian techniques in geometric plasma dynamics [14-21, 27, 28].

In order to derive the Hamiltonian PCS model of [START_REF] Tronci | Hamiltonian approach to hybrid plasma models[END_REF], one expresses the Hamiltonian structure of the CCS ( 14)- [START_REF] Morrison | Hamiltonian description of the ideal fluid[END_REF] in terms of the total momentum M in [START_REF] Morrison | Poisson brackets for fluids and plasmas[END_REF]. Then, instead of replacing U ∼ u (arising from the original assumption m h n ≪ ρ) in the equations of motion, one replaces U ∼ u directly in [START_REF] Morrison | Hamiltonian and action principle formulations of plasma dynamics[END_REF] and derives the equations of motion from the Poisson bracket structure written in terms of M (see Appendix A). This procedure ensures that the chosen energy functional is always preserved, as long as no approximations are made on the Poisson bracket. At this point, one obtains the following set of equations for the Hamiltonian PCS:

ρ ∂U ∂t + U • ∇U = -∇p -∇ • P + J × B ( 27 
)
∂f ∂t + p m h + U • ∂f ∂x (28) 
+ p × a h B -∇ × U -p • ∇U • ∂f ∂p = 0 , ∂ρ ∂t + ∇ • (ρ U ) = 0 , ∂B ∂t = ∇ × (U × B) . ( 29 
)
We see that the fluid equation ( 27) is identical to the corresponding equation ( 22) of the non-Hamiltonian model. However, in the Hamiltonian model, hot particles move with the relative velocity U + p/m h so that the term ∇U • p = p • ∇U + p × (∇ × U ) appears as an inertial force. Consequently, both Hamiltonian and non-Hamiltonian PCS' possess the same static equilibria, although the dynamics in the vicinity of these equilibria may be very different, depending on the particular situation under consideration. Also, we notice that, unlike the CCS of ( 14)-( 17) and the non-Hamiltonian PCS of ( 22)-( 25), the Hamiltonian equations of ( 27)-( 29) involve a nontrivial kinetic-fluid coupling, even in the absence of magnetic fields.

III. LINEARIZED INCOMPRESSIBLE PCS

In this section, we consider the linearized equations of motion for the incompressible limit (e.g. ∇ • U = 0) of both Hamiltonian and non-Hamiltonian PCS'. For the sake of simplicity, we shall set all physical constants to unity (including m h , so that p = v), although we shall restore them at a later time.

A. Equations of motion

Upon following the standard procedure, we linearize each variable as A = A 0 + A 1 , so that the subscripts "0" and "1" denote an equilibrium and its perturbation, respectively. As a result, we obtain

∂U 1 ∂t = -∇p 1 -∇ • vvf 1 d 3 v + (∇ × B 1 ) × B 0 , ( 30 
) ∂f 1 ∂t + v • ∂f 1 ∂x + v × B 0 • ∂f 1 ∂v = ( 31 
)
f ′ 0 (αvv : ∇U 1 + βv • U 1 × B 0 ) , ∂B 1 ∂t = ∇ × (U 1 × B 0 ) , ∇ • U 1 = 0 , (32) 
where the parameters α and β = 1 -α are inserted so that α = 1 gives the linearized Hamiltonian model, while α = 0 gives the linearized non-Hamiltonian model.

In this way, it is clear that the α-terms identify the Hamiltonian model, while the β-terms identify its non-Hamiltonian counterpart. In Eqs. ( 30)-(32) we assumed a static equilibrium so that U 0 ≡ 0 and p 0 ≡ 0. Also, we consider a uniform magnetic field B 0 (aligned with the z-axis) and an isotropic equilibrium for the energetic component, so that

f 0 = f 0 (v 2 /2) with v 2 = |v| 2 .
Notice that the special case B 0 = 0 yields free transport for the hot particles, in the case of the non-Hamiltonian model (α = 0). Conversely, the Hamiltonian model (α = 1) retains the fluid velocity terms in the kinetic equation, even in the absence of the magnetic field (B 0 = 0). Notice that, although here we have chosen a Vlasov equilibrium of the form f 0 = f 0 (v 2 /2), other more realistic choices are also available. For example, in actual hybrid simulations of the non-Hamiltonian PCS in fusion devices, toroidal symmetry is involved and the use of special equilibrium profiles becomes necessary [START_REF] Takahashi | Kinetic effects of energetic particles on resistive MHD stability[END_REF]. Another example arises in reversed field pinch plasmas, in which finite Larmor radius effects allow for equilibria of the type [START_REF] Kim | Preliminary simulations of FLR effects on RFP tearing modes[END_REF]). On the other hand, the aim here is not to enter into detailed features of particular fusion devices, but to provide insight into model differences. Therefore, we focus on distributions of the type f 0 = f 0 (v 2 /2).

f 0 = f 0 (x, v 2 ) -ω -1 c ∇f 0 • v × B (where ω c = q h B 0 /m h ) (see
Assuming perturbations varying as

A 1 = A 1 e i(k•x-ωt) gives ω U 1 = k p 1 + (k • v)v f 1 d 3 v + B 0 × (k × B 1 ) , (33) -ω B 1 = (k • B 0 ) U 1 , k • U 1 = 0 . ( 34 
)
Dotting Eq. ( 33) by k and using Eqs. (34) yields

p 1 = - 1 |k| 2 (k • v) 2 f 1 dv + 1 ω (k • B 0 )( U 1 • B 0 ) ,
and the velocity equation becomes

ω U 1 = - (k • v) 2 |k| 2 k -(k • v)v f 1 dv + 1 ω (k • B 0 ) 2 U 1 (35)
or, upon rearranging the various terms,

U 1 = ω (ω 2 -k • B 0 ) 2 1 - kk |k| 2 (k • P 1 ) , (36) 
where P 1 = vv f 1 d 3 v and 1kk/|k| 2 projects transverse to k.

It remains to express f 1 in terms of U 1 in order to obtain the dispersion relation. This step is performed in Sec. III C, but first the next section contains some relevant properties of the linearized equation of Vlasov kinetic moments.

B. Remarks on linearized moment dynamics

Before analyzing the linear dynamics, it is of interest to explore some roles played by the α and β terms. To this end it is useful to introduce equilibrium moments

A (0) n i1i2...in = v i1 . . . v in f 0 d 3 v .
Since f 0 = f 0 (v 2 /2), we notice that A (0) 2n+1 = 0. Then, Eq. ( 31) leads to the following conclusions about the equations of motion for the kinetic moments

A (1) k = v k f 1 d 3 v:
• the α-term (of the Hamiltonian model) contributes only to moments of even order 2n+2 (e.g. the pressure tensor P 1 ), i.e., the α-term does not contribute to the dynamics of odd-order moments;

• the β-term (of the non-Hamiltonian model) contributes only to moments of odd order 2n + 1 (e.g. the averaged momentum K 1 ), i.e., the β-term does not contribute to the dynamics of even-order moments;

• the first three moments obey the equations

∂ t n 1 + ∇ • K 1 0 ∂ t K 1 + ∇ • P 1 -K 1 × B 0 = -βn 0 U 1 × B 0 ∂ t P 1 + ∇ • A (1) 3 + B 0 , P 1 = -2α (P 0 • ∇)U 1 + ((P 0 • ∇)U 1 ) T ,
where [•, •] denotes matrix commutator and we defined the hat operator by wa := w × a (for any two vectors w and a, so that w ih = -ǫ ihk w k is an antisymmetric matrix).

Thus, there is no contribution of the α-term to the linearized fluid moments (i.e. zeroth and first order moments) of the kinetic component: indeed, the α-term disappears in the linearized dynamics of the fluid closure for the hot particles. The α-term contributes only to the dynamics of perturbed moments at even order (e.g. the pressure tensor). On the other hand, the β-term contributes only to the dynamics of perturbed moments with odd order, e.g. it has a non-zero contribution to the first-order moment (which plays a crucial role in the current-coupling scheme).

C. Solution of the linearized Vlasov equation

Now we solve the linearized kinetic equation ( 31) in terms of the fluid velocity U 1 . This is done by invoking the method of characteristics (integrating over orbits) as is standard in plasma physics texts (e.g. [START_REF] Krall | Principles of plasma physics[END_REF]) for the Maxwell-Vlasov system. Following this standard method yields the solution of the Vlasov equation in the form

f 1 = t -∞ f ′ 0 (α∇U * 1 : v * v * -βU * 1 • v * × B 0 ) dt * + f 1 (x * (-∞), v * (-∞), -∞) ,
where f ′ 0 means derivative of f 0 with respect to its argument v * 2 /2 and the variables (x 

* (t * ), v * (t * ), t * ) satisfy ẋ * (t * ) = v * (t * ) , v * (t * ) = v * (t * ) × B 0 , with x * (t) = x, v * (t) = v
R(τ ) = exp(τ B 0 ) =   cos(ω B 0 τ ) -sin(ω B 0 τ ) 0 sin(ω B 0 τ ) cos(ω B 0 τ ) 0 0 0 1  
and its antiderivative AR(τ ), we have

x * = AR(τ )v + ω -2 B0 B 0 × v + x , together with v * = R(τ )v and τ = t * -t.
Upon Fouriertransforming in the spatial variable, we obtain

f 1 = 0 -∞ f ′ 0 iα(k • v * )( U 1 • v * ) + β U 1 • B 0 × v * × e i(k•X-ωτ ) dτ = 0 -∞ f ′ 0 iα(k • R(τ )v) U 1 -βB 0 × U 1 • R(τ )v × e i(k•X-ωτ ) dτ ,
where X := x * -x and recall v * z = v z and z * (τ ) = v z τ +z, so that RB 0 = B 0 and (R U 1 ) z = U 1z . Thus, since R is a rotation,

f 1 = 0 -∞ ∂f 0 ∂v • iα(k • R(τ )v)R T (τ ) U 1 -βB 0 × R T (τ ) U 1 e i(k•X-ωτ ) dτ . (37)
Finally, upon recalling the definition wa := w × a of hat operator, the velocity equation becomes

ω 2 -(k • B 0 ) 2 U 1 = ω 1 - kk |k| 2 0 -∞ (k • v) R iα(k • Rv) ∂f 0 ∂v + β B 0 ∂f 0 ∂v • U 1 ve i(k•X-ωτ ) dτ dv . ( 38 
)
and the dispersion relation is

det k 2 (k • B 0 ) 2 -ω 2 1 -ω k 2 0 -∞ (k • v) v iα(k • Rv)1 + β B 0 × R ∂f 0 ∂v e i(k•X-ωτ ) dτ dv = 0 (39)
At this point, one may write the general dispersion relation explicitly. However, we study the linearized system in two particular cases where k ⊥ = 0 and k z = 0, which we turn to in the next sections.

IV. DISTURBANCES WITH k ⊥ = 0

Now we specialize the preceding results to the special case k ⊥ = 0, thus giving the dispersion relation for parallel propagating transverse disturbances with k

• E 1 = -k • U 1 × B 0 = 0.

A. Dispersion relation

After setting k ⊥ = 0 in Eq. (38) it is useful to compute the perturbed moment quantities K 1 and k • P 1 . Notice that k ⊥ = 0 implies k z U 1z = 0 ⇒ U 1z = 0. We compute K 1 by taking the first-order moment of (37). Upon integrating by parts and recalling R T k = Rk = k, we have

K 1 = v f 1 (v) dv = v ∂f 0 ∂v ⊥ • 0 -∞ iαk z v z R T (τ ) U 1 -βB 0 × R T (τ ) U 1 e i(kzvz τ -ωτ ) dτ dv ⊥ dv z = - 0 -∞ f 0 iαk z v z R T (τ ) U 1 -βB 0 × R T (τ ) U 1 e i(kzvz τ -ωτ ) dτ dv = - 0 -∞ f0 (v 2 z /2) iαk z v z R T (τ ) U 1 -βB 0 × R T (τ ) U 1 e i(kzvz τ -ωτ ) dτ dv z .
Hence,

K 1z = 0 .
The above relation means that the momentum perturbation K 1 is coplanar with U 1 , i.e., K 1 × U 1 = 0 and therefore the density perturbation vanishes, since

n 1 = -k • K 1 /ω ≡ 0.
Here, we have introduced the notation f0 (v 2 z /2) = f 0 dv ⊥ . Notice that, by proceeding analogously, we have

k • P 1 = - 0 -∞ f0 (v 2 z /2) k z v z iαk z v z R T U 1 -βB 0 × R T U 1 e i(kzvz -ω)τ dτ dv z
At this point one needs to compute the matrix integral

A = 0 -∞ e i(kz vz-ω)τ R(τ ) dτ ,
whose components are

A 11 = A 22 = -i k z v z -ω (k z v z -ω) 2 -ω 2 B0 , (40) 
A 12 = -A 21 = ω c (k z v z -ω) 2 -ω 2 B0 , (41) 
A 33 = - i k z v z -ω .
In the above equations, the integrations are defined for Im(ω) > 0; following the standard procedure the solution is extended to the lower complex plane by analytical continuation. In conclusion, we have

K 1 = - f0 (v 2 z /2) iαk z v z 1 -β B 0 A T U 1 dv z ,
where we recall B 0ij = -ǫ ijk B 0k and (A U 1 ) z = 0, so that K 1z = 0. Similarly, we obtain

k • P 1 = -k z v z f0 iαk z v z 1 -β B 0 A T U 1 dv z . ( 42 
)
Once the moment quantities K 1 and k • P 1 are written explicitly, one is ready to write the dispersion relation for the case k ⊥ = 0. Inserting the relation (42) into (36) yields

(k 2 z b 2 -ω 2 ) U 1 = ω k z v z f0 iαk z v z A T U 1 -βB 0 × A T U 1 dv z . ( 43 
)
Notice, since U 1z = (A T U 1 ) z = (B 0 × A T U 1 ) z = 0, this relation only possesses planar components. At this point, direct algebraic computations on the above relation give the following dispersion relation:

D ± (ω, k z ) := ω 2 -k 2 z v 2 A + ω(αω ∓ ω c )n 0 1+ (ω ∓ ω c ) ∞ -∞ F k z v z -ω ± ω c dv z = 0 , ( 44 
)
where all physical constants have been restored:

B 0 = B 0 e z , ω c = q h B 0 /m h is the cyclotron frequency of the en- ergetic component, v A = B 0 / √ µ 0 ρ indicates the Alfvén
speed based on the constant equilibrium magnetic field B 0 and the constant bulk mass density ρ, and F := f0 /n 0 with n 0 = ∞ -∞ f0 dv z , so that n 0 is a dimensionless number indicating the ratio between the equilibrium mass density of the energetic component and that of the bulk component. (For details of this calculation see Appendix B.)

B. Analysis of dispersion relation

Next we analyze the dispersion relation (44). Recall, if one sets α = 1 in (44), one obtains the dispersion relation for the Hamiltonian model, whereas α = 0 gives that for the non-Hamiltonian model. We will see that neglecting the terms that make the starting model Hamiltonian leads to important qualitative differences in the stability properties.

Some consequences of the dispersion relation (44) are immediate. In the absence of energetic particles (n 0 = 0), one recovers the dispersion relation ω = ±v A k z , describing Alfvén waves propagating along the z-direction. Next, assume 'cold hot' particles, i.e., the case where F is the Dirac delta function δ(v z ). In this case the hot particle contribution again vanishes, indicating that thermal effects are necessary to influence the Alfvén waves for both the Hamiltonian and non-Hamiltonian models.

To further analyze the two PCS' consider Fig. 1, where results are displayed from a numerical solution of the dispersion relation of (44) for the kappa distribution,

f (κ) 0 = n 0 (πκv 2 0 ) 3/2 Γ(κ + 1) Γ(κ -1/2) 1 + v 2 κv 2 0 - (κ+1) 
.

Here v 0 reflects the thermal velocity v th = k B T /m h . Note, for large values of κ the κ-distribution is indistinguishable from the Maxwellian (see, e.g., [START_REF] Podesta | Plasma dispersion function for the kappa distribution[END_REF]), and we have verified this by direct calculation by comparing the two for κ = 50. In Fig. 1, the imaginary part of the frequency, γ, is plotted against the wavenumber, k z , suitably normalized, for the counter polarization, i.e., for D + , which gives the weakest damping. In this figure we consider a hydrogen bulk plasma with a particle density of 10 14 cm -3 , a magnetic field of 35 kgauss, and a alpha particle component with temperature of 3.6 MeV and fractional density n 0 = 5 × 10 -3 . This gives v 0 /v A = 1.2 and ω c = 8.4 × 10 7 Hz. Since n 0 ≪ 1, the real part of the frequency corresponds nearly to the Alfven wave, i.e., ω r ≈ k z v A , so it is not plotted. Figure 1(a) depicts γ for the Hamiltonian PCS, while Fig. 1(b) shows the corresponding plot for the non-Hamiltonian PCS. The same behavior was found by varying n 0 within the range n 0 ≈ 10 -3 -10 -1 , in agreement with the relations (48)-(50) below, obtained by the small growth rate expansion.

The first observation to make is that both the Hamiltonian and usual non-Hamiltonian models have similar behavior for low frequencies. This is to be expected, since the non-Hamiltonian pressure coupling model was first developed to explore linear low frequency behavior. In fact, for example in [START_REF] Cheng | A kinetic-magnetohydrodynamic model for low-frequency phenomena[END_REF], low frequency 'δW ' type arguments were given that indicate stability in this frequency regime, which is consistent with the figures. However, upon examinination of Fig. 1 for larger values of k z or ω r ≈ k z v A , we see that Figs. 1(a) and 1(b) differ as ω r approaches and exceeds ω c . Most significantly, we see that the non-Hamiltonian PCS possess an instability for frequencies greater than ω c , as is clearly evident in Fig. 1(b). Since the equilibrium we are considering has no available free energy, in either the bulk or in the hot particles, this instability must be nonphysical and reflects the lack of energy conservation in non-Hamiltonian PCS. For the Hamiltonian PCS displayed in Fig. 1(a), the system damps as expected. The hot particles provide Landau damping, in much the way one expects for electron Landau damping of Alfvén and whistler modes, with the mode at ω c being undamped for one of the polarizations.
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For κ = 1, it is easily shown by residue calculus that

+∞ -∞ F k z v z -ω ± ω c dv z = - 1 ik z v 0 + ω ∓ ω c ,
where we recall F = f0 (v 2 z )/n 0 and f0 (v 2 z ) is obtained from Eq. ( 44) for κ = 1 (i.e. f

0 (v 2 )), upon integrating out the perpendicular components of the velocity. Thus (44) becomes

ω 2 -k 2 z v 2 A + in 0 ω k z v 0 (αω ∓ ω c ) ik z v 0 + ω ∓ ω c = 0 .
From which one obtains for n 0 ≪ 1, by expanding about ω = k z v A + iγ + δω r , the perturbed frequency

γ = - n 0 2 k z v 0 (αk z v A ∓ ω c )(k z v A ∓ ω c ) k 2 z v 2 0 + (k z v A ∓ ω c ) 2 (46) δω r = - n 0 2 k 2 z v 2 0 (αk z v A ∓ ω c ) k 2 z v 2 0 + (k z v A ∓ ω c ) 2 .
(47)

From ( 46) we see explicitly the spurious crossover to instability at ω c observed in Fig. 1(b) that occurs for α = 0. Similar, although progressively more complicated, formulae exist for higher values of κ (see, e.g., relation (117) in [START_REF] Podesta | Plasma dispersion function for the kappa distribution[END_REF]), but we will not present these here. Finally, we further explore the differences between the Hamiltonian and non-Hamiltonian models for arbitrary isotropic equilibria by examining the so-called small-γ approximation for each. Thus, we assume the resonant denominator of (44) gives rise to weak damping, and write ω = ω r + iγ, D = D ± r + iD ± i , and then expand as usual to obtain

D ± r (ω r , k z ) = 0 , γ = - D ± i (ω r , k z ) ∂D ± r (ω r , k z )/∂ω r . (48) 
For n 0 ≪ 1, ∂D ± r /∂ω r ≈ 2k z v A , and, thus, γ ≈ -D ± i (kv A , k z )/(2kv A ). Using the Plemelj relations we obtain the following form (44):

D ± i (ω r , k z ) = (49) πn 0 (αω r ∓ ω c )(ω r ∓ ω c ) ω r k z F ω r ± ω c k z .
For the Hamiltonian PCS, α = 1 and

D ± i = πn 0 (ω r ∓ ω c ) 2 ω r k z F ω r ± ω c k z . ( 50 
)
which indicates damping for both polarizations, except for the upper sign at ω r = k z v A = ω c where the damping vanishes. However, upon setting α = 0 we obtain for the non-Hamiltonian PCS, the following:

D ± i (ω r , k z ) = πn 0 ω c (ω c ∓ ω r ) ω r k F ω r ± ω c k z , (51) 
which reveals the strange nonphysical crossover to instability for one of the polarizations when ω r > ω c . For the record, a calculation similar to that for the PCS gives for the CCS the dispersion relation

D ± (k z , ω) = ω 2 -k 2 z v 2 A (52) + ωω c n 0 ω c +∞ -∞ F k z v z -ω ± ω c dv z ∓ 1
whence we obtain for the Hamiltonian CCS, following

± i (ω r , k z ) = πn 0 ω 2 c ω r k z F ω r ± ω c k z . ( 53 
)
Although (53) indicates a damping rate that is different from that of the Hamiltonian PCS, it does not possess the spurious instability possessed by the non-Hamiltonian PCS.

The damping rates indicated by (50), (51), and (53) have several features in common. First, for low frequencies, ω r ≪ ω c , their intended regime, they all agree. Next, they all scale with F (as opposed to its derivative) which is appropriate for parallel propagating transverse waves for all isotropic equilibrium distribution functions (not just Maxwellians) [START_REF] Krall | Principles of plasma physics[END_REF]. For higher frequencies, (50), (51), and (53) disagree so it is useful to compare with a full kinetic theory with electrons, ions, and hot particle components. For cold electron and ion temperatures, only the hot species contributes to the damping, and it is an elementary exercise to show that D i for this case behaves precisely as (53), the result for the CCS. Thus, in this frequency range the CCS gives the best answer, although the Hamiltonian PCS may be reasonable. Clearly, the non-Hamiltonian result is unsatisfactory.

V. DISTURBANCES WITH kz = 0

This Section presents the dispersion relation for certain linear waves propagating transversely to the magnetic field. These modes are allowed by the Hamiltonian PCS model ( 27)-( 29) (with ∇ • U = 0), while they are forbidden by the (incompressible) non-Hamiltonian variant ( 22)- [START_REF] Morrison | Hamiltonian description of the ideal fluid[END_REF]. In particular, we study the special case U 1⊥ = 0, which is consistent with the incompressibility relation k • U 1 = 0.

In order to find the dispersion relation, we specialize Eq. (36) by setting k z = 0. In turn, this affects the Vlasov perturbation (37). Since U 1 = U 1z e z and B 0 ×R T (τ ) U 1 = U 1z (B 0 ×R T (τ )e z ) = U 1z (B 0 ×e z ) = 0 , the Vlasov perturbation (37) becomes

f 1 = iα 0 -∞ (k • R(τ )v) ∂f 0 ∂v • R T (τ ) U 1 e i(k•X-ωτ ) dτ = iα U 1z ∂f 0 ∂v z 0 -∞ v ⊥ • R T (τ )k e i(k ⊥ •X ⊥ -ωτ ) dτ ,
which shows how the non-Hamiltonian model (α = 0) precludes the existence of transversal modes such that U 1⊥ = 0. In what follows, we consider the Hamiltonian case by setting α = 1. Notice that, since X ⊥ does not depend on v z , the above expression yields n 1 = f 1 d 3 v = 0. Therefore, the relation n 1 = k • K 1 allows the case K 1 = K 1z e z , where

K 1z = iα U 1z v z ∂f 0 ∂v z 0 -∞ v ⊥ • R T (τ )k e i(k ⊥ •X ⊥ -ωτ ) × dτ dv ⊥ dv z = -iα U 1z k ⊥ • 0 -∞ f 0 R(τ )v e i(k ⊥ •X ⊥ -ωτ ) dτ d 3 v .
Then, combined with the velocity relation (36) and making use of the moment equation for K 1 in Section III B, the special case K 1⊥ = 0 yields U 1z = K 1z along with the dispersion relation

1 + i 0 -∞ (k ⊥ • R(τ )v) f 0 e i(k ⊥ •X ⊥ -ωτ ) dτ d 3 v = 0 .
This is an expected Bessel function type of dispersion relation and its detailed study is left for future work.

VI. SUMMARY AND CONCLUSIONS

After a review of hybrid kinetic-MHD models, we presented a comparative study of Hamiltonian and non-Hamiltonian pressure-coupling schemes, where the latter suffer by not conserving energy exactly. In particular, the two models were compared from the point of view of linear stability and their dispersion relations were presented and analyzed. The special cases of pure parallel and perpendicular wave propagation were considered.

Upon considering κ equilibria for the hot component, it was shown that the non-Hamiltonian PCS possesses an instability absent in its Hamiltonian variant and in the CCS, which is also Hamiltonian. We argued that the instability emerging in the non-Hamiltonian model is not physically viable. Extensive investigation of the dispersion relation will be considered in future work.

Although the mode is of large frequency and thus outside the original intent of the PCS models, which were developed to describe low frequency behavior, their presence would suggest results obtained from non-Hamiltonian PCS models extended into this regime should be viewed with caution. Even if some artifice, numerical or other, were used to suppress the unphysical linear instability, nonlinear coupling could give rise to differences in their turbulent transport behavior.

The Leibniz property, bilinearity, and antisymmetry are easily built into the generic form of the Poisson bracket, but the proof of the Jacobi identity may require some effort. (See [START_REF] Morrison | Hamiltonian and action principle formulations of plasma physics[END_REF][START_REF] Morrison | Hamiltonian description of the ideal fluid[END_REF][START_REF] Morrison | Hamiltonian and action principle formulations of plasma dynamics[END_REF][START_REF] Morrison | Poisson brackets for fluids and plasmas[END_REF] for review and the Appendix of Ref. [START_REF] Morrison | A general theory for gauge-free lifting[END_REF] for a particularly onerous direct proof.) Such Poisson brackets need not have the canonical form of conventional field theories and may possess degeneracy -because of this they were called noncanonical in Ref. [START_REF] Morrison | Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics[END_REF].

The Poisson brackets for the Hamiltonian models of the present paper were given in [START_REF] Tronci | Hamiltonian approach to hybrid plasma models[END_REF], where it was also shown how they may be used to formulate new hybrid MHD models that conserve energy exactly. Indeed, while exact conservation of ( 18) is guaranteed for the CCS model ( 14)-( 17 In the above formulas, [X, Y ] := -(X • ∇)Y +(Y • ∇)X is minus the commutator on vector fields. The proof that the above bilinear, antisymmetric operators are indeed

Poisson brackets (satisfying Leibniz and Jacobi) can be carried out by explicit verification. However, upon recognizing that these brackets are composed of terms of the original bracket of MHD [START_REF] Morrison | Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics[END_REF] and that of the Maxwell-Vlasov system [START_REF] Marsden | The Hamiltonian structure of the Maxwell-Vlasov equations[END_REF][START_REF] Marsden | Hamiltonian systems with symmetry, coadjoint orbits and plasma physics[END_REF][START_REF] Morrison | Poisson brackets for fluids and plasmas[END_REF][START_REF] Morrison | The Maxwell-Vlasov equations as a continuous Hamiltonian system[END_REF], together with later work on the two-fluid system [START_REF] Spencer | The Hamiltonian structure of multi-species fluid electrodynamics[END_REF][START_REF] Spencer | Hamiltonian structure of two-fluid plasma dynamics[END_REF], it is not difficult to ascertain the validity of the Jacobi identity. Alternatively, one can begin with an action principle and derive the Poisson brackets, thereby ensuring the Jacobi identity. Such a Lagrangian formulation of the PCS Eqs. ( 27)-( 29) was given in [START_REF] Holm | Euler-Poincaré formulation of hybrid plasma models[END_REF]. We remark also that an action principle derivation of a linearized PCS model was presented in [START_REF] Brizard | Eulerian action principles for linearized reduced dynamical equations[END_REF]. This appendix contains the main steps leading to the dispersion relation (44). The starting point is the observation that U 1z = (A T U 1 ) z = (B 0 × A T U 1 ) z = 0 forces relation (43) to possess only planar components. Then, one can write the dispersion relation as

ω 2 -k 2 z v 2 A ω -k z ∂ f0 ∂v z (iαk z v z A 11 + βv A A 12 ) dv z 2 = k z ∂ f0 ∂v z (iαk z v z A 12 + βv A A 11 ) dv z 2 ,
where we recall the definitions (40)-( 41). (Notice that f0 denotes the distribution function divided by the constant bulk particle density). Then, after some computations and upon restoring physical constants, one is led to

ω 2 -k 2 z v 2 A ω + α ∞ -∞ (k z v z ) 2 f0 k z v z -ω ± ω c dv z (B1) = ±βω c ∞ -∞ k z v z f0 k z v z -ω ± ω c dv z .
The integrals of (B1) are then rearranged as follows:

∞ -∞ k 2 z v 2 z f0 k z v z -ω ± ω c dv z = (ω ∓ ω c ) n 0 + (ω ∓ ω c ) ∞ -∞ f0 k z v z -ω ± ω c dv z ∞ -∞ ω c k z v z f0 k z v z -ω ± ω c dv z = ω c n 0 + (ω ∓ ω c ) ∞ -∞ f0 k z v z -ω ± ω c dv z .
Finally, upon recalling that β = 1 -α, we write the dispersion relation as

ω 2 -k 2 z v 2 A ω = ± ω c (1 -α) -α(ω ∓ ω c ) × n 0 + (ω ∓ ω c ) ∞ -∞ f0 k z v z -ω ± ω c dv z ,
which eventually reduces to (44).

  and the dot indicating the derivative with respect to the evolution parameter t * .Then, upon introducing the notation ω B 0 = |B 0 | (i.e. the cyclotron frequency, upon restoring physical quantities) and the planar rotation

Figure 1 :

 1 Figure 1: Plots of the normalized damping/growth rates vs. wavenumber kz for the PCS using the kappa distribution of Eq. (45) for different values of κ. Here n0 = 5 × 10 -3 and v0/vA = 1.2. Panel 1(a) corresponds to the Hamiltonian PCS, which shows the expected damping, while Panel 1(b) corresponds to the non-Hamiltonian PCS, which depicts the spurious instability for frequencies above ωc.

  Appendix B: Derivation of dispersion relation for k ⊥ = 0

  ) by its noncanonical Poisson bracket{F, G} CCS = m •

											δF δm	,	δG δm	d 3 x	(A1)
	-ρ		δF δm		• ∇	δG δρ	-	δG δm	• ∇	δF δρ	d 3 x
	+ q h f B •			δF δm	×	δG δm
	-	δF δm	×	∂ ∂p	δG δf	+	δG δm	×	∂ ∂p	δF δf	d 3 x d 3 p
	+ f		δF δf	,	δG δf	
	+ q h B •	∂ ∂p		δF δf	×	∂ ∂p	δG δf	d 3 x d 3 p
	+ B •	δF δm	× ∇ ×	δG δB	-	δG δm	× ∇ ×	δF δB	d 3 x ,
	the PCS models available in the literature fail to con-
	serve energy exactly. For the Hamiltonian PCS (HPCS)
	(27)-(29), exact conservation of (14)-(17) follows from
	the Poisson bracket					
	{F, G} HP CS = M •		δF δM	,	δG δM	d 3 x	(A2)
	-ρ	δF δM	• ∇	δG δρ	-	δG δM	• ∇	δF δρ	d 3 x
	+ f		δF δf	,		δG δf	
	+ q h B •		∂ ∂p	δF δf	×	∂ ∂p	δG δf	d 3 x d 3 p
	+ f	δF δf	, p •	δG δM		-	δG δf	, p •	δF δM	d 3 x d 3 p
	+ B •	δF δM	× ∇ ×	δG δB	-	δG δM	× ∇ ×	δF δB	d 3 x .

Acknowledgments C.T. is indebted with J. Carrillo, P. Degond, D.D. Holm, G. Lapenta and C. Sovinec for several interesting discussions. Partial support by the Institute of Mathematics and its Applications Grant # SGS27/13 is greatly acknowledged. P.J.M. gratefully acknowledges stimulating conversations with B. Breizman, C.-Z. Cheng, C.W. Horton, F. Pegoraro, and F. Waelbroeck. His research was supported by U.S. Dept. of Energy Contract # DE-FG05-80ET-53088. E.T. acknowledges financial support from the Agence Nationale de la Recherche (ANR GYPSI) and from the CNRS PEPS project GEO-PLASMA.