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Monocular Multi-Kernel Based Lane Marking Detection

Wenjie Lu1,2, Sergio A. Rodriguez F.1,2, Emmanuel Seignez1,2 and Roger Reynaud1,2

Abstract—Lane marking detection provides key information
for scene understanding in structured environments. Such
information has been widely exploited in Advanced Driving
Assistance Systems and Autonomous Vehicle applications. This
paper presents an enhanced lane marking detection approach
intended for low-level perception. It relies on a multi-kernel
detection framework with hierarchical weights. First, the de-
tection strategy performs in Bird’s Eye View (BEV) space
and starts with an image filtering using a cell-based blob
method. Then, lane marking parameters are optimized following
a parabolic model. Finally, a self-assessment process provides
an integrity indicator to improve the output performance of
detection results. An evaluation using images from a public
dataset confirms the effectiveness of the method.

I. INTRODUCTION

On-vehicle lane marking detection plays an important

role in Advanced Driver Assistance Systems (ADAS) and

Autonomous Vehicles (AV). In this context, this function con-

stitutes a key part of low-level perception, which is intended

to help scene understanding [1] by estimating the shape and

the localization of the lane markings. Such information can

be exploited within more complex systems, for instance,

Automatic Cruise Control [2], drowsiness detection systems

[3], and vehicle localization systems [4].

This subject has been widely studied for decades and

recent remarkable progresses have been summarized in [5].

Most of existing lane detection approaches follow a com-

mon strategy composed of three stages: sensor type, feature

extraction, and model fitting.

Sensor type. Different kinds of vision systems are used

within the state-of-the-art. Fisheye cameras [6] are well

suited for multi-marking detection thanks to wide capture

range. However, the marking shapes are deformed because

of distortion, making lane fitting a complex task. Stereo

vision systems [7] grant access to dense 3D data where road

structure, such as road curbs, can be detected. Laser-based

approaches [8] provide a clear signature (i.e. reflectiveness)

of the lanes invariant to light changes. This kind of sensor,

however, is rarely adopted because of its high integration

cost. Compared to laser sensors, monocular vision remains

a mature technology at a lower cost. The sensitivity of

vision systems to light changes can be alleviated by image

processing algorithms as stated in [9]. In this study, a facing-

forward camera on board of a vehicle is adopted.

Feature extraction. Feature extraction methods enfold

lane marking descriptors, as well as different techniques

employed to discriminate potential lane markings. Color is
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the most common property for marking detection, but color

based descriptors do not deal with light changes. Color-

gradient based methods are better suited to complex outdoor

conditions. For instance, Histogram of Oriented Gradients

(HOG) can be used to describe pixel features in [10]. Other

approaches rely on multi-cue fusion for increasing robustness

in advance. For example, in [11], color, color gradient and

road shape are combined to model a confidence in a particle

filter. In this paper, second order derivative filter and cell-

based blob algorithm inspired from [12] are considered.

Model fitting. Several geometry models in BEV space

have been proposed: straight lines [13], parabolic curves

[14], and splines [9]. In semi-urban environments, the use

of a naive straight line model is not appropriate, since only

a few part of the road scenarios can be correctly fitted.

Curve models and multi-models fit the majority of lane

markings in real road conditions, however the increasing

model complexity implies a higher computation time. A

parabolic model is a trade-off between model complexity and

time cost in our method.

Different fitting methods have been studied intended to re-

trieve high precision and low computation time. For instance,

straight lines are fitted by Hough transform in [15]. A multi-

kernel based framework is adopted to determine all the three

parameters of a parabola model together in [16]. At first, the

“distance” between a single pixel and a specific parabola is

described as a probability density function. The probability

distribution of the parabolic model is then obtained by

integrating the probability density function. This multi-kernel

based method is introduced in our method and improved in

two aspects. For one thing, a parametric Gaussian model

based initialization is proposed to provide a prior guess

of the parabola’s zero order component. This initialization

step greatly reduces the computation time because only two

parameters are optimized in multi-kernel method. For the

other, hierarchical weights are introduced into probability

density function, in order to ensure robustness.

To improve the output performance of marking detection

method, a self-assessment indicator is proposed. This indi-

cator describes quality of a detected marking. An indicator

threshold is set according to Receiver Operating Character-

istic (ROC) curve to determine a qualified detection.

The remainder of this paper is structured as in Fig. 1.

Section II introduces image processing stage. Section III

explains parameter estimation stage. Section IV presents

experimental results. The paper is concluded in Section V.
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Fig. 1. Paper structure.

II. IMAGE PROCESSING

In image processing part, a second-order derivative filter is

utilized to extract marking features in BEV space at first, and

a cell-based blob algorithm is employed to eliminate potential

outlier features.

A. Inverse Perspective Mapping

The road images are captured by a monocular camera,

which is modeled using a pinhole projective model assuming

no distortion and zero skew. The images are processed

through Inverse Perspective Mapping (IPM), from perspec-

tive space to BEV space. This transformation provides ver-

tical and paralleled lane markings in BEV space, which

greatly facilitates marking detection strategies. In addition,

BEV images are stabilized in case of distortion caused by

road slopes, according to [17]. At first, the detected parabolic

markings of last frame are approximated to two straight line

markings, which is intended to estimate the vanishing point.

The derived vanishing point assists to obtain adjusted pitch

and yaw angle.

B. Second-order Derivative filter

A second order derivative filter along the horizontal direc-

tion is applied to process BEV images where lane markings

are nearly vertical. This filter is presented as follows:

Ixx = Gx ∗Gx ∗ I, (1)

where I is input image, Gx = [+1, 0,−1] is horizontal Sobel

descriptor, Ixx is the filtered image.

Second-order derivative is able to detect “black-white-

black” transition, if the width of the “white” part is less than

5 pixels. Assuming that a marking width is between 10-35

cm in reality, the width of projected marking in BEV image

is 1-4 pixel, with the resolution 0.1m/pixel. So second-order

derivative filter is able to detect the marking pixels in BEV

images. In addition, time consuming of this method is much

less than complex extraction methods such as CANNY.

C. Cell-based blob algorithm

To eliminate the outliers included in the image, a cell-

based blob algorithm inspired from [12], is introduced. As

depicted in Fig. 2, the image is divided into 4 × 4 cells at

first, then all the blobs in the image are searched. The blob

directions are classified into 9 bin levels (20◦ per bin). So

every blob has its own bin level. All the bin levels in a cell

can vote for the main bin level of the current cell, as shown in

Fig. 2(b). All the cells’ main bin levels can vote for the main

bin level of the entire image. Meanwhile, a bin level template,

as depicted in Fig. 2(c), is constructed offline according to

various detected marking results. This template represents

possible bin levels in different cells. For instance, as in Fig

2(a), left-heading markings appear only at the left side part

of a BEV image, and is unable to appear at the right side

part. In the end, outlier blobs are excluded according to three

conditions: the main bin level of the image, the bin level

template, and the size of blob. The output result is shown in

Fig. 2.

(a) (b) (c) (d)

Fig. 2. Blob algorithm. (a) input binary image, (b) voted bin levels in each
cell, (c) bin level template, (d) output image.

By the end of image processing part, a binary image is

produced. White pixels represent lane marking candidates.

Considering the complexity and diversity of outdoor traffics,

some noise pixels still exist in the image. The next section

explains approaches to estimate lane marking parameters

from a M ×N binary image with a few noise pixels.

III. PARAMETER ESTIMATION

A parabola: x = c+d·y+e·y2 is chosen as marking model

in BEV space. On one side, the marking shape variation

is restricted because of IPM range in our method, so a

parabola is more suitable than complex models (i.e. spline-

like model). On the other side, a straight line model, which

appears frequently in real situations, is included in parabola

model. The marking initialization step determines the zero

order component c. The first and second order components d
and e are estimated through an improved multi-kernel based

method with hierarchical weights.

A. Marking Initialization

This part aims to determining the zero order components cl
and cr of left and right markings together using a parametric

Gaussian model based method. To this end, the intersections

of both lane markings at x-axis in BEV images are estimated

using multi-cues. These two intersections are exactly model

parameters cl and cr. First, a Region Of Interest (ROI) IROI

with the size of MROI × N , is cropped from the binary

image, as shown in Fig. 3(a). The length MROI should be set

carefully. The markings cannot be approximated as straight

lines if MROI is too long, the discontinuous markings do

not appear in IROI if MROI is too short. Then the following

distributions are considered: previous detection distribution

X1, white pixels distribution X2, Hough lines distribution

X3, prior data distribution X4 and lane width distribution



X5. The normalized distributions X1 to X5 are shown as in

Fig. 3(c)-(d).
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Fig. 3. Parametric Gaussian model based Initialization. (a) ROI, (b)
amplified ROI, (c) lane width distribution X5, (d) Gaussian distributions
X1 to X4 corresponding to (b). Estimated results c∗

l
and c∗r are depicted

as two red dot in (b).

Normally, in BEV space the intersections move smoothly

along the first row of IROI if the input frame frequency

is high enough. So the positions of both intersections are

strongly related to the previous position cprel and cprer .

Distribution X1 is therefore represented as:

X1 ⇠ 1/2 ·
⇥

N
(

cprel , σ2
1

)

+N
(

cprer , σ2
1

)⇤

. (2)

White pixels at the bottom row of IROI are also potential

candidates. The white pixels distribution is:

X2 ⇠ 1/nw ·
⇥

N
(

µw,1, σ
2
2

)

+ · · ·+N
(

µw,nw
, σ2

2

)⇤

, (3)

where µw,1, · · · , µw,nw
are locations of the white pixels

along x-axis.

Considering that dashed markings may have no white pixel

cues, for instance the left marking in Fig. 3(a), Hough trans-

form is helpful to find the intersections of these discontinuous

markings. Let µht,1, · · · , µht,nht
denote the intercepts of

these Hough lines on x-axis, the Hough line distribution is:

X3 ⇠ 1/nht ·
⇥

N
(

µht,1, σ
2
3

)

+ · · ·+N
(

µht,nht
, σ2

3

)⇤

.
(4)

The prior distribution N
⇣

µ4,l, σ
2
4,l

⌘

and N
(

µ4,r, σ
2
4,r

)

are

fitted offline according to numerous historical data which is

deinfed as:

X4 ⇠ 1/2 ·
⇥

N
(

µ4,l, σ
2
4,l

)

+N
(

µ4,r, σ
2
4,r

)⇤

. (5)

The lane width distribution is represented as:

X5 ⇠ 1/2 ·
⇥

N
(

dstr, σ
2
5

)

+N
(

dcor, σ
2
5

)⇤

, (6)

where dstr and dcor denote the average lane width of straight

sections and corner sections respectively. The probability

distribution of cl and cr is then given as

pt(cl, cr)=

2

4

X

j=l,r

 

3
X

i=1

ki ·pi (cj)

!

·p4(cj)

3

5·p5(cl − cr), (7)

where pi(x) is probability density of Xi, ki is a coefficient

of pi(x). The probability distribution pt(cl, cr) of the input

image Fig. 3(a) is shown in Fig. 4.

Finally the intersections of left and right lane markings c⇤l
and c⇤r , are determined as follows:

c⇤l , c
⇤

r = argmax
cl,cr

pt(cl, cr). (8)
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Fig. 4. The probability distribution of pt(cl, cr).

B. Multi-Kernel Based Estimation with Hierarchical Weights

A multi kernel density based method with hierarchical

weights is introduced to estimate the model parameters. The

basic descriptor of this algorithm is the similarity between

an image pixel (xi, yi) with the slope tan θi and the model

(c, d, e), presented as:

Gpi(c, d, e, xi, yi) =

ˆ +1

−1

K 0

xKyK
0

θdy, (9)

where

Ky =
1

q

2πσ2
yi

exp

 

−
(y − yi)

2

2σ2
yi

!

(10)

K 0

x =
1

p

2πσ2
xi

exp

✓

−
(c+ dy + ey2 − xi)

2

2σ2
xi

◆

(11)

K 0

θ =
1

p

2πσ2
θi

exp

✓

−
(atan(−2ey − d)− θi)

2

2σ2
θi

◆

. (12)

GaussHermite quadrature method [18] is employed to com-

pute the numerical solution of Gpi. When Gpi is derived, the

probability of a specified model pGpi(d, e) is defined as:

pGpi(d, e) =
1

nt

ntotal
X

i=1

w(xi, yi) ·Gpi(cm, d, e, xi, yi), (13)

where nt is the total number of white pixels in the image.

w(xi, yi) is a hierarchical weight, which offers corresponding

coefficient according to different areas of an BEV image. The

assignment of w(xi, yi) is depicted in Fig. 5. In the figure,

the current lane markings are more likely to appear in darker

areas than in lighter areas, therefore, the pixels in darker

areas are valued with a higher weight. Relatively the effect

of noise pixels (e.g. vehicles on the road) in light areas are

alleviated, with a lower weight.

The left and the right marking probabilities are computed

together as in equation (14) to obtain the optimized param-

eters d⇤l , e⇤l , d⇤r , e⇤r , with a geometrical constraint presented

in equation (15) and (16).

d⇤l , e
⇤

l , d
⇤

r , e
⇤

r =argmax
djl

,djr ,ejl ,ejr

[pGpi(dil , ejl) + pGpi(dir , ejr )]. (14)

djr 2 (djl −4d, djl +4d) (15)

ejr 2 (ejl −4e, ejl +4e). (16)
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Fig. 5. Assignment of hierarchical weight w(xi, yi) in BEV space.

Therefore, c⇤l and c⇤r are estimated in the initialization step,

and d⇤l , e⇤l , d⇤r , e⇤r are optimized using multi-kernel method.

The current lane markings are detected.

C. Self-assessment Indicator

When a marking in a frame is estimated, a self-assessment

indicator is designed to qualify the detection. To this end, a

confidence conf is employed to measure a detected marking.

At first, a set Φc of pixels with higher contribution to the

detected markings (c⇤, d⇤, e⇤) are defined as follows:

Φc = {(xi, yi)|Gpi(c
⇤, d⇤, e⇤, xi, yi) ≥ Gthres} , (17)

where i = 1, ..., ncon, Gthres is confidence threshold, ncon

is the total number of high contributed pixels in the image.

Then the frame is divided into L average blocks along

y-axis. The set Φl
c of pixels in lth block is defined as:

Φl
c =

⇢

(xi, yi)|(xi, yi) 2 Φc,
M

L
l  yi <

M

L
(l + 1)

}

, (18)

where l = 0, 1, ..., L − 1, i = 1, ..., ncon,l, ncon,l is the

number of high contributed pixels in lth block.

When the number of high contributed pixels in all the

blocks are derived, the confidence of a detection can be

defined as:

conf =
ncon

L

L
X

l=1

pcon,l, (19)

where

pcon,l =

(

L·ncon,i

ncon

ncon,i

ncon
 1

L
L·ncon,i

(1−L)·ncon
+ L

L−1 else
. (20)

In confidence conf , both the number of contributed pixels

(ncon/L in equation (19) ) and the distribution of these

pixels (
PL

l=1 pcon,l in equation (19) ) are considered. A

detection result which has more contributed pixels and whose

contributed pixels are more equally distributed earns a higher

confidence.

With confidence conf and an optimized threshold T ⇤

conf ,

the detected markings can be classified. If both left and

right detections are qualified, accept these two detections,

and apply local parameter estimation in the next frame. If

one detection is qualified while the other is not, accept the

qualified detection and estimate the detection on the other

side according to the qualified result, meanwhile apply local

(a)

(c)

(b)

Fig. 6. The procedures from road surface benchmarks to lane marking
benchmarks. (a) road surface benchmark in perspective space. (b) road
surface benchmark (cyan), reference markings (blue) and the markings (red)
in BEV space. (c) road surface benchmark (cyan), reference markings (blue)
and detected markings (red) in perspective space.

parameter estimation in the next frame. If neither detection is

qualified, reject both of them and estimate the lane markings

according to previous detections, and apply global parameter

estimation in the next frame. The estimation of T ⇤

conf is

introduced in IV-B.

IV. RESULTS

A. Ground truth from KITTI database

The lack of a standard and unified evaluation environment

is one of the most critical problems in quantifying the perfor-

mance of marking detection, as stated in [5]. To assess our

result in a public dataset and provide a universal evaluation

for comparison, we make use of the road surface ground

truth frames included in KITTI database [19], enriched with

a lane marking annotation presented below. The ground truth

dataset addresses three different road types: urban unmarked

(UU), urban marked two-way road (UM), and urban marked

multi-lane road (UMM). UM images are chosen to evaluate

our method because the boundaries of road surface bench-

mark in this type represent exactly the reference markings.

The annotation procedure is illustrated in Fig. 6. When a

benchmark image is inputed as Fig. 6(a), the benchmark road

surface is projected into BEV space as cyan area in Fig. 6(b).

Then the left and the right boundaries of the road surface

are considered as a pair of reference markings, which are

shown as blue pixels in Fig. 6(b). For contrast, a pair of

markings detected by our method are depicted as red pixels

in Fig. 6(b) as well. Fig. 6(c) illustrates the road surface

benchmark (cyan), the reference markings (blue) and the

detected markings (red) in perspective image. When road

surface is occluded by objects in some UM images, the road

surface is annotated manually.

B. Indicator Threshold Estimation

One usage of the reference markings is to derive the

optimized indicator threshold T ⇤

conf . To this end, a confusion

matrix is constructed as Table I, including the required

confusion matrix elements: true positive (TP), false positive

(FP), true negative (TN) or false negative (FN).

After that, True Positive Rate TPR = TP
TP+FN

and False

Positive Rate FPR = FP
FP+TN

with different Tconf are

calculated, shown as the green stars in Fig. 7. A function



self-assessment indicator
conf ≤ Tconf conf > Tconf

with MAE > 4pxl TN FP
ground truth MAE ≤ 4pxl FN TP

TABLE I
DEFINITION OF CONFUSION MATRIX ELEMENTS

y(x) = (ax − bx)/(a − b) is fitted as ROC curve according

to the sample points, depicted as red curve in Fig. 7. The

optimized point is obtained as the nearest point on ROC curve

to the perfect classification point (0, 1) [20], depicted as the

red dot in Fig. 7. Optimized threshold of self-assessment

indicator T ⇤

conf is estimated corresponding to the optimized

point. This estimation process is executed offline.
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Fig. 7. ROC curve. Green stars are samples, red curve is the fitted
exponential function, and the red dot is the optimized point.

C. Marking detection

This algorithm has been tested on 12 different challenging

scenarios in KITTI database, including more than 1900

frames. Fig. 8 shows several detected lane markings in vari-

ous outside conditions. The image processing area is marked

within blue lines. The pink pixels are the lane marking

candidates after image processing. The green pixels are the

corresponding contributed pixels in Φcon from (17). The

detected lane markings are depicted as red dots in the image

processing area. In Fig. 8(a), the number of candidate pixels

for the right lane is limited because of the strong contrast near

tunnel entrance, but the the constraint of parallel markings

ensures both detections. Fig. 8(b) shows the detection of

dashed markings, which is more difficult than continuous

marking detection in practice. Marking initialization step

helps this detection, because the zero order components of

marking model is estimated before multi-kernel fitting. The

detection in heavy traffic conditions are shown as Fig. 8(c),

thanks to the cell-based blob algorithm, numerous outlier

pixels caused by vehicles are eliminated. Fig. 8(d) depicts

the detection result in a corner, the parabolic model fits

the markings. Fig. 8(e) and (f) are more complicated road

situations including curves, multi markings, heavy traffic or

irregular shadows, our approach derives detection results in

these environments. Fig. 8(g) shows an special condition,

the primitive result (purple dots) is detected, but this result

is rejected by self-assessment indicator, a pair of estimated

markings (yellow dots) are adopted as output result. The

results above perform the marking detection ability of the

proposed method in highway and road scenes.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 8. Example detection results within various outdoor conditions.

The average processing time per frame is 22.7ms. About

98% of the frames adopt local parameter estimation (7 scales

for both model parameter d and e). About 2% of the frames

apply global parameter estimation (40 scales for both model

parameter d and e). The maximum time consuming in global

detections is 62ms. According to the time cycle of KITTI

database frames (100ms), the proposed method is adequate

to process the frame streams in real-time.

Meanwhile, two lane detection algorithms, Method A [9]

and Method B [16], are introduced to compare with the

proposed method. In Method A, selective oriented Gaussian

filters are applied as image processing strategy. RANSAC is

then used to fit Bezier Splines. All the lane markings in the

frame are detected. Method A and our method use totally

different marking models and fitting methods. The contrast

of these two methods is regarded as the comparison between

methods with different frameworks.



TABLE II
METHODS COMPARISON USING KITTI DATASET.

Time Correct MAE Success
(second) (frame) (pixel) ratio (%)

Method A [9] 0.0210 117 12.84 61.58

Method B [16] 1.5580 113 11.84 59.47

Proposed method 0.0489 161 4.38 84.74

In Method B, a multi-kernel based framework is intro-

duced to determine parameters of a parabolic model. Method

B and our method have the same multi-kernel estimation

framework. Different from Method B, our method proposes

a parametric Gaussian initialization step, and hierarchical

weights. The comparison between Method B and our method

can imply the effect of the improvements in our methods.

The source code of Method A is provided by the author.

Only the IPM parameters of KITTI experiment environment

are set before the program runs. The code for Method B

are programed according to [16]. Source codes of all three

methods are run using KITTI benchmark images. Obtained

markings from detection methods are compared to reference

markings which are obtained from 95 benchmark images in

IV-A. Comparison results of the three methods are reported

in Table II, where Time is the run time per frame, Correct is

the number of correct markings (a marking’s Mean Absolute

Error (MAE) is less than 4 pixels in BEV space is defined

as a correct detection), MAE means the MAE of all the

detected markings, and Success ratio is the percentage of

correct detections in all the detections.

The run time of Method A is 0.0210s, which is close to

the average time 0.02s mentioned in [9]. Some detections

of Method A are markings from neighborhood lane or road

barriers, rather than the current lane marking. So the success

ratio of Method A is relative low. The contrast shows that our

method has a higher success ratio, but is slower than method

A. Compared to Method B, our method has a less time cost,

and higher success ratio. This comparison indicates that the

initialization step and hierarchical weights help to reduce av-

erage run time and improve marking detection performance.

Considering that the benchmark images we used are not

continuous, global detection is applied on all the images, the

computation time of our method in Table II is an average time

of global detection. In addition, self-assessment indicator is

not able to provide estimated detections in discontinuous

frames. The performance of our method can be improved

in continuous scenarios.

V. CONCLUSIONS

This paper demonstrates a real-time, reliable, and precise

lane marking detection method applied in real traffic condi-

tions, thanks to an improved multi-kernel based estimation

method with hierarchical weights. A second-order derivative

filter is proposed to extract lane marking pixels. The time

cost is less than complex extraction method. A cell-based

blob algorithm is introduced to alleviate outlier pixels (i.e.

heavy traffic, disturbed markings and shadows). A parametric

Gaussian model based initialization is used to estimate zero

order model parameters, which greatly reduces the time

consuming of curve fitting. A multi-kernel based parameter

estimation with hierarchical weights is recommended to

obtain the rest model parameters. In the end, a confidence

indicator is applied to improve the qualification of output

markings.
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