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Comparison between binary and decimal floating-point numbers

We introduce an algorithm to compare a binary floating-point (FP) number and a decimal FP number, assuming the "binary encoding" of the decimal formats is used, and with a special emphasis on the basic interchange formats specified by the IEEE 754-2008 standard for FP arithmetic. It is a two-step algorithm: a first pass, based on the exponents only, quickly eliminates most cases, then, when the first pass does not suffice, a more accurate second pass is performed. We provide an implementation of several variants of our algorithm, and compare them.

INTRODUCTION

The IEEE 754-2008 Standard for Floating-Point Arithmetic [START_REF]IEEE Computer Society, IEEE standard for floating-point arithmetic, IEEE Standard[END_REF] specifies binary (radix-2) and decimal (radix-10) floating-point number formats for a variety of precisions. The so-called "basic interchange formats" are presented in Table 1.

The Standard neither requires nor forbids comparisons between floating-point numbers of different radices (it states that floating-point data represented in different formats shall be comparable as long as the operands' formats have the same radix). However, such "mixed-radix" comparisons may offer several advantages. It is not infrequent to read decimal data from a database and to have to compare it to some binary floating-point number. The comparison may be inaccurate if the decimal number is preliminarily converted to binary, or, respectively, if the binary number is first converted to decimal.

Consider for instance the following C code: double x = ...; _Decimal64 y = ...; if (x <= y) ... The standardization of decimal floating-point arithmetic in C [START_REF]Extension for the programming language C to support decimal floating-point arithmetic[END_REF] is still at draft stage, and compilers supporting decimal floating-point arithmetic handle code sequences such as the previous one at their discretion and often in an unsatisfactory way. As it occurs, Intel's icc 12.1.3 translates this sequence into a conversion from binary to decimal followed by a decimal comparison. The compiler emits no warning that the boolean result might not be the expected one because of rounding. This kind of strategy may lead to inconsistencies. Consider such a "naïve" approach built as follows: when comparing a binary floating-point number x 2 of format F 2 , and a decimal floating-point number x 10 of format F 10 , we first convert x 10 to the binary format F 2 (that is, we replace it by the F 2 number nearest x 10 ), and then we perform the comparison in binary. Denote the comparison operators so defined as < , , > , and . Consider the following variables (all exactly represented in their respective formats):

• x = 3602879701896397/2 55 , declared as a binary64 number;

• y = 13421773/2 27 , declared as a binary32 number;

• z = 1/10, declared as a decimal64 number.

Then it holds that x < y, but also y z and z x. Such an inconsistent result might for instance suffice to prevent a sorting program from terminating.

Remark that in principle, x 2 and x 10 could both be converted to some longer format in such a way that the naïve method yields a correct answer. However, that method requires a correctly rounded radix conversion, which is an intrinsically more expensive operation than the comparison itself.

An experienced programer is likely to explicitly convert all variables to a larger format. However we believe that ultimately the task of making sure that the comparisons are consistent and correctly performed should be left to the compiler, and that the only fully consistent way of comparing two numeric variables x and y of a different type is to effectively compare x and y, and not to compare an approximation to x to an approximation to y.

In the following, we describe algorithms to perform such "exact" comparisons between binary numbers in any of the basic binary interchange formats and decimal numbers in any of the basic decimal interchange formats. Our algorithms were developed with a software implementation in mind. They end up being pretty generic, but we make no claim as to their applicability to hardware implementations.

It is natural to require that mixed-radix comparisons not signal any floating-point exception, except in situations that parallel exceptional conditions specified in the Standard [START_REF]IEEE Computer Society, IEEE standard for floating-point arithmetic, IEEE Standard[END_REF]Section 5.11] for regular comparisons. For this reason, we avoid floating-point operations that might signal exceptions, and mostly use integer arithmetic to implement our comparisons.

Our method is based on two steps:

• Algorithm 1 tries to compare numbers just by examining their floating-point exponents;

• when Algorithm 1 is inconclusive, Algorithm 2 provides the answer.

Algorithm 2 admits many variants and depends on a number of parameters. Tables 7 and8 suggest suitable parameters for most typical use cases.

Implementing the comparison for a given pair of formats just requires the implementation of Algorithms 1 and 2. The analysis of the algorithms as a function of all parameters, as presented in Sections 4 to 6, is somewhat technical. These details can be skipped at first reading.

This paper is an extended version of the article [START_REF] Brisebarre | Comparison between binary64 and decimal64 floatingpoint numbers[END_REF].

SETTING AND OUTLINE

We consider a binary format of precision p 2 , minimum exponent e min 2 and maximum exponent e max 2 , and a decimal format of precision p 10 , minimum exponent e min 10 and maximum exponent e max 10 . We want to compare a binary floatingpoint number x 2 and a decimal floating-point number x 10 .

Without loss of generality we assume x 2 > 0 and x 10 > 0 (when x 2 and x 10 are negative, the problem reduces to comparing -x 2 and -x 10 , and when they have different signs the comparison is straightforward). The floating-point representations of x 2 and x 10 are

x 2 = M 2 • 2 e2-p2+1 , x 10 = M 10 • 10 e10-p10+1 ,
where M 2 , M 10 , e 2 and e 10 are integers that satisfy: M 2 hold even for subnormal binary numbers.)

We assume that the so-called binary encoding (BID) [START_REF]IEEE Computer Society, IEEE standard for floating-point arithmetic, IEEE Standard[END_REF], [START_REF] Muller | Handbook of floating-point arithmetic[END_REF] of IEEE 754-2008 is used for the decimal format 1 , so that the integer M 10 is easily accessible in binary. Denote by p ′ 10 = ⌈p 10 log 2 10⌉ , the number of bits that are necessary for representing the decimal significands in binary.

When x 2 and x 10 have significantly different orders of magnitude, examining their exponents will suffice to compare them. Hence, we first perform a simple exponent-based test (Section 3). When this does not suffice, a second step compares the significands multiplied by suitable powers of 2 and 5. We compute "worst cases" that determine how accurate the second step needs to be (Section 4), and show how to implement it efficiently (Section 5). Section 6 is an aside describing a simpler algorithm that can be used if we only want to decide whether x 2 and x 10 are equal. Finally, Section 7 discusses our implementation of the comparison algorithms and presents experimental results.

FIRST STEP: ELIMINATING THE "SIMPLE CASES" BY EXAMINING THE EXPONENTS

Normalization

As we have 1 M 10 10 p10 -1,

there exists a unique ν ∈ {0, 1, 2, . . . , p ′ 10 -1} such that 2 p ′ 10 -1 2 ν M 10 2 p ′ 10 -1.
Our initial problem of comparing x 2 and x 10 reduces to comparing M 2 • 2 e2-p2+1+ν and (2 ν M 10 ) • 10 e10-p10+1 . The fact that we "normalize" the decimal significand M 10 by a binary shift between two consecutive powers of two is of course questionable; M 10 could also be normalized into the range 10 p10-1 10 t • M 10 10 p10 -1. However, hardware support for this operation [START_REF] Tsen | Hardware design of a binary integer decimal-based floating-point adder[END_REF] is not widespread. A decimal normalization would thus require a loop, provoking pipeline stalls, whereas the proposed binary normalization can exploit an existing hardware leading-zero counter with straight-line code.

Comparing the Exponents

Define                m = M 2 , h = e 2 -e 10 + ν + p 10 -p ′ 10 + 1, n = M 10 • 2 ν , g = e 10 -p 10 + 1, w = p ′ 10 -p 2 -1 (2) 
so that

2 ν x 2 = m • 2 h+g+w , 2 ν x 10 = n • 10 g .

Our comparison problem becomes:

Compare m • 2 h+w with n • 5 g .

1. This encoding is typically used in software implementations of decimal floating-point arithmetic, even if BID-based hardware designs have been proposed [START_REF] Tsen | Hardware design of a binary integer decimal-based floating-point adder[END_REF]. We have

m min = 2 p2-1 m m max = 2 p2 -1, n min = 2 p ′ 10 -1 n n max = 2 p ′ 10 -1. (3) 
It is clear that m min • 2 h+w > n max • 5 g implies x 2 > x 10 , while m max • 2 h+w < n min • 5 g implies x 2 < x 10 . This gives

(1 -2 -p ′ 10 ) • 5 g < 2 h-2 ⇒ x 10 < x 2 , (1 -2 -p2 ) • 2 h < 5 g ⇒ x 2 < x 10 . (4) 
In order to compare x 2 and x 10 based on these implications, define

ϕ(h) = ⌊h • log 5 2⌋. Proposition 1. We have g < ϕ(h) ⇒ x 2 > x 10 , g > ϕ(h) ⇒ x 2 < x 10 . Proof: If g < ϕ(h) then g ϕ(h) -1, hence g h log 5 2 -1. This implies that 5 g (1/5) • 2 h < 2 h /(4 • (1 - 2 -p ′ 10 
)), therefore, from (4), x 10 < x 2 . If g > ϕ(h) then g ϕ(h)+1, hence g > h log 5 2, so that 5 g > 2 h > (1-2 

φ(h) = ⌊L • h • 2 -s ⌋, with L = ⌊2 s log 5 2⌉, satisfies ϕ(h) = φ(h) for all h in the range [h (1) 
min , h

max ]. Proposition 2 is an immediate consequence of the irrationality of log 5 2. For known, moderate values of h max , the optimal choice s min of s is easy to find and small. For instance, if the binary format is binary64 and the decimal format is decimal64, then s min = 19.

Table 2 gives the value of s min for the basic IEEE formats. The product L • h, for h in the indicated range and s = s min , can be computed exactly in (signed or unsigned) integer arithmetic, with the indicated data type. Computing ⌊ξ•2 -β ⌋ of course reduces to a right-shift by β bits. 

(h) = ⌊L • h • 2 -s ⌋ using integer arithmetic; 3 if g < ϕ(h) then 4 return "x 2 > x 10 " 5 else if g > ϕ(h) then 6 return "x 2 < x 10 " 7 else (g = ϕ(h))
8 first step is inconclusive (perform the second step).

Note that, when x 10 admits multiple distinct representations in the precision-p 10 decimal format (i.e., when its cohort is non-trivial [START_REF]IEEE Computer Society, IEEE standard for floating-point arithmetic, IEEE Standard[END_REF]), the success of the first step may depend on the specific representation passed as input. For instance, assume that the binary and decimal formats are binary64 and decimal64, respectively. Both A = {M 10 = 10 15 , e 10 = 0} and B = {M 10 = 1, e 10 = 15} are valid representations of the integer 1. Assume we are trying to compare x 10 = 1 to x 2 = 2. Using representation A, we have ν = 4, h = -32, and ϕ(h) = -14 > g = -15, hence the test from Algorithm 1 shows that x 10 < x 2 . In contrast, if x 10 is given in the form B, we get ν = 53, ϕ(h) = ϕ(2) = 0 = g, and the test is inconclusive.

How Often is the First Step Enough?

We may quantify the quality of this first filter as follows. We say that Algorithm 1 succeeds if it answers "x 2 > x 10 " or "x 2 < x 10 " without proceeding to the second step, and fails otherwise. Let X 2 and X 10 denote the sets of representations of positive, finite numbers in the binary, resp. decimal formats of interest. (In the case of X 2 , each number has a single representation.) Assuming zeros, infinities, and NaNs have been handled before, the input of Algorithm 1 may be thought of as a pair (ξ 2 , ξ 10 ) ∈ X 2 × X 10 . The value of ν is determined by M 10 , so that t and g = e 10p 10 + 1 depend on ξ 10 only. Thus, for any given ξ 10 ∈ X 10 , there can be at most 3 values of e 2 for which ϕ(h) = g. A similar argument shows that for given e 2 and M 10 , there exist at most one value of e 10 such that ϕ(h) = g.

Let X norm 2 and X sub 2 be the subsets of X 2 consisting of normal and subnormal numbers respectively. Let

r i = e max i -e min i + 1. The number N norm of pairs (ξ 2 , ξ 10 ) ∈ X norm 2 × X 10 such that ϕ(h) = g satisfies N norm #{M 10 : ξ 10 ∈ X 10 } • #{M 2 : ξ 2 ∈ X norm 2 } • #{(e 2 , e 10 ) : ξ 2 ∈ X norm 2 ∧ ϕ(h) = g} (10 p10 -1) • 2 p2-1 • min{r 2 , 3r 10 }.
For subnormal x 2 , we have the bound

N sub := #{(ξ 2 , ξ 10 ) ∈ X sub 2 × X 10 : ϕ(h) = g} #{M 10 } • #X sub 2 = (10 p10 -1) • (2 p2-1 -1).
The total number of elements of X 2 × X 10 for which the first step fails is bounded by N norm + N sub . This is to be compared with

#X 2 = r 2 • 2 p2-1 + (p 2 -1) • (2 p2-1 -1) (r 2 + 1) • 2 p2-1 , #X 10 = r 10 • (10 p10 -1).
We obtain

N norm + N sub #(X 2 × X 10 ) min 1 r 10 , 4 r 2 . 
These are rough estimates. One way to get tighter bounds for specific formats is simply to count, for each value of ν, the pairs (e 2 , e 10 ) such that ϕ(h) = g. For instance, in the case of comparison between binary64 and decimal64 floating-point numbers, one can check that the failure rate in the sense of Proposition 3 is less than 0.1%. As a matter of course, pairs (ξ 2 , ξ 10 ) will almost never be equidistributed in practice. Hence the previous estimate should not be interpreted as a probability of success of Step 1. It seems more realistic to assume that a well-written numerical algorithm will mostly perform comparisons between numbers which are suspected to be close to each other. For instance, in an iterative algorithm where comparisons are used as part of a convergence test, it is to be expected that most comparisons need to proceed to the second step. Conversely, there are scenarios, e.g., checking for out-of-range data, where the first step should be enough.

SECOND STEP: A CLOSER LOOK AT THE SIGNIF-

ICANDS

Problem Statement

In the following we assume that g = ϕ(h), i.e., e 10 -p 10 + 1 = ⌊(e 2 -e 10 + ν + p 10 -p ′ 10 + 1) log 5 (2)⌋ .

(Otherwise, the first step already allowed us to compare x 2 and x 10 .) Define a function

f (h) = 5 ϕ(h) 2 h+w . We have    f (h) • n > m ⇒ x 10 > x 2 , f (h) • n < m ⇒ x 10 < x 2 , f (h) • n = m ⇒ x 10 = x 2 .
(

) 5 
The second test consists in performing this comparison, with f (h) • n replaced by an accurate enough approximation.

In order to ensure that an approximate test is indeed equivalent to (5), we need a lower bound η on the minimum nonzero value of

d h (m, n) = 5 ϕ(h) 2 h+w - m n (6) 
that may appear at this stage. We want η to be as tight as possible in order to avoid unduly costly computations when approximating f (h) • n. The search space is constrained by the following observations. Proposition 4. Let g and h be defined by Equation (2). The equality g = ϕ(h) implies

e min 2 -p 2 -p ′ 10 + 3 1 + log 5 2 h < e max 2 + 2 1 + log 5 2 . ( 7 
)
Additionally, n satisfies the following properties:

1) if n 10 p10 , then n is even; 2) if ν ′ = h+ ϕ(h)-e max 2
+ p ′ 10 -2 is nonnegative (which holds for large enough h), then 2 ν ′ divides n.

Proof: From (2), we get

e 2 = h + g + p ′ 10 -ν -2. Since e min 2 -p 2 +1 e 2 e max 2
and as we assumed g = ϕ(h), it follows that

e min 2 -p 2 + 1 h + ϕ(h) -ν + p ′ 10 -2 e max 2 .
Therefore we have

e min 2 -p 2 + ν -p ′ 10 + 3 (1 + log 5 2)h < e max 2
+ ν -p ′ 10 + 3, and the bounds (7) follow because 0 ν p ′ 10 -1. The binary normalization of M 10 , yielding n, implies that 2 ν | n. If n 10 p10 , then, by ( 1) and ( 2), it follows that ν 1 and n is even. As h + ϕ(h) -ν e max 2 -p ′ 10 + 2, we also have ν ν ′ . Since ϕ is increasing, there exists h 0 such that ν ′ 0 for h h 0 .

Table 3 gives the range [START_REF] Ya | Continued fractions[END_REF] for h with respect to the comparisons between basic IEEE formats.

Required Worst-Case Accuracy

Let us now deal with the problem of computing η, considering d h (m, n) under the constraints given by Equation ( 3) and Proposition 4. A similar problem was considered by Cornea et al. [START_REF] Cornea | A software implementation of the IEEE 754R decimal floating-point arithmetic using the binary encoding format[END_REF] in the context of correctly rounded binary to decimal conversions. Their techniques yield worst and bad cases for the approximation problem we consider. We will take advantage of them in Section 7 to test our algorithms on 

TABLE 3

Range of h for which we may have g = ϕ(h), and size of the table used in the "direct method" of Section 5.1. many cases when x 2 and x 10 are very close. Here, we favor a different approach that is less computationally intensive and mathematically simpler, making the results easier to check either manually or with a proof-assistant.

Problem 1. Find the smallest nonzero value of

d h (m, n) = 5 ϕ(h) 2 h+w - m n subject to the constraints                  2 p2-1 m 2 p2 -1, 2 p ′ 10 -1 n 2 p ′ 10 -1, h (2) min h h (2) max , n is even if n 10 p10 , if h h 0 , then 2 ν ′ | n where h (2) min = e min 2 -p 2 -p ′ 10 + 3 1 + log 5 2 , h (2) 
max =

e max 2 + 2 1 + log 5 2 , h 0 = e max 2 -p ′ 10 + 3 1 + log 5 2 , ν ′ = h + ϕ(h) -e max 2 + p ′ 10 -2.
We recall how such a problem can be solved using the classical theory of continued fractions [START_REF] Hardy | An introduction to the theory of numbers[END_REF], [START_REF] Ya | Continued fractions[END_REF], [START_REF] Perron | Die Lehre von den Kettenbrüchen[END_REF].

Given α ∈ Q, build two finite sequences (a i ) 0 i n and (r i ) 0 i n by setting r 0 = α and

a i = ⌊r i ⌋ , r i+1 = 1/(r i -a i ) if a i = r i .
For all 0 i n, the rational number

p i q i = a 0 + 1 a 1 + 1 . . . + 1 a i
is called the ith convergent of the continued fraction expansion of α. Observe that the process defining the a i essentially is the Euclidean algorithm. If we assume p -1 = 1, q -1 = 0, p 0 = a 0 , q 0 = 1, we have p i+1 = a i+1 p i + p i-1 , q i+1 = a i+1 q i + q i-1 , and α = p n /q n . It is a classical result [START_REF] Ya | Continued fractions[END_REF]Theorem 19] that any rational number m/n such that

α - m n < 1 2n 2
is a convergent of the continued fraction expansion of α.

For basic IEEE formats, it turns out that this classical result is enough to solve Problem 1, as cases when it is not precise enough can be handled in an ad hoc way. First consider the case max(0, -w) h p 2 . We can then write

d h (m, n) = |5 ϕ(h) n -2 h+w m| 2 h+w n
where the numerator and denominator are both integers.

If d h (m, n) = 0, we have |5 ϕ(h) n -m2 h+w | 1, hence d h (m, n) 1/(2 h+w n) > 2 p2-h-2p ′ 10 +1
2 -2p ′ 10 +1 . For the range of h where d h (m, n) might be zero, the non-zero minimum is thus no less than

2 -2p ′ 10 +1 . If now p 2 + 1 h h (2)
max , then h + w p ′ 10 , so 5 ϕ(h) and 2 h+w are integers, and m2 h+w is divisible by 2 p ′ 10 . As n

2 p ′ 10 -1, we have d h (m, n) = 0. To start with, assume that d h (m, n) 2 -2p ′ 10 -1 .
Then, the integers m and n 2 p ′ 10 -1 satisfy

5 ϕ(h) 2 h+w - m n 2 -2p ′ 10 -1 < 1 2n 2 ,
and hence m/n is a convergent of the continued fraction expansion of α = 5 ϕ(h) /2 h+w . We compute the convergents with denominators less than 2 p ′ 10 and take the minimum of the |α -p i /q i | for which there exists k ∈ N such that m = kp i and n = kq i satisfy the constraints of Problem 1. Notice that this strategy only yields the actual minimum nonzero of d h (m, n) if we eventually find, for some h, a convergent with |α -

p i /q i | < 2 -2p ′ 10 -1 . Otherwise, taking η = 2 -2p ′ 10 -1 yields a valid (yet not tight) lower bound. The case h (2) min h min(0, -w) is similar. A nu- merator of d h (m, n) then is |2 -h-w n -5 -ϕ(h) m| and a denominator is 5 -ϕ(h) n. We notice that 5 -ϕ(h) 2 p ′ 10 if and only if h -p ′ 10 . If -p ′ 10 + 1 h min(0, -w) and d h (m, n) = 0, we have |2 -h n -5 -ϕ(h) m| 1, hence d h (m, n) 1/(5 -ϕ(h) n) 2 -2p ′ 10 . For h (2) min h -p ′ 10
, we use the same continued fraction tools as above.

There remains the case min(0, -w) h max(0, -w). Proof. This follows from applying the algorithm outlined above to the parameters associated with each basic IEEE format. Scripts to verify the results are provided along with our example implementation of the comparison algorithm (see Section 7).

If 0 h -w, a numerator of d h (m, n) is |5 ϕ(h) 2 -h-w n - m| and a denominator is n. Hence, if d h (m, n) = 0, we have d h (m, n) 1/n > 2 p ′ 10 . If -w h 0, a numerator of d h (m, n) is |n -5 -ϕ(h) 2 h+w m| and a denominator is 5 -ϕ(h) 2 h+w n 5 • 2 -h 2 h+w n < 5 • 2 2p ′ 10 -p2-1 . It follows that if d h (m, n) = 0, we have d h (m, n) 1/5 • 2 -2p

INEQUALITY TESTING

As already mentioned, the first step of the full comparison algorithm is straightforwardly implementable in 32-bit or 64-bit integer arithmetic. The second step reduces to comparing m and f (h) • n, and we have seen in Section 4 that it is enough to know f (h) with a relative accuracy given by the last column of Table 4. We now discuss several ways to perform that comparison. The main difficulty is to efficiently evaluate f (h) • n with just enough accuracy.

Direct Method

A direct implementation of Equation ( 5) just replaces f (h) with a sufficiently accurate approximation, read in a table indexed with h. The actual accuracy requirements can be stated as follows. Recall that η denotes a (tight) lower bound on [START_REF]Extension for the programming language C to support decimal floating-point arithmetic[END_REF]. Proposition 6. Assume that µ approximates f (h) • n with relative accuracy χ < η/2 -w+2 or better, that is,

|f (h) • n -µ| χf (h) • n < η 2 -w+2 f (h) • n. (8) 
The following implications hold:

     µ > m + χ • 2 p2+1 =⇒ x 10 > x 2 , µ < m -χ • 2 p2+1 =⇒ x 10 < x 2 , |m -µ| χ • 2 p2+1 =⇒ x 10 = x 2 . (9) 
Proof:

First notice that f (h) 2 -w = 2 p2-p ′ 10 +1 for all h. Since n < 2 p ′ 10 , condition (8) implies |µ -f (h) • n| < 2 p2+1 χ, and hence |f (h) • n -m| > |µ -m| -2 p2+1 χ.
Now consider each of the possible cases that appear in [START_REF] Perron | Die Lehre von den Kettenbrüchen[END_REF]. If |µ -m| > 2 p2+1 χ, then f (h) • n -m and µ -m have the same sign. The first two implications from (5) then translate into the corresponding cases from [START_REF] Perron | Die Lehre von den Kettenbrüchen[END_REF].

If finally |µ -m| 2 p2+1 χ, then the triangle inequality yields |f (h)•n-m| 2 p2+2 χ, which implies |f (h)-m/n| < 2 p2+2 χ/n < 2 p2+w η/n η. By definition of η, this cannot happen unless m/n = f (h). This accounts for the last case.

For instance, in the case of binary64-decimal64 comparisons, it is more than enough to compute the product f (h)•n in 128-bit arithmetic.

Proposition 4 gives the number of values of h to consider in the table of f (h), which grows quite large (23.5 kB for b64/d64 comparisons, 721 kB in the b128/d128 case, assuming a memory alignment on 8-byte boundaries). However, it could possibly be shared with other algorithms such as binary-decimal conversions. Additionally, h is available early in the algorithm flow, so that the memory latency for the table access can be hidden behind the first step.

The number of elements in the table can be reduced at the price of a few additional operations. Several consecutive h map to a same value g = ϕ(h). The corresponding values of f (h) = 2 ϕ(h)•log 2 5-h are binary shifts of each other. Hence, we may store the most significant bits of f (h) as a function of g, and shift the value read off the table by an appropriate amount to recover f (h). The table size goes down by a factor of about log 2 (5) ≈ 2.3.

More precisely, define F (g) = 5 g 2 -ψ(g) , where

ψ(g) = ⌊g • log 2 5⌋. (10) 
We then have

f (h) = F (ϕ(h)) • 2 -ρ(h) with ρ(h) = h - ψ(ϕ(h)).
The computation of ψ and ρ is similar to that of ϕ

Step 1. In addition, we may check that 1 F (ϕ(h)) < 2 and 0 ρ(h) 3 for all h. Since ρ(h) is nonnegative, multiplication by 2 ρ(h) can be implemented with a bitshift, not requiring branches. We did not implement this size reduction: instead, we concentrated on another size reduction opportunity that we shall describe now.

Bipartite Table

That second table size reduction method uses a bipartite table. Additionally, it takes advantage of the fact that, for small nonnegative g, the exact value of 5 g takes less space than an accurate enough approximation of f (h) (for instance, 5 g fits on 64 bits for g 27). In the case of a typical implementation of comparison between binary64 and decimal64 numbers, the bipartite table uses only 800 bytes of storage.

Most of the overhead in arithmetic operations for the bipartite table method can be hidden on current processors through increased instruction-level parallelism. The reduction in table size also helps decreasing the probability of cache misses.

Recall that we suppose g = ϕ(h), so that h lies between bounds h 

max on g follow since ϕ is nondecreasing.

For some integer "splitting factor" γ > 0 and ǫ = ±1,

write g = ϕ(h) = ǫ(γq -r), q = ǫg γ , (11) 
so that

f (h) = 5 γq 5 r ǫ • 2 -h-w .
Typically, γ will be chosen as a power of 2, but other values can occasionally be useful. With these definitions, we have 0 r γ -1, and q lies between ǫ g

(2) min γ and ǫ g

(2) max γ (the order of the bounds depends on ǫ). The integer 5 r fits on ψ(r) + 1 bits, where ψ is the function defined by [START_REF]GNU compiler collection[END_REF]. Instead of tabulating f (h) directly, we will use two tables: one containing the most significant bits of 5 γq roughly to the precision dictated by the worst cases computed in Section 4, and the other containing the exact value 5 r for 0 r γ -1. We denote by λ 1 and λ 2 the respective precisions (entry sizes in bits) of these tables. Based on these ranges and precisions, we assume

λ 1 > log 2 (η -1 ) -w + 3, (12) λ 2 ψ(γ -1) + 1. (13) 
In addition, it is natural to suppose λ 1 larger than or close to λ 2 : otherwise, an algorithm using two approximate tables will likely be more efficient.

In practice, λ 2 will typically be one of the available machine word widths, while, for reasons that should become clear later, λ 1 will be chosen slightly smaller than a word size. For each pair of basic IEEE formats, Tables 7 and8 provide values of ǫ, γ, λ 1 , λ 2 (and other parameters whose definition follows later) suitable for typical processors. The suggested values were chosen by optimizing either the table size or the number of elementary multiplications in the algorithm, with or without the constraint that γ be a power of two.

It will prove convenient to store the table entries leftaligned, in a fashion similar to floating-point significands. Thus, we set

θ 1 (q) = 5 γq •2 λ1-1-ψ(γq) , θ 2 (r) = 5 r •2 λ2-1-ψ(r) ,
where the power-of-two factors provide for the desired alignment. One can check that

2 λ1-1 θ 1 (q) < 2 λ1 , 2 λ2-1 θ 2 (r) < 2 λ2 (14)
for all h. The value f (h) now decomposes as

f (h) = 5 g 2 h+w = θ 1 (q) θ 2 (r) ǫ 2 ǫ•(λ2-λ1)-σ(h)-w (15) 
where

σ(h) = h -ǫ • ψ(γq) -ψ(r) . (16) 
Equations ( 10) and ( 16) imply that

h -g log 2 5 -1 < σ(h) < h -g log 2 5 + 1.
As we also have h log 5 2 -1 g = ϕ(h) < h log 5 2 by definition of ϕ, it follows that 0 σ(h) 3.

(17)

Now let τ -1 be an integer serving as an adjustment parameter to be chosen later. In practice, we will usually 2 choose τ = 0 and sometimes τ = -1 (see Tables 7 and8). For most purposes the reader may simply assume τ = 0. Define Proof: Assume x 2 = x 10 . For ǫ = +1, and using (15), the definition of ∆ rewrites as

           ∆ = θ 1 (q) • n • 2 τ -p ′ 10 -θ 2 (r) • m • 2 τ +λ1-λ2+σ(h)-p2-1 , ǫ = +1, ∆ = θ 1 (q) • m • 2 τ -p2-1 -θ 2 (r) • n • 2 τ +λ1-λ2-σ(h)-p ′ 10 , ǫ = -1.
∆ = θ 2 (r) n 2 τ +λ1-λ2+σ(h)-p2-1 f (h) - m n .
Since f (h) = m/n is equivalent to x 2 = x 10 , we know by Proposition 5 that |f (h) -m/n| η. Together with the bounds (3), ( 12), ( 14), and (17), this implies

log 2 |∆| (λ 2 -1) + (p ′ 10 -1) + τ + λ 1 -λ 2 -p 2 -1 + log 2 η = (λ 1 + log 2 η + w -3) + τ + 1 > τ + 1.
Similarly, for ǫ = -1, we have

∆ = -θ 1 (q) n 2 τ -p2-1 f (h) - m n , so that log 2 |∆| (λ 1 -1) + (p ′ 10 -1) + τ -p 2 -1 + log 2 η > τ + 1 when ∆ = 0.
As already explained, the values of θ 2 (r) are integers and can be tabulated exactly. In contrast, only an approximation of θ 1 (q) can be stored. We represent these values as ⌈θ 1 (q)⌉, hence replacing ∆ by the easy-to-compute

           ∆ = ⌈θ 1 (q)⌉ • n • 2 τ -p ′ 10 -θ 2 (r) • m • 2 τ +λ1-λ2+σ(h)-p2-1 , ǫ = +1, ∆ = ⌈θ 1 (q)⌉ • m • 2 τ -p2-1 -θ 2 (r) • n • 2 τ +λ1-λ2-σ(h)-p ′ 10 , ǫ = -1.
Proposition 7 is in principle enough to compare x 2 with x 10 , using a criterion similar to that from Proposition 6. Yet additional properties hold that allow for a more efficient final decision step.

2. See the comments following Equations ( 19) to ( 21). Yet allowing for positive values of τ enlarges the possible choices of parameters to satisfy (21) (resp. (21')) for highly unusual floating-point formats and implementation environments. For instance, it makes it possible to store the table for θ 1 in a more compact fashion, using a different word size for the table than for the computation.

Proposition 8. Assume g = ϕ(h), and let ∆ be the signed integer defined above. For τ 0, the following equivalences hold:

∆ < 0 ⇐⇒ ∆ -2 τ , ∆ = 0 ⇐⇒ 0 ∆ 2 τ , ∆ > 0 ⇐⇒ ∆ 2 τ +1 .
Furthermore, if τ ∈ {-1, 0} and

λ 1 -λ 2 + τ p 2 + 1, ǫ = +1, p ′ 10 + 3, ǫ = -1, (18) 
then ∆ and ∆ have the same sign (in particular, ∆ = 0 if and only if ∆ = 0).

Proof: Write the definition of ∆ as

∆ = ⌈θ 1 (q)⌉X -θ 2 (r)X ′
where the expressions of X and X ′ depend on ǫ, and define error terms δ tbl , δ rnd , δ ′ rnd by

δ tbl = ⌈θ 1 (q)⌉ -θ 1 (q), δ rnd = ⌊⌈θ 1 (q)⌉X⌋ -⌈θ 1 (q)⌉X, δ ′ rnd = ⌊θ 2 (r)X ′ ⌋ -θ 2 (r)X ′ . The δ's then satisfy 0 δ tbl < 1, -1 < δ rnd , δ ′ rnd 0.
For both possible values of ǫ, we have 3 0 X 2 τ and hence

-1 < ∆ -∆ = Xδ tbl + δ rnd -δ ′ rnd < 2 τ + 1. If ∆ < 0, Proposition 7 implies that ∆ < -2 τ +1 + 2 τ + 1 = -2 τ + 1.
It follows that ∆ -⌊2 τ ⌋ since ∆ is an integer. By the same reasoning, ∆ > 0 implies ∆ ⌊2 τ +1 ⌋, and ∆ = 0 implies 0 ∆ ⌈2 τ ⌉. This proves the first claim. Now assume that (18) holds. In this case, we have δ ′ rnd = 0, so that -1 < ∆-∆ < 2 τ . The upper bounds on ∆ become ∆ -⌊2 τ ⌋-1 for ∆ < 0 and ∆ ⌈2 τ ⌉-1 for ∆ = 0. When -1 τ 0, these estimates respectively imply ∆ < 0 and ∆ = 0, while ∆ ⌊2 τ +1 ⌋ implies ∆ > 0. The second claim follows.

The conclusion ∆ = 0 = ∆ when x 2 = x 10 for certain parameter choices means that there is no error in the approximate computation of ∆ in these cases. Specifically, the tabulation error δ tbl and the rounding error δ rnd cancel out, thanks to our choice to tabulate the ceiling of θ 1 (q) (and not, say, the floor).

We now describe in some detail the algorithm resulting from Proposition 8, in the case ǫ = +1. In particular, we will determine integer datatypes on which all steps can be performed without overflow, and arrange the powers of two in the expression of ∆ in such a way that computing the floor functions comes down to dropping the least significant words of multiple-word integers.

Let W : N → N denote a function satisfying W (k) k for all k. In practice, W (k) will typically be the width of 3. Actually 0 X 2 τ -1 for ǫ = -1: this dissymmetry is related to our choice of always expressing the lower bound on ∆ in terms of η rather than using a lower bound on f (h) -1 -n/m when ǫ = -1.

the smallest "machine word" that holds at least k bits. We further require that (for ǫ = +1):

W (p ′ 10 ) -p ′ 10 1, (19) W (λ 1 ) -λ 1 W (λ 2 ) -λ 2 + τ + 3, (20) W (p 2 ) -p 2 + W (λ 2 ) -λ 2 W (λ 1 ) -λ 1 -τ + 1. (21)
These assumptions are all very mild in view of the IEEE-754-2008 Standard. Indeed, for all IEEE interchange formats (including binary16 and formats wider than 64 bits), the space taken up by the exponent and sign leaves us with at least 5 bits of headroom if we choose for W (p 2 ), resp. W (p ′ 10 ) the word width of the format. Even if we force W (λ 2 ) = λ 2 and τ = 0, this always allows for a choice of λ 1 , λ 2 and W (λ 2 ) satisfying ( 12), ( 13) and ( 19)-( 21).

Denote x + = max(x, 0) and x -= max(-x, 0), so that

x = x + -x -. Algorithm 2.
Step 2, second method, ǫ = +1.

1 Compute q and r as defined in [START_REF] Tsen | Hardware design of a binary integer decimal-based floating-point adder[END_REF], with ǫ = +1.

Compute σ(h) using ( 16) and Proposition 2. 2 Read ⌈θ 1 (q)⌉ from the table, storing it on a W (λ 1 )-bit (multiple-)word.

3 Compute A = (⌈θ 1 (q)⌉ • 2 τ + ) • (n2 W (p ′ 10 )-p ′ 10 -τ -) • 2 -W (p ′ 10 )
by (constant) left shifts followed by a W (λ 1 )-by-W (p ′ 10 )-bit multiplication, dropping the least significant word(s) of the result that correspond to W (p ′ 10 ) bits.

4 Compute B = θ 2 (r) • (m2 σ(h)+ω ) • 2 W (λ1)-W (λ2)-W (p2)
where the constant ω is given by

ω = W (p 2 ) -p 2 + W (λ 2 ) -λ 2 -W (λ 1 ) + λ 1 + τ -1
in a similar way, using a W (λ 2 )-by-W (p 2 )-bit multiplication. 5 Compute the difference ∆ = A -B as a W (λ 1 )-bit signed integer.

6 Compute ∆ ′ = ⌊ ∆2 -τ -1 ⌋2 τ +1 by masking the τ + 1 least significant bits of ∆. 7 Return      "x 10 < x 2 " if ∆ ′ < 0, "x 10 = x 2 " if ∆ ′ = 0, "x 10 > x 2 " if ∆ ′ > 0.
Proposition 9. When either τ 0 or τ = -1 and (18) holds, Algorithm 2 correctly decides the ordering between x 2 and x 10 .

Proof: Hypotheses (19) and (21), combined with the inequalities σ(h) 0 and τ -1, imply that the shifts in Steps 3 and 4 are left shifts. They can be performed without overflow on unsigned words of respective widths W (λ 1 ), W (p ′ 10 ) and W (p 2 ) since W (λ 1 ) -λ 1 τ + 1 and W (p 2 )p 2 ω + 3, both by (20). The same inequality implies that the (positive) integers A and B both fit on W (λ 1 ) -1 bits, so that their difference can be computed by a subtraction on W (λ 1 ) bits. The quantity A -B computed in Step 5 agrees with the previous definition of ∆, and ∆ ′ has the same sign as ∆, hence Proposition 8 implies that the relation returned in Step 7 is correct.

When τ ∈ {-1, 0} and (18) holds, no low-order bits are dropped in Step 4,and Step 6 can be omitted (that is, replaced by ∆ ′ := ∆). Also observe that a version of Step 7 returning -1, 0 or 1 according to the comparison result can be implemented without branching, using bitwise operations on the individual words which make up the representation of ∆ ′ in two's complement encoding.

The algorithm for ǫ = -1 is completely similar, except that (19)-(21) become

W (p 2 ) -p 2 2, ( 19 
') W (λ 1 ) -λ 1 W (λ 2 ) -λ 2 + τ + 1, (20') W (p ′ 10 ) -p ′ 10 + W (λ 2 ) -λ 2 W (λ 1 ) -λ 1 -τ + 3, ( 21 
') and A and B are computed as

A = (⌈θ 1 (q)⌉ • 2 τ + ) • (m2 W (p2)-p2-τ --1 ) • 2 -W (p2) B = θ 2 (r) • (n2 ω-σ(h) ) • 2 W (λ1)-W (λ2)-W (p ′ 10 ) , with ω = W (p ′ 10 ) -p ′ 10 + W (λ 2 ) -λ 2 -W (λ 1 )
+ λ 1 + τ, respectively using a W (λ 1 )-by-W (p 2 )-bit and a W (λ 2 )-by-W (p ′ 10 ) multiplication. Tables 7 and8 suggest parameter choices for comparisons in basic IEEE formats. (We only claim that these are reasonable choices that satisfy all conditions, not that they are optimal for any well-defined metric.) Observe that, though it has the same overall structure, the algorithm presented in [START_REF] Brisebarre | Comparison between binary64 and decimal64 floatingpoint numbers[END_REF] is not strictly speaking a special case of Algorithm 2, as the definition of the bipartite table (cf. ( 11)) is slightly different.

AN EQUALITY TEST

Besides deciding the two possible inequalities, the direct and bipartite methods described in the previous sections are able to determine cases when x 2 is equal to x 10 . However, when it comes to solely determine such equality cases additional properties lead to a simpler and faster algorithm.

The condition x 2 = x 10 is equivalent to

m • 2 h+w = n • 5 g , (22) 
and thus implies certain divisibility relations between m, n, 5 ±g and 2 ±h±w . We now describe an algorithm that takes advantage of these relations to decide (22) using only binary shifts and multiplications on no more than max(p ′ 10 + 2, p 2 + 1) bits. Proposition 10. Assume x 2 = x 10 . Then, we have g eq min g g eq max , -p ′ 10 + 1 h p 2 . where g eq min = -⌊p 10 (1 + log 5 2)⌋, g eq max = ⌊p 2 log 5 2⌋. Additionally,

• if g 0, then 5 g divides m, otherwise 5 -g divides M 10 (and n);

• if h -w, then 2 h+w divides n, otherwise 2 -(h+w) divides m.
Proof: First observe that g must be equal to ϕ(h) by Proposition 1, so g 0 if and only if h 0. The divisibility properties follow immediately from the coprimality of 2 and 5.

When g 0, they imply 5 g m < 2 p2 -1, whence g < p 2 log 5 2. Additionally, 2 -h-w n is an integer. Since h 0, it follows that 2 h 2 -w n < 2 p ′ 10 -w and hence h p ′ 10 -w -1 = p 2 . If now g < 0, then 5 -g divides m = 2 ν M 10 and hence divides M 10 , while 2 -h divides 2 w m. Since M 10 < 10 p10 and 2 w m < 2 p2+w , we have -g < p 10 log 5 10 and -h < p 10 log 2 10 < p ′ 10 . These properties translate into Algorithm 3 below. Recall that x + = max(x, 0) and x -= x + -x. (Branchless algorithms exist to compute x + and x - [START_REF] Arndt | Matters computational. Ideas, algorithms, source code[END_REF].) Let p = max(p ′ 10 + 2, p 2 + 1). Algorithm 3. Equality test.

1 If not g eq min g g eq max then return false. 2 Set u = (w + h) -and v = (w + h) + . 3 Using right shifts, compute

m 1 = ⌊2 -u m⌋, n 1 = ⌊2 -v n⌋.
4 Using left shifts, compute m 2 = 2 u m 1 and n 2 = 2 v n 1 . 5 Read 5 g + and 5 g -from a table (or compute them).

6 Compute m 3 = 5 g -m 1 with a p ′ 10 × p 2 → p bit multiplication (meaning that the result can be anything if the product does not fit on p bits).

7 Compute n 3 = 5 g + n 1 with a p 2 × p ′ 10 → p bit multipli- cation. 8 Return (m 2 = m) ∧ (n 2 = n) ∧ (g = ϕ(h)) ∧ (n 3 = m 3 ).
As a matter of course, the algorithm can return false as soon as any of the conditions from Step 8 is known unsatisfied.

Proposition 11. Algorithm 3 correctly decides whether x 2 = x 10 .

Proof: First observe that, if any of the conditions g = ϕ(h), g eq min g g eq max , m 2 = m and n 2 = n is violated, then x 2 = x 10 by Propositions 1 and 10. Indeed, x 2 = x 10 implies m 2 = m and n 2 = n due to the divisibility conditions of Proposition 10. In all these cases, the algorithm correctly returns false. In particular, no table access occurs unless g lies between g eq min and g eq max . Now assume that these four conditions hold. In particular, we have m 1 = 2 -u m as m 2 = m, and similarly n 1 = 2 -v n. The bounds on g imply that 5 g + fits on p 2 bits and 5 g -fits on p ′ 10 bits. If g and w + h are both nonnegative, then m 3 = m, and we have

5 g + n 1 = 5 ϕ(h) 2 -(w+h) n < 2 -w+p ′ 10 = 2 p2+1 2 p .
By the same reasoning, if g, w + h 0, then n 3 = n and

5 -g 2 w+h m < 5 • 2 p ′ 10 -1 < 2 p .
If now g 0 with h -w, then m 3 = m 1 and

5 g n < 2 h+p ′ 10 2 -w+p ′ 10 = 2 p2+1 2 p .
Similarly, for g 0, -h w, we have

5 -g m < 5 • 2 -h+p2 5 • 2 w+p2 2 p .
In all four cases, m 3 = 5 g -2 -u m and n 3 = 5 g + 2 -v n are computed without overflow. Therefore

m 3 n 3 = m • 2 (h+w) + -(h+w) - n • 5 g + -g - = m • 2 h+w n • 5 g
and x 2 = x 10 if and only if m 3 = n 3 , by (22).

EXPERIMENTAL RESULTS

For each combination of a binary basic IEEE format and a decimal one, we implemented the comparison algorithm consisting of the first step (Section 3) combined with the version of the second step based on a bipartite table (Section 5.2). We used the parameters suggested in the second part of Table 8, that is for the case when γ is a power of two and one tries to reduce table size.

The implementation was aided by scripts that take as input the parameters from Tables 2 and8 and produce C code with GNU extensions [START_REF]GNU compiler collection[END_REF]. Non-standard extensions are used for 128-bit integer arithmetic and other basic integer operations. No further effort at optimization was made.

Our implementations, the code generator itself, as well as various scripts to select the parameters are available at http://hal.archives-ouvertes.fr/hal-01021928/.

The code generator can easily be adapted to produce other variants of the algorithm.

We tested the implementations on random inputs generated as follows. For each decimal exponent and each quantum [5, 2.1.42], we generate a few random significands and round the resulting decimal numbers upwards and downwards to the considered binary format. (We exclude the decimal exponents that merely yield to underflow or overflow on the binary side.) Table 6 reports the observed timings for our random test data. The generated code was executed on a system equipped with a quad-core Intel Core i5-3320M processor clocked at 2.6 GHz, running Linux 3.16 in 64 bit mode. We used the gcc 4.9.2 compiler, at optimization level -O3, with the -march=native flag. The measurements were performed using the Read-Time-Step-Counter instruction after pipeline serialization. The serialization and function call overhead was estimated by timing an empty function and subtracted off. The caches were preheated by additional comparison function calls, the results of which were discarded.

It can be observed that "balanced" comparisons (d64/b64, d128/b128) perform significantly better than "unbalanced" ones. A quick look at the generated assembly code suggests that there is room for performance improvements, especially in cases involving 128-bit floating point formats.

We performed more detailed experiments in the special case of binary64-decimal64 comparisons. In complement to the generated code, we wrote a version of the bipartite table method with some manual optimization, and implemented the method based on direct tabulation of f (h) presented in Section 5.1. We tested these implementations thoroughly with test vectors that extensively cover all floating-point input classes (normal numbers, subnormals, Not-A-Numbers, zeros, and infinities) and exercise all possible values of the normalization parameter ν (cf. Section 3) as well as all possible outcomes for both of the algorithm's steps.

Finally, we compared them for performance to the naïve comparison method where one of the inputs is converted to the radix of the other input. These experimental results are reported in Table 5. In the last two rows, "easy" cases are cases when the first step of our algorithm succeeds, while "hard" cases refer to those for which running the second step is necessary.

CONCLUSION

Though not foreseen in the IEEE 754-2008 Standard, exact comparisons between floating-point formats of different radices would enrich the current floating-point environment and make numerical software safer and easier to prove.

This paper has investigated the feasibility of such comparisons. A simple test has been presented that eliminates most of the comparison inputs. For the remaining cases, two algorithms were proposed, a direct method and a technique based on a more compact bipartite table. For instance, in the case of binary64-decimal64, the bipartite table uses only 800 bytes of table space.

Both methods have been proven, implemented and thoroughly tested. According to our experiments, they outperform the naïve comparison technique consisting in conversion of one of the inputs to the respectively other format. Furthermore, they always return a correct answer, which is not the case of the naïve technique.

Since the algorithmic problems of exact binary to decimal comparison and correctly rounded radix conversion are related, future investigations should also consider the possible reuse of tables for both problems. Finally, one should mention that considerable additional work is required in order to enable mixed-radix comparisons in the case when the decimal floating-point number is stored in dense-packed-decimal representation. 
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TABLE 1

 1 The basic binary and decimal interchange formats specified by the IEEE 754-2008 Standard.

TABLE 2

 2 The various parameters involved in Step 1 of the comparison algorithm.

  That range is given in Table2for the basic IEEE formats. Knowing that range, it is easy to implement ϕ as follows.

				-p2 )•2 h .
	This implies, from (4), x 2 < x 10 .
	Now consider the range of h: by (2), h lies between
	h	(1) min = (e min 2	-p 2 + 1) -e max 10 + p 10 -p ′ 10 + 1
	and		
	h	(1) max = e max 2	-e min 10 + p 10 .
	Proposition 2. Denote by ⌊•⌉ the nearest integer function. For
	large enough s ∈ N, the function defined by

TABLE 4

 4 Worst cases for d h (m, n) and corresponding lower bounds η.

TABLE 7

 7 Suggested parameters for Algorithm 2 on a 32-bit machine.

		b32/d64	b32/d128	b64/d64	b64/d128	b128/d64	b128/d128
	W (p 2 )	64	64	64	64	128	128
	W (p ′ 10 )	64	128	64	128	64	128
	γ = 2 k , optimizing multiplication count					
	ǫ	+1	-1	+1	-1	+1	+1
	γ	16	16	16	16	16	16
	range of q	-3, 3	-2, 5	-21, 20	-19, 23	-311, 309	-312, 309
	min λ 1 satisfying (12)	86	145	117	178	190	242
	min λ 2 satisfying (13)	35	35	35	35	35	35
	chosen λ 1 , W (λ 1 )	125, 128	191, 192	125, 128	191, 192	190, 192	253, 256
	chosen λ 2 , W (λ 2 )	64, 64	64, 64	64, 64	64, 64	64, 64	64, 64
	τ	0	0	0	0	-1	0
	Step 6 of Algo. 2 can be omitted						
	total table size in bytes	240	320	800	1160	15032	20032
	64-bit muls	3	5	3	5	5	10
	γ = 2 k , optimizing table size						
	ǫ	+1	-1	+1	-1	-1	+1
	γ	16	16	16	32	64	64
	range of q	-3, 3	-2, 5	-21, 20	-9, 12	-77, 78	-78, 78
	min λ 1 satisfying (12)	86	145	117	178	190	242
	min λ 2 satisfying (13)	35	35	35	72	147	147
	chosen λ 1 , W (λ 1 )	125, 128	191, 192	125, 128	191, 192	191, 192	253, 256
	chosen λ 2 , W (λ 2 )	64, 64	64, 64	64, 64	128, 128	192, 192	192, 192
	τ	0	0	0	0	0	0
	Step 6 of Algo. 2 can be omitted				±	±	±
	total table size in bytes	240	320	800	1040	5280	6560
	64-bit muls	3	5	3	7	9	14
	any γ, optimizing multiplication count					
	ǫ	+1	-1	+1	-1	+1	+1
	γ	13	20	28	28	28	28
	range of q	-4, 3	-1, 4	-12, 11	-11, 13	-177, 177	-178, 177
	min λ 1 satisfying (12)	86	145	117	178	190	242
	min λ 2 satisfying (13)	28	45	63	63	63	63
	chosen λ 1 , W (λ 1 )	125, 128	191, 192	125, 128	191, 192	190, 192	253, 256
	chosen λ 2 , W (λ 2 )	64, 64	64, 64	64, 64	64, 64	64, 64	64, 64
	τ	0	0	0	0	-1	0
	Step 6 of Algo. 2 can be omitted						
	total table size in bytes	232	304	608	824	8744	11616
	64-bit muls	3	5	3	5	5	10
	any γ, optimizing table size						
	ǫ	+1	-1	+1	+1	-1	+1
	γ	13	20	28	28	82	83
	range of q	-4, 3	-1, 4	-12, 11	-12, 11	-60, 61	-60, 60
	min λ 1 satisfying (12)	86	145	117	178	190	242
	min λ 2 satisfying (13)	28	45	63	63	189	191
	chosen λ 1 , W (λ 1 )	125, 128	191, 192	125, 128	189, 192	191, 192	253, 256
	chosen λ 2 , W (λ 2 )	64, 64	64, 64	64, 64	64, 64	192, 192	192, 192
	τ	0	0	0	0	0	0
	Step 6 of Algo. 2 can be omitted					±	±
	total table size in bytes	232	304	608	800	4896	5864
	64-bit muls	3	5	3	7	9	14

TABLE 8

 8 Suggested parameters for Algorithm 2 on a 64-bit machine.
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