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Abstract

A model reproducing strain softening behavior in ceramic materials is proposed, base on
a critical treatment of previous mechanical experimental results on uranium dioxide. The
main hypothesis is that the strain softening phenomenon is related to an ageing process,
where some point defects move towards the dislocations and modify their velocity. This is
different from most of models used up to now, as they were based on the hypothesis that only
the initial lack of dislocations was responsible of the strain softening behavior. A model is
first developed in a simple 1D framework. Evolution of the mechanical behavior with strain
rate and temperature is well reproduced by this model. Then, the 1D model is extended
to a 3D mechanical model, and mechanical compressive tests on UO2 pellets are simulated.
The 3D model well reproduces the observed asymmetrical shape of the compressed pellet if
one considers that the material is not initially perfectly homogeneous, which highlights the
importance of accounting for spatial heteregeneity of materials in models.
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1 Introduction

Most ceramics are brittle at low and medium temperature and can be deformed plas-
tically only above the brittle-to-ductile transition temperature. This was an important
experimental barrier for a long time. It was overcome by Wachtman and Maxwell
([Wachtman and Maxwell, 1954]), and Kronberg ([Kronberg, 1957]), who first developed
high temperature mechanical testint techniques and were able to deform samples at tem-
peratures above 1000°C and more. Since this pioneering work, the past decades saw much
activity in this field, especially in the experimental study of dislocations in ceramics (a review
can be found in [Mitchell and Heuer, 2005]). Despite their high potential, the knowledge of
mechanical behavior of ceramics above the brittle-to-ductile transition temperature is still
incomplete compared to metals. Particularly, there are few numerical mechanical models of
such materials.



In our study, we focus on strain softening behavior, which is a rather common behavior
observed in ceramics. This behavior is traduced, during a compressive test at constant
strain rate, by a maximum on the stress - strain curve. This was first observed on alkali
halides and ionic crystals ([Johnston, 1962, Brown and Pratt, 1963]) (these ceramics can be
plastically deformed at ambient or moderated temperature, which makes the tests easier).
The main explanation for this behavior was supposed to be the fast multiplication of
dislocations at the begining of deformation, due to an initial lack of dislocations, which
enventually leads to a softer material ([Gilman, 1961]). This reasonable theory was not
directly linked to the yield point and Lüders bands observation in some BCC metals,
especially in soft steels ([Friedel, 1964]), even though the two behaviors are extremely
close. More recent observations on ceramics, particularly on oxide ceramics such as MnO
([Goretta and Routbort, 1986]), MgO ([Srinivasan and Stoebe, 1973]), UO2 ([Guerin, 1975,
Lefebvre, 1976]) and ZrO2 ([Tikhonovsky, 2001, Gallardo-Lopez et al., 2004]) have shown
that there was a link between strain softening, impurity concentration and strain rate
sensitivity. Finally, the lack of dislocations theory can not explain all of the observed
behavior, and it needs to be completed. In the present paper, we propose a model that
accounts for the effect of strain rate and temperature and clearly highlights the role of defects
for such materials. This theory is applicable to ceramics but also to many materials in which
strain softening is observed.

In our study, we apply our model to uranium dioxide (UO2) which is the most used fuel
for nuclear power production. At high temperature (T & 1000°C), the physical cause of the
plastic deformation of this material depends on the applied stress. Whereas for very low
stress, plasticity is a diffusional phenomenon, the cause of inelastic strain for high stress is
dislocations’ glide (a full strain mechanisms map can be found in [Frost and Ashby, 1982]).

Uranium dioxide has been extensively studied since the 1960’s. Different aspects of its
mechanical behavior were studied experimentally and some phenomenological models were
then established (see for example [Scott et al., 1959, Armstrong et al., 1962]). These first ex-
periments have shown that UO2’s plastic behavior is sensitive to temperature and strain
rate. However, the discrepancies between experimental results has led to the conclusion
that UO2’s mechanical behavior is sensitive not only to those two parameters, but also to its
chemical composition, such as stoichiometry ([Nadeau, 1969, Burton and Reynolds, 1973])
or impurities concentration ([Christie and Williams, 1962, Armstrong and Irvine, 1964]).
More recently, new developments of computing methods allowed to study several as-
pects of this material numerically. Both macroscopic ([Monerie and Gatt, 2006]) and micro-
scopic ([Sauter and Leclercq, 2003, Pacull, 2011]) mechanical models were developed. There
main purpose was to determine a globally consistent model that could be used, for exam-
ple, in the case of simulating fuel element behavior under operation ([Michel et al., 2008,
Michel et al., 2013]). However, some recent studies using molecular dynamics techniques
([Fossati, 2012]) suggest that dislocations are influenced by their nearest chemical environ-
ment, such as atomic disorder on oxygen sublattice, which actually confirms the previous
experimental statements. The fact that chemical state of this material is deeply modified
during irradiation requires a better understanding of the link between phenomena taking
place at microscopic or nanoscopic scale, such as diffusion of defects, and macroscopic be-
havior. This generalizes to other ceramics or materials whose behavior is modified by such
microscopic interactions.

Plastic behavior of crystal materials, especially metals, has been extensively studied and
modeled. Most of the theories developed for metals also apply to uranium dioxide, but
at high temperature and high strain rate only (see [Frost and Ashby, 1982]). A well known



mechanism for metals is the interaction between dislocations and point defects which are
in the material, such as precipitates or solute atoms for example (note that the defects can
also be created by the plasticity mechanism itself). These mechanisms have been known
for decades ([Cottrell and Bilby, 1949, Mura et al., 1961, Bullough and Newman, 1970]). A
mechanical theory related to these mechanisms, also called dynamic strain ageing,
which was developed during the early 1990’s ([McCormick, 1988, Kubin and Estrin, 1990,
Estrin and Kubin, 1991]), has shown that Portevin-Le Chatelier (PLC) effect is a direct con-
sequence of this interaction between point defects and dislocations. This kind of model is
now very frequently used, and it has recently given good results for modeling the Portevin-
Le Chatelier effect during monotonic tensile tests ([Mazière and Dierke, 2012]), and cyclic
hardening ([Chaboche et al., 2013]), for example. Such mechanisms can also occur in ce-
ramics, and they were recently indeed identified in cubic zirconia ([Tikhonovsky, 2001,
Gallardo-Lopez et al., 2004]) whose crystal structure and mechanical behavior are close to
UO2. PLC effect was also observed in UO2 ([Yust and McHargue, 1969]), but this is not a
common behavior for this material as, to the best of our knowledge, this was only observed
once. In this article, we use the same type of theory than for PLC effect, but we show that it
mainly manifests by a strong strain softening and a modification of strain rate sensitivity of
the material.

Numerical modeling of strain softening may be troublesome: as pointed out in
[Engelen et al., 2003], in the case of rate independent behavior, the numerical solution that
is obtained from finite element analyses employing standard continuum elasto-plasticity,
where a local description of the softening material is used, reveals a pathological dependence
on the direction and the fineness of the finite element mesh ([Pijaudier-Cabot et al., 1988]).
Accordingly, upon mesh refinement no convergence to a physically meaningful solution
exists. A solutions to this problem can be a non-local or gradient enhanced formulation
(see for example [Peerlings et al., 2001, Engelen et al., 2003]), which is an efficient method.
Another solution is a viscous regularization of the problem ([Needleman, 1988, Borst, 2001]):
for a strain rate dependent behavior, strain softening does not always lead to an ill-posed
problem. In the case of uranium dioxide, mechanical behavior is actually rate dependent.
For this reason, we only developed a local approach of this material’s behavior.

In the present paper, we firstly give a new vision of previous experimental mechanical
results on UO2 and discuss the different physical possible explanations for the observed
behavior of this material. The second part is the presentation of a new 1D model that was
constructed to reproduce the experimental data. Some parameters were fitted to a set of
experiments. Finally, a 3D model is presented, which is an extension of the 1D model, and
simulations of a compressed pellet are presented. A special point is made on the shape and
localization of strain.

2 Experimental overview

2.1 Description of the typical thermomechanical behavior

As uranium dioxide is not totally pure, and fabrication process and test conditions
strongly influence its mechanical behavior, there exist some discrepancies between
experimental results. This can be explained by slight deviations of stoichiome-
try ([Nadeau, 1969, Burton and Reynolds, 1973, Keller et al., 1988a, Keller et al., 1988b,
Mitchell and Heuer, 2005]), density ([Armstrong et al., 1962, Seltzer et al., 1971]), grain
size ([Seltzer et al., 1971, Vivant-Duguay, 1998]) or impurities and addition elements



([Christie and Williams, 1962, Armstrong and Irvine, 1964]). However this material can be
characterized by a typical mechanical behavior, which is observed in most of experiments.
The following results are obtained after compressive tests on fuel pellet (small cylinder) or
single crystal, under imposed strain rate, where both ends are blocked (fig. 1).

1. Strain softening, which leads to a drop of flow stress: this phenomenon is
growing (or even appearing) with increasing strain rate, and decreasing tempera-
ture ([Guerin, 1975]). This strain softening is repeated after a given ageing time
([Lefebvre, 1976], as seen in fig.2). This behavior seems to be particularly character-
istic of fluorite type ceramics ([Tikhonovsky, 2001, Gallardo-Lopez et al., 2004]).

2. Temperature sensitivity of yield stress: under imposed strain rate, the evo-
lution of yield stress as a function of temperature typically exhibits a small
plateau ([Guerin, 1975]). An inverse evolution (yield stress growing with in-
creasing temperature) can even be observed for single crystal ([Lefebvre, 1976,
Yust and McHargue, 1969], as seen in fig.3).

3. Strain rate sensitivity: under imposed temperature, strain rate sensitivity can be very
low for a precise strain rate range. In some cases ([Guerin, 1973]), a higher flow stress
can be obtained for a lower strain rate.

4. Localized deformation: as the localized deformation is classical for single crystals, this
phenomenon can be obtained at a macroscopic scale during a fuel pellet compressive
test. In some cases, the deformation occurs in a asymmetric shape (fig.4), which can
not be correlated to any particular non symmetric loading. The localized deformation
only appears when a very important strain softening is also observed. As strain
softening is well known to produce a localized deformation, this result is not surprising
([Poirier, 1980]).

5. Portevin-Le Chatelier Effect (PLC). PLC effect is rarely observed during compres-
sive tests of uranium oxide, but it has however been observed by Yust et al.
([Yust and McHargue, 1969]). PLC effect is classically observed for some other fluo-
rite type ceramics ([Gallardo-Lopez et al., 2004]).

An important aspect is that all these phenomena are related. For example, at a given strain
rate, the temperature for which yield drop appears is the same than the one for which the
evolution of yield stress as a function of temperature typically exhibits a small plateau, and
than the one for which strain rate sensitivity is strongly reduced.

2.2 Discussion

Some previous models attributed strain softening to an initial lack of dislocations
([Gilman, 1961, Johnston, 1962, Bell and Bonfield, 1964]). As ceramics do not present a high
initial dislocation density, and this type of model can indeed reproduce a yield drop for a
dislocation-free material (but not for an already deformed material), this hypothesis was
occasionally used until recently. For uranium dioxide, this theory was used in several me-
chanical models ([Pacull, 2011, Sauter and Leclercq, 2003]).

However, this theory can not explain three phenomena: the repeated yield drop and
its relation with ageing time, the temperature sensitivity of yield stress and the strain rate
sensitivity evolution with strain rate and temperature. As initial dislocation density is not



Figure 1: Schematic view of the classical compressive test performed on UO2 pellets

Figure 2: Repeated yield drops for a UO2 single crystal during a compressive test under
imposed strain rate, after [Lefebvre, 1976]. ∆z represents the crosshead displacement and
F is the measured force. Waiting time is given above each part of the curve, and the three
different curves are arbitrarily spaced.



Figure 3: Temperature dependence of yield stress in UO2 single crystals, after
[Lefebvre, 1976]

(a) (b)

Figure 4: Cross-section view of an UO2 pellet after a compressive test at 1500°C under a constant
strain rate of 2.7 � 10−4s−1. Deformation can be symmetric (a) or asymmetric (b) (tests performed at
CEA)



easily related to fabrication process or chemical composition, this theory can not explain
either the case when yield drop is not observed.

As a result, the observed phenomena should be explained by an interaction between
dislocation and some defects. As the strain softening behavior is related to a waiting time
during which no deformation occurs and dislocations hence do not glide ([Lefebvre, 1976]),
the point defects must be mobile. This excludes some barriers, such as dislocation forest,
Lomer-Cottrell locks, or precipitates. However, the precise nature of the main migrating
defects in UO2 is not known. It could be vacancies, solute atoms or any other possible defect.

For all these reasons, we used a simplified dynamic strain ageing theory based on
[McCormick, 1988, Kubin and Estrin, 1990, Estrin and Kubin, 1991]. The main hypothesis is
that some defects are attracted by dislocations (this process will be simply called ageing
throughout this paper). Therefore, dislocations are slowed down by these defects. We will
show in the next section, that the proposed model can explain the phenomena previously
described, including strain softening, effects of temperature and strain rate, temperature
sensitivity of the yield stress and strain rate sensitivity. Contrary to other dynamic strain
ageing models, it can not although reproduce the Portevin - Le Chatelier effect.

3 Macroscopic 1D model

3.1 Constitutive equations

3.1.1 Kinematics of the problem

In this one dimension model, strain and stress only have one dimension. Total stress εtot
is assumed to be the sum of two parts: an elastic strain εel and a viscoplastic strain εvp:
εtot = εel + εvp. Stress is linearly related to the elastic strain: σ = Eεel . At room temperature,
UO2’s Young modulus is about 220 GPa ([Martin, 1989]) and we used this value for all
temperatures.

3.1.2 Equation of motion

As suggested by experimental studies (see for example [F. Dherbey, 2002]), in a first
approximation, the macroscopic behavior of UO2 can be simply reproduced by a simple
equation:

ε̇vp = ε̇0 (T) sinh
(
|σ|
σ0

)
sgn(σ) (1)

where ε̇vp is the mean viscoplastic strain rate, ε̇0 (T) the reference strain rate which
depends on temperature, σ the stress and σ0 the reference stress. ε̇0 (T) and σ0 are material
parameters. The value of sgn(σ) is 1 if σ > 0 and −1 if σ < 0. This keeps the law consistent
for both tension and compression. As for most models, this is only valid for a certain range of
temperature and stress (or temperature and strain rate). As pointed out by [Teodosiu, 1976],
this quite phenomenological relation is actually closely related to the underlying plastic
strain at microscale, which is due to dislocations motion. In this relation, no effect of strain
hardening is considered. This is consistent with the experimental results, where very few
strain hardening is measured, and it gives a more simple model (see [Guerin, 1973]).



3.1 Constitutive equations

3.1.3 Ageing of dislocations

As previously shown ([Cottrell and Bilby, 1949, Harper, 1951, Mura et al., 1961]), point
defects may move towards dislocations and slow them down, or even pin them permanently.
If one consider an elementary volume at microscopic scale, containing both defects and
dislocations, all dislocations may not be affected simultaneously. For this reason, at a
macroscopic scale, we can assume that there exists an ageing stress which will simply slow
down dislocations and reduce locally the strain rate for a given applied stress:

ε̇vp = ε̇0 (T) exp
(
−σa

σ0

)
sinh

(
|σ|
σ0

)
sgn(σ) (2)

where σa is the ageing stress. As shown in [Friedel, 1964], σa can be defined as the
product of two terms:

σa = σ∞
a ca(t) (3)

σ∞
a is the maximum value of the ageing stress and is related to the nature of interaction

between defects and dislocations. ca is a relative concentration of defects which have
moved toward the dislocations and depends upon time (varies between 0 and 1). This
concentration is an average over the elementary volume which is considered (this is a
mesoscopic parameter). This parameters is the ratio between N(t) (number of defects which
have moved toward the dislocations) and Nmax (maximum number of defects which can
move):

ca(t) = N(t)/Nmax (4)

N(t) depends on the waiting time of the dislocations. Although Nmax is considered as
a material parameter in our present model, it could potentially be considered as a variable,
because the number of defects depends also on the mechanical history of the material and
it can evolve. As the number of dislocations during strain is also changing, the number of
defects compared to the number of dislocations may also decrease.

However, if one considers an immobile dislocation, initially free of defects, the number
of defects which have migrated after a waiting time ta is (see. [Quere, 1967]):

N(t) = Nmax

(
1− exp

(
−
(

ta
t0

)n))
(5)

where n is a coefficient between 0 and 1. For long ageing time, we can assume that a
saturation phenomenon occurs, and for small times, we have the relation N(t) ∝ tn

a . We
assume that we have the same relation at the elementary volume scale than for a single
dislocation. This finally yields the expression:

ca(t) =
(

1− exp
(
−
(

ta
t0

)n))
(6)

Note that in our model, we use ca as an internal variable instead of ta which is more often
used, for example in [Estrin and McCormick, 1991]. This change is actually convenient for
numerical computation and visualization of the local state of the material. However, one can
also invert eq. 6 which gives ta = t0 (− ln (1− ca))

1/n.
The value of n is related the interaction energy between a dislocation line and a moving

defect at a distance r. Indeed, if one assumes that the energy is given by the relation:



3.1 Constitutive equations

U =
A
rα (7)

then n = 2
α+2 . For bulk migration of defects, the value of n = 2/3 (α =

1, which corresponds to an elastic interaction) is commonly used ([McCormick, 1988,
Estrin and McCormick, 1991, Kubin et al., 1992]). For pipe diffusion along dislocations, the
value of n = 1/3 (α = 4) was shown to be more consistent ([Ling and McCormick, 1993,
Mesarovic, 1995]). For a given material, the value of n can be directly known by measuring
the evolution of yield drop with ageing time (see for example [Lefebvre, 1976]). However,
the link between the value of measured n and the nature of migration is still not clearly
established. For UO2, ageing experiments have shown a value n ≈ 0.5 ([Lefebvre, 1976]).
However, as the uncertainty of this value is high, a value of n = 2/3 can still be considered,
and we finally used the 2/3 value (see tab. 1).

3.1.4 Waiting time of a moving dislocation

For a moving dislocation during a macroscopic stationary deformation, the mean time spent
waiting is ([Kubin and Estrin, 1990]):

tw =
Ω
|ε̇vp|

(8)

where Ω is a strain increment. For general case, if we consider that only dislocation
can stop other dislocations, it has been shown that Ω = ρmb/√ρi, where ρm is the mobile
dislocations density and ρi is the immobile dislocations density ([Kubin and Estrin, 1990]).
In our study, no difference between mobile and immobile dislocations is assumed, which
simplifies the problem. We finally have:

Ω = b
√

ρ⇒ tw =
b
√

ρ

|ε̇vp|
(9)

For our model, as the observed phenomena also appear for prestrained material, when
dislocation density changes very little, the dislocation density is approximated by a constant
value:

tw =
b√ρ0
|ε̇vp|

(10)

A reasonable value of ρ0 is 1013m−2, which corresponds to the dislocation density of a
sample strained at a few percents [Yust and McHargue, 1969]. A variation of our model with
a variable dislocation density (chosen after [Yust and McHargue, 1969]) was tested and did
not show any difference on behavior (strain softening, strain rate sensitivity). This validated
our hypothesis that dislocation density can be approximated by a constant value.

As used by previous authors (see for example [McCormick, 1988]), we use a first order
relaxation time to relate the real ageing time ta and the stationary ageing time tw:

ṫa = 1− ta
tw

(11)

ta is the real mean waiting time of a moving dislocation. This time is different from
the stationary ageing time tw, because a dislocation cannot age faster than one second per



3.1 Constitutive equations

second. As we chose ca as an internal variable instead of ta, we have to express eq. 11 in
term of ca, which finally leads to:

ċa = ṫa
∂ca
∂ta

=

(
1− t0 (− ln (1− ca))

1/n

tw

)
n
t0

(− ln (1− ca))(
n−1)/n (1− ca) (12)

Note that in a the strain ageing theory, we assume that the evolution of local ageing (ca
in our model), which is a mesoscopic parameter, is still well described by equations given at
dislocations scale.

3.1.5 Effect of temperature

The effect of temperature T on the reference strain rate is treated through a heat-activated
term:

ε̇0 (T) = ε̇0 exp
(
− Ev

kBT

)
(13)

where Ev is an energy of activation and kB the Boltzmann’s constant. Contrary to FCC
metals at room temperature, plasticity in UO2 in strongly temperature dependent, but no
precise mechanism (such as kink pair nucleation on screw dislocations in BCC metals at room
temperature for example) has been reported yet in the literature. Some authors attribute this
energy to a dislocations core diffusion ([Mohamed and Soliman, 1982]), but this is still an
hypothesis.

There also is an effect of temperature on the ageing reference time t0, which is the time
that defects need to saturate the surrounding of a dislocation. According to [Friedel, 1964],
this time should be related to temperature with a precise form: t0 ∝ T exp

(
E

kBT

)
. For

our model, our calculations have shown that this type of law underestimates the effect of
temperature on ageing. In order to better reproduce experiments, we have finally chosen a
phenomenological law:

t0 ∝ A exp
(
− T

T0

)
(14)

3.1.6 Summary of equations and numerical integration

The set of equations can be summarized as follows:



3.2 Physical constants for UO2



ε̇tot = ε̇el + ε̇vp

εel =
σ
E

ε̇vp = ε̇0 exp
(
− Ev

kBT

)
exp

(
−σa

σ0

)
sinh

(
|σ|
σ0

)
sgn(σ)

σa = σ∞
a ca

ċa =

(
1− t0(− ln(1−ca))

1/n

tw

)
n
t0

(− ln (1− ca))(
n−1)/n (1− ca)

t0 = A exp
(
− T

T0

)
tw =

b
√

ρ0
|̇εvp|

(15)

The parameters are given in tab. 1. This set of differential equations can be seen

as a system: Ẏ = F(Y, ε̇tot) with Y =

{
εel
ca

}
. In our code the total strain rate is

given as an iterative solution of the non linear static equilibrium problem and controls the
evolution of other variables. Viscoplastic strain can be directly deduced from elastic strain:
εvp = εtot − εel . Stress is also deduced from elastic strain.

The differential equation is solved incrementally. If one knows Y at time t and ε̇vp is
assumed to be a constant between t and t + δt (first order approximation), then Y can be
known at time t + δt using either an implicit scheme or an explicit scheme (for instance
Runge-Kutta method). In our model, we tested both and finally used the implicit scheme.
In this case, we assume that: δY = Y(t + δt) − Y(t) ≈ δt × F(Y + δY, ε̇tot). This can
be seen as a new equation: G(δY) = 0 with G(δY) = δY − δt × F(Y + δY, ε̇tot). The
only unknown is δY. The equation was solved using a Newton-Raphson method. This
method needs to know the Jacobian term ∂G

∂δY , which we numerically approximated: ∂G
∂δY ≈

1
2ε (G(δY + ε)− G(δY− ε)) with δY � ε.

3.2 Physical constants for UO2

The total number of unknown parameters is low, as there are 3 parameters for global
behavior (σ0, ε̇0, Ev), and 3 parameters dedicated to ageing process (σ∞

a , A, and T0). We
used an experimental set of measurements previously obtained at the CEA ([Guerin, 1973],
represented on fig. 5) on fuel pellets under compressive stress at imposed strain rate
for different temperatures. The 6 unknown parameters were hence adjusted with these
experiments (see tab. 1). Fig. 5 shows that our model reproduces the effect of both strain rate
and temperature on flow stress and maximum stress, i.e. strain softening.

3.3 Capabilities of 1D model

This model was built to reproduce some special effects, consistent with the mechanical
behavior of uranium dioxide. In the simulation, the total strain rate (ε̇) is imposed. Adjusted
material coefficients are used (see tab. 1), so that the different plots are consistent with
experimental results.



3.3 Capabilities of 1D model

(a)

(b)

Figure 5: Comparison between experiments data from [Guerin, 1973] (a) and model (b)



3.3 Capabilities of 1D model

Notation Parameter Unit Value

ε̇0 Viscoplastic reference strain rate s−1 3 � 106

b Burgers’ vector length m 3.87 � 10−10

Ev Reference energy for dislocations velocity eV 4.8
σ0 Reference yield stress Pa 11
ρ0 Reference dislocations density m−2 1 � 1013

σ∞
a Maximum ageing stress Pa 22
n Exponent for ageing - 2/3
A A material parameter s.K−1 1.0 � 10−7

T0 Reference temperature for ageing K 66.6

Table 1: Parameters, units and values used in the model

3.3.1 Strain softening (repeated yield drop)

The initial value of ca needs to be close to 1 to produce a strain softening effect. Under this
condition, the strain-stress curve exhibits a yield drop, which corresponds to the activation
of dislocations glide, hence reducing the current ageing concentration and the ageing stress.
A low value of ε̇vp will induce a growing ageing concentration. A new compression test
on this aged material will induce a new yield drop (fig 6). Fig. 10 shows that the difference
between maximum stress (peak) and flow stress grows with decreasing temperature at given

strain rate. The relative size of the peak (
σpeak−σflow

σflow
) is illustrated fig. 7. For the chosen

temperature and strain rate ranges, it can not exceed a value of 9.1%. It is maximum for
a strain rate of 10−3s−1 (for this strain rate the overstress due to aging, σpeak − σflow, is
high) and a temperature of 1650K (for this temperature, flow stress σflow is reduced, due to
thermal activation of viscoplasticity). For low strain rate (10−6s−1), the relative size of the
peak disappears with increasing temperature.

3.3.2 Strain rate sensitivity

Strain rate sensitivity is defined as follows:

S =
∂σflow

∂ ln ε̇
(ε̇, T) (16)

σflow here represents the stress that you obtain when you perform a compressive test at a
given strain rate ε̇ and given temperature T. Therefore this is not an instantaneous variation
of stress with strain rate. For an ageing material, the value of this coefficient is modified
by the effect of defects migration. This can lead to a minimum of strain rate sensitivity in
the range of temperature and strain rate where dislocations and point defects move with the
same speed. For a higher temperature, defects can follow dislocations up to a higher strain
rate. This is illustrated by fig. 8 and fig. 9. With our parameters, S is always positive, but
fig. 9 clearly shows a valley of low strain rate sensitivity, where it can be as low as 6.8 MPa.
This valley corresponds to the strain rate and temperature for which dislocations and point
defects move with almost the same speed.
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(a)

(b)

Figure 6: Evolution of stress and strain (a) and ageing concentration (b) with time for UO2
at 1273K. Total strain rate is imposed between 10−5s−1 and zero (relaxation).
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Figure 7: Map of the relative peak stress (
σpeak−σflow

σflow
), as a function of temperature and

strain rate.

Figure 8: Strain rate sensitivity as a function of strain rate, for different temperatures.



Figure 9: Map of the strain rate sensitivity as a function of temperature and strain rate.

3.3.3 Effect of temperature on yield stress

At a given strain rate, there exists a temperature for which defects and dislocations speeds
are approximately the same. In this range of temperature, an increase of temperature will
decrease the reference ageing time t0, hence increasing the ageing stress. The resulting flow
stress is therefore decreasing more slowly with temperature(see fig. 10). Fig. 10 also shows
that, for a given strain rate, only relatively low temperatures will lead to a compression peak
during a test. This peak is greater for lower temperatures, and is disappearing for high
temperatures. The temperature delimiting those two regimes is increasing with increasing
strain rate, which is consistent with experimental results.

4 3D simulations

4.1 3D constitutive equation

4.1.1 Kinematics of the problem

In this 3 dimensional model, strain and stress are second order tensors. We used a
simple small strains formulation. Total stress εtot is the symmetric part of ∇u where u is

displacement: εtot = 1/2
(
∇uT +∇u

)
. εtot is assumed to be the sum of two parts: an

elastic strain εel and a viscoplastic strain εvp: εtot = εel + εvp. This relation can be also

written in term of strain rate: ε̇tot = ε̇el + ε̇vp. Cauchy stress is linearly related to the elastic

strain: σ = D : εel . At room temperature, UO2’s Young modulus is about 220 GPa and

Poisson’s ratio is close to 0.3 ([Martin, 1989]), and we used these values for all temperatures.
As any viscoplastic evolution, the viscoplastic flow rule can be written (see

[Lemaitre et al., 2009] for more details):

ε̇vp = ṗn (17)

.



4.1 3D constitutive equation

(a)

(b)

Figure 10: Evolution of maximum stress and flow stress with temperature for a given strain
rate of 2.33 � 10−5s−1: experiments from [Guerin, 1973] (a) and model (b).



4.1 3D constitutive equation

In our model, we used a normal and associated flow, based on von Mises flow potential.

In this case, the flow potential Φ only depends on von Mises stress σeq =
√

3
2 σD : σD (with

σD = σ− 1
3Tr(σ)I):

ε̇vp =
∂Φ
(
σeq
)

∂σ
=

∂Φ
(
σeq
)

∂σeq

∂σeq
∂σ

(18)

Thus, ṗ =
∂Φ
(
σeq
)

∂σeq
and n =

∂σeq
∂σ

, which can be also written:

n =
3
2

σD

σeq
(19)

If one chooses Φ = ε̇0 exp
(
− Ev

kBT

)
exp

(
−σa

σ0

)
cosh

(σeq
σ0

)
, this finally gives a result

similar to 1D model (eq. 15):

ṗ = ε̇0 exp
(
− Ev

kBT

)
exp

(
−σa

σ0

)
sinh

(
σeq
σ0

)
(20)

4.1.2 Finite element formulation

We solved our FE problem with the FE code Cast3M (www-cast3m.cea.fr/). The incremental
finite element resolution of non-linear mechanical problems consists in solving at each step
i the following problem: assuming a time t = ti, Fint(u

i) = Fext(ui), find the displacement
field a time t = ti+1, ui+1 = ui + ∆ui such as Fint(u

i+1) = Fi+1
ext . ui denotes the vector of

nodal displacements at step i, and Fint(u
i) and Fi

ext the corresponding internal and external

forces acting on the discretized system. The value of external forces at step i + 1, Fi+1
ext is

deduced from boundary conditions and loading path. This non-linear problem can be solved
at each step using iterative procedures. B is the shape function derivative matrix. For each
calculation iteration k:

1. The displacement field is updated ∆ui
k+1 = ∆ui

k + δui
k.

2. The total strain tensor increment at each Gauss point ∆εi
k+1 = B∆ui

k+1 is computed.

3. The constitutive equations are integrated to provide the internal variables increments
(see 4.1.3), including stress increment ∆σi

k+1. Note that we don’t compute any
consistent tangent operator.

4. Internal forces Fint
(

ui + ∆ui
k+1

)
are computed.

5. Residual forces Ri
k+1 = Fint(u

i + ∆ui
k+1)− Fi+1

ext are computed.

6. The new displacement increment δui
k+1 = −KRi

k+1 is computed, where K denotes
the elastic stiffness matrix of the problem (an algorithm can be used at this step to
compute another displacement increment which gives a faster convergence).

This iterative process is stopped when
∣∣∣Ri

k+1

∣∣∣ < r , with r a given small value.



4.1 3D constitutive equation

4.1.3 Integration of constitutive equations

We used the same parameters for the 3D model than for the 1D model. Finally, constitutive
equations reduce to:

ε̇tot = ε̇el + ε̇vp

σ = D : εel

ε̇vp = ṗn

n = 3
2

σD

σeq

σD = σ− 1
3Tr(σ)I

σeq =
√

3
2 σD : σD

ṗ = ε̇0 exp
(
− Ev

kBT

)
exp

(
−σa

σ0

)
sinh

(σeq
σ0

)
σa = σ∞

a ca

ċa =

(
1− t0(− ln(1−ca))

1/n

tw

)
n
t0

(− ln (1− ca))(
n−1)/n (1− ca)

t0 = A exp
(
− T

T0

)
tw =

b
√

ρ0
| ṗ|

(21)

The constitutive equations are integrated with the software Mfront which is a tool
developed for Cast3M. As Cast3M imposes the total strain tensor increment at each iteration,
the basic principle of integration of constitutive equations is strictly the same than the one
used in 1D and presented in section 3.1.6 but scalars are replaced by tensors. Therefore, the
unknown vector Y is:

Y =

{
εel

ca

}
=



ε
11
el

ε
22
el

ε
33
el

ε
23
el

ε
13
el

ε
12
el
ca
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4.2 3D simulations of the compression of a cylindrical fuel pellet: localization of
deformation and effect of heterogeneity

4.2.1 General results

The internal variable ca, represents the local relative concentration of defects which have
migrated to dislocations, and hence represents the local ageing of the material. This internal
variable needs to be initialized to perform a simulation. To reproduce a non aged material, ca
will be initialized to a value close to 0, whereas for a well aged material, ca will be initialized
to a value close to 1 (but slightly below 1). As UO2 is made at a very high temperature (above
1700°C) and slowly cooled to room temperature, the ageing of the material must be close to
1, which means that almost all the point defects which physically can migrate to dislocations
have done it.

As shown with fig. 4, UO2 pellets can deform asymmetrically during a compressive test
under imposed strain rate. This phenomenon was studied experimentally in [Guerin, 1975],
and it was shown that it could not be explained by the set up of the compressive machine
or any asymmetric loading. This asymmetric deformation is strongly related to a great
compressive peak during the test: it was never observed for specimens that showed only
a small compression peak or even no compression peak.

We simulated a compression test (as represented fig. 1), with the 3D mechanical model
and adjusted parameters, for a temperature of 1300°C and a strain rate of 10−3s−1. Under
these experimental conditions strain softening is strong and an asymmetric deformation was
occasionally observed ([Guerin, 1975]).

Our simulations have shown that the global behavior of the pellet depends on the initial
value of the internal variable ca and its spatial distribution. This initial field can be spatially
homogeneous or heterogeneous.

Case of an initial uniform field: If the initial field of ca is uniform, the final shape of the
pellet is always symmetric (between the two ends of the pellets, and with respect to the
central axis of the pellet). This shape is called “barrel shape”, and is illustrated at fig. 4
(a). This shape is little dependent on the local mechanical behavior, particularly it does not
depend on the occurrence of a local strain softening.

Case of an initial heterogeneous field: If the initial field of ca is heterogeneous, we
observed, in some situations that are explained hereafter, an asymmetric shape of the
deformed pellet, very close to the one observed experimentally (see fig. 4 (b)). The
deformation process is illustrated fig. 11: the strain rate firstly quickly grows in a precise
part of the pellet (closer to one of the ends of the pellets than to the other), then it propagates
towards the center of the pellet. The precise position of the first localization seems related to
a zone with a lower initial ageing concentration (fig.11), but it is also related to a structural
effect of the compressed pellet. Note that the stress - strain curve is not modified by this
asymmetric strain, which is the same than for symmetric strain.

4.2.2 Study of effect of heterogeneity on the symmetry of deformation and discussion

There actually are many different ways of introducing and controlling the heterogeneity
of the initial field ca. As there is no physical knowledge of the real distribution of this
parameter, we can choose any arbitrary method. In the present work, we generated the initial
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Figure 11: Evolution of localization of strain rate (up) and ageing concentration (bottom) during a
compression test with strain rate of 1 � 10−3s−1 and temperature of 1200°C, in the case when the final
shape of the pellet is slightly asymmetrical. The view is a cut in the pellet so we see the value of the
fields inside the sample.
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field using a Gaussian probability distribution. This field was generated on a mesh, called
“generation mesh” which is different from the mesh used for solving the numerical problem,
called “calculation mesh”. The ca field was then projected from generation mesh onto
calculation mesh, so the same mechanical problem could be solved with a finer calculation
mesh. We then observed the relative position of the maximum strain in the pellet for a
macroscopic strain of 0.6% (this value corresponds to the value of h/l of fig. 12): this relative
position can be between 0.5 (symmetric localization, i.e. barrel deformation that one obtains
if there is no strain softening behavior) and about 0.3 (very asymmetric deformation). We
first noticed that this criterion only depends statistically on a given configuration (given
generation mesh and probability distribution). Indeed for the same configuration, the real
problem which is solved actually depends on the local state of the material, given by the
seed used for the pseudo-random generation of ca field.

In our study, we first generated, on the generation mesh, a distribution of t∗ using
a Gaussian distribution with parameters s (standard deviation) and µ (expectation) (the

probability density function is hence f (t∗) = 1
s
√

2π
exp

(
− (t∗−µ)2

2s2

)
). Then we calculated

the associated ca values with the formula: ca = 1− exp
(
− (t∗)n). µ hence represents the

global ageing of the material: µ � 1 means that the material is well aged (ca is very close
to 1). This field was then projected on the calculation mesh. In our simulations, we chose a
constant value µ = 3. s represents the heterogeneity of ageing around the mean value. In
order to have a global approach of the effect of configuration (given generation mesh and
probability distribution) on the position of maximum strain plane, for each configuration,
we have computed 400 simulations with varying initial seeds for generating the Gaussian
distribution. Our simulations have led to the two following conclusions.

First, if the calculation mesh is finer than the generation mesh, the result of the finite
element analysis is mesh independent (this is shown fig. 13). Even if there is a localization
of strain, that we can call a shear band, the width of this band is totally independent from
the refinement of the calculation mesh. However, the width of the shear band is controlled
by the refinement of the generation mesh, but changing the generation mesh actually means
changing the initial local state of the material, and then changing the mechanical problem
which is solved itself. This approach shows that there is a true mesh independence of our
finite element analysis, but there is also a given internal length in our problem, related to
the width of shear band, which is given by the initial characteristic length of the local state
of the material, i.e. the refinement of the generation mesh. This internal length may also
depend on the viscous behavior of the material. We observed that for a very fine generation
mesh, the deformation of the pellet tends to be symmetrical, whereas for a rather coarse
generation mesh, we have a more frequent asymmetrical deformation (see fig. 14). We
think that this characteristic length has a physical meaning, because ceramic materials are
often made by a sintering process which cannot ensure that the final material is perfectly
homogeneous (porosity or grain size are often varying with the position in the sample).
This mesh independence proves that strain softening behavior does not always lead to
ill-posed field equations. No non-local or gradient approach was necessary in our case,
mostly because we always have a positive strain rate sensitivity due to viscous behavior
(see [Needleman, 1988]). However, one has to be very careful with differentiating the mesh
used to generate the initial state of the material (and hence determining the problem to be
solved) and the mesh used for solving the FE problem. If this step is not achieved, one may
deduce incorrect mesh effect.

Secondly, we observed that a higher heterogeneity (i.e. higher standard deviation for



Figure 12: Schematic view of the studied parameter: relative position of the maximum strain
plane (localization plane) in the pellet.

the generation of initial ca field) leads to a more frequent asymmetrical deformation (fig.15).
Nevertheless, we also see fig.15 that even a well aged and very heterogeneous pellet leads
to a a symmetric deformation in most of cases. This means that the final result does not
depend only on statistics, but also on the real spatial distribution of the initial field ca. The
underlying process of localization can be well understood with fig. 11: at the beginning of
plastic strain, a shear band forms in the pellet, but its position can be influenced by the local
state of the material (non aged zones are softer) and therefore be closer to one of the ends of
the pellet. The band then tends to move towards the center of the pellet, but the shape of the
pellet at 0.6% total axial strain is still asymmetric. This proves that there is a deterministic
chaos effect: small variations of local state may lead to great variations of the final shape of
the sample. As a general result, we have shown that asymmetrical deformation results from
the heterogeneity of ageing in the UO2 pellet. This heterogeneity is a necessary condition
but not a sufficient condition, as the deformation can be symmetrical even for an aged and
heterogeneous pellet.

5 Conclusion

A study of previous experimental results showed that observed strain softening of UO2 must
result of an interaction between moving point defects and dislocations (also called ageing)
rather than an initial lack of mobile dislocation followed by a fast multiplication, at it was
before assumed. This hypothesis was confirmed by our simulations. Indeed, the ageing
mechanism allows to develop a rather simple 1D model of UO2 which well reproduces the
different observed phenomena. This model can be applied to other ceramics or metals in
which strain softening is also observed. The model was then extended to a 3D model and
used to simulate a full pellet compressive test. The main result is that our model allows the
strain to be localized in a special manner (asymmetrical localization of strain), provided that
the initial material is not considered as perfectly homogeneous. We used the initial value



Figure 13: Illustration of mesh independence: the strain rate field (plotted at the exact same
time for the same mechanical problem) converges when refining the calculation mesh

Figure 14: Effect of the refinement of the generation mesh on position of maximum strain
plane, with given Gaussian distribution for ca (µ = 3, s = 2). A fine generation mesh does not
allow very asymmetric shapes (right), whereas a coarse generation mesh does (left).



Figure 15: Effect of s (standard deviation of t∗) (with µ = 3 constant) on position of maximum
strain plane, with given generation mesh (146 elements). The relative frequency of asymmetric
shapes (relative position of maximum strain far from 0.5) is growing with increasing s, i.e.
heterogeneity.

of the relative ageing concentration to control this heterogeneity. Such strain localization
is actually observed during compressive tests, and our model shows that this is due to the
specific behavior of UO2 at a certain temperature and strain rate range, when strain softening
is strong and strain rate sensitivity is low. The physical nature of heterogeneity has not been
formally identified though. Our study highlights the importance of accounting for an initial
heterogeneity in the material to first avoid an artificial mesh dependence of the finite element
study, and secondly to obtain the real shape of the deformed sample. Finally, it should be
noted that only few different parameters had to be fitted to reproduce the whole mechanical
behavior, including strain softening and variations with strain rate and temperature.
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