
HAL Id: hal-01021730
https://hal.science/hal-01021730v1

Submitted on 9 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Inception to Execution: Query Management for
Complex Event Processing as a Service

Wilson A. Higashino, Cédric Eichler, Miriam Capretz, Thierry Monteil, Maria
Beatriz F. de Toledo, Patricia Stolf

To cite this version:
Wilson A. Higashino, Cédric Eichler, Miriam Capretz, Thierry Monteil, Maria Beatriz F. de Toledo,
et al.. From Inception to Execution: Query Management for Complex Event Processing as a Ser-
vice. Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2014 IEEE
23rd International Workshop on, Jun 2014, Parme, Italy. �hal-01021730�

https://hal.science/hal-01021730v1
https://hal.archives-ouvertes.fr


From Inception to Execution: Query Management

for Complex Event Processing as a Service

Wilson A. Higashino∗†, Cédric Eichler‡§¶,

Miriam A. M. Capretz∗, Thierry Monteil‡¶, Maria Beatriz F. de Toledo† and Patricia Stolf§¶

‡CNRS; LAAS; F-31077 Toulouse, France. {eichler,monteil}@laas.fr §IRIT; F-31062 Toulouse, France. {eichler,stolf}@irit.fr
∗Dept. of Electrical and Computer Engineering, Western University, London, ON, Canada. {whigashi, mcapretz}@uwo.ca

†Instituto de Computação, Univ. Estadual de Campinas, Campinas, Brazil. {wah, beatriz}@ic.unicamp.br
¶ Univ de Toulouse, UPS F-31400, INSA, F-31400, UTM F-31100, Toulouse, France.

Abstract—Complex Event Processing (CEP) is a set of tools
and techniques that can be used to obtain insights from high-
volume, high-velocity continuous streams of events. CEP-based
systems have been adopted in many situations that require
prompt establishment of system diagnostics and execution of
reaction plans, such as in monitoring of complex systems. This
article describes the Query Analyzer and Manager (QAM) mod-
ule, a first effort toward the development of a CEP as a Service
(CEPaaS) system. This module is responsible for analyzing
user-defined CEP queries and for managing their execution in
distributed cloud-based environments. Using a language-agnostic
internal query representation, QAM has a modular design that
enables its adoption by virtually any CEP system.

Keywords—Complex Event Processing, Reconfigurable Systems,
Automatic Query Optimization.

I. INTRODUCTION

Current trends in sensor and mobile technologies have been
generating massive amounts of data that require innovative
approaches to be processed and understood. This has motivated
the creation of new technologies, of which Complex Event
Processing (CEP) is one prominent example, to obtain insights
from high-volume, high-velocity continuous streams of data.

Complex Event Processing is defined as a “set of tools
and techniques for analysing and controlling the complex
series of interrelated events that drive modern distributed
information systems” [1]. CEP-based systems interpret input
data as a stream of events and accept user definitions of
queries (or rules) to derive semantically enriched “complex”
events from a series of simpler events. These complex events
can then be used to trigger actions, thereby enabling prompt
establishment of system diagnostics and execution of reaction
plans. Due to these characteristics, CEP has been adopted in
many situations that require fast autonomous response, such
as network monitoring, and smart building management.

This article is a first effort toward the development of
a cloud-based CEP system designed to be consumed as a
service. Such a CEP as a Service (CEPaaS) system has
been conceptualized to leverage public cloud environments
to implement elasticity and to provide low-latency processing
of data coming from diverse physical locations. Users simply
define CEP queries using a graphical environment, with the
system transparently managing their execution.

This article introduces QAM (Query Analyzer and Man-
ager), a module responsible for analyzing user-defined CEP

queries and managing their execution. QAM uses a formalism
based on attributed graphs and graph-rewriting rules to model
queries and to implement four important tasks required by CEP
systems: single-query optimization, multi-query optimization,
operator placement, and autonomic runtime query manage-
ment. Because of its modular design, QAM can be adopted
by any CEP system as long as its query definitions can be
transformed into the language-agnostic query representation
used by QAM.

This paper is structured as follows: Section II offers an
overview of related work. Section III discusses the notion of
offering CEP in the service model. Section IV is dedicated
to QAM and the four operations for which it is responsible.
Finally, Section V presents conclusions and future research
directions.

II. RELATED WORK

The basis of the CEP field was established by classical
systems, such as Aurora [2] and STREAM [3], but their
centralized architecture makes them inappropriate for the CEP
as a Service scenario. Cloud environments have been targeted
in more recent works such as TimeStream [4] and Stream-
Cloud [5]. However, these are mostly based on clustered
architectures, whereas this research envisions a CEP system
distributed over wide-area networks. For further information,
the survey by Cugola and Margara [6] provides a comprehen-
sive review of modern and historical CEP systems.

CEP queries have usually been defined by means of specific
proprietary languages such as CQL [7]. Despite standardization
efforts [8], a huge variety of query description languages
are still in use today. The adoption of a language-agnostic
representation by QAM is motivated by this variety. The
surveys by Eckert et al. [9] and by Cugola and Margara [6]
provide a comprehensive review of CEP languages.

Most CEP systems deal with some of the aspects that
should be handled by the QAM module, including query
optimization, operator placement, multi-query optimization,
and dynamic runtime management. For instance, Kalyvianaki
et al. [10] described a query planner which was capable of
executing multi-query optimization, and Abadi et al. [11]
showed dynamic reconfiguration actions in the context of the
Borealis system. Nevertheless, none of these studies has used
a unified and integrated approach to handle all four tasks as
proposed in QAM.



Fig. 1. Query Analyzer and Manager steps.

III. CEP AS A SERVICE

A CEP as a Service system aims to bring its users the
functionalities of CEP associated with the many advantages
of the service model, such as: (1) No up-front investment in
hardware and software infrastructure; (2) Low maintenance
cost, as the service model reduces the need for infrastructure
monitoring, maintenance, and backup execution; (3) constant
upgrades, mostly without interruption and at no charge.

Nevertheless, offering such a service involves many chal-
lenges, which is reflected in the limited number of similar
services today. For instance, low latency is essential to many
CEP use cases, but is difficult to achieve in a service envi-
ronment because there is no control over the locations of the
event sources and consumers. CEP use cases may also require
a high-available service and may impose an unpredictable
and variable load over it, requiring the implementation of
innovative elasticity capabilities in the CEPaaS engine.

It is argued here that a distributed deployment over re-
sources available in public cloud environments can be highly
beneficial for such a CEP as a Service system. A distributed
design improves system scalability because it enables alloca-
tion of user queries over many available servers. It also en-
hances the overall system availability because there is no single
point of failure. In addition, use of public cloud resources also
makes the system easily accessible by any client with Internet
access. Finally, it also enables exploration of the inherent
elasticity of cloud environments, facilitating fast allocation and
de-allocation of computational resources according to system
load.

IV. QUERY ANALYZER AND MANAGER

Implementation of a CEP as a Service system is a complex
task involving the definition of many components and policies.
This section introduces the Query Analyzer and Manager
(QAM), which is the module responsible for analyzing user
queries and for managing their execution.

Figure 1 informally illustrates the typical lifecycle of a
QAM-managed query. The user initially defines a query using

a CEP language, which is transformed into an attributed
Directed Acyclic Graph (DAG) and sent to the QAM module.
In the DAG format, the query goes through a pipeline of
three tasks that results in mapping the query execution into
a set of distributed components. Then QAM manages the
runtime execution of the query and the evolution of the system
deployment, responding to context changes such as hardware
and software failures. The following subsections detail the
QAM tasks.

A. Single-query optimization

Single-query optimization is the action of modifying a
query to improve its efficiency (w.r.t. some optimization crite-
rion such as CPU usage, network consumption, or processing
latency) while keeping its functional properties unchanged. In
Fig. 1, this process is illustrated by removal of the (redundant)
operators D and E in the “User 1” query.

These transformations are executed at design time right
after a new query is created and registered by the user. In
consequence, this step assumes no a priori knowledge of
available resources or of network and server states.

B. Multi-query optimization

Multi-query optimization consists in finding overlaps (com-
mon partial results) between queries and merging them into a
single execution graph. This step usually aims to optimize the
same criteria as the single-query optimization step. It can be
executed as a separate step when a new query is created or as
part of the operator placement step. In Fig. 1, the execution
graphs are merged into a single one because both queries share
the same processing represented by the operators A and C.

C. Operator placement

Operator placement is the task of mapping each query
execution into the set of available computational resources. In
the context of a cloud-based CEP system, this translates into
deciding which datacentre will execute each query, the number



and types of server required in each datacentre, and how the
query operators should be split among multiple processors.
Note that this step implies choices at two different levels of
granularity. First, a datacentre must be chosen, typically using
aggregated metrics. Then placement is conducted within the
selected datacentre.

This step is executed during initial system deployment,
whenever a new query is registered, and in general, whenever
a reconfiguration requires a placement decision (e.g., when an
operator is duplicated to parallelize its execution, the place-
ment routine is called to decide where the created operator
instance should be deployed). In Fig. 1, execution of operators
A, B, C, and I is mapped into one server, whereas the other
operators are mapped to another server.

The QAM also uses attributed graphs to represent the avail-
able cloud servers and the network topology that interconnects
them. Therefore, operator placement can be performed using
classical approaches that map graphs into a substrate graph
(e.g., [12]).

D. Autonomic management

Autonomic management refers to the self-managed evolu-
tion of the system in runtime. Here, queries are reconfigured
in response to context changes such as violations of monitored
parameters, hardware and software failures, and evolving client
requests. These transformations are executed in runtime and
may require performing a complex set of actions. In Fig. 1,
a new server is provisioned during this step, to which the
execution of the operator I is migrated.

E. Realization

Being both formal and visual, graphs have been success-
fully used to model the structural constraints and properties of
a vast range of systems in multiple fields, including software
architectures. Remarkably, graphs rewriting techniques can
be used to design correct-by-construction frameworks for the
specification of system transformations [13]. Such techniques
have been used in particular for autonomic management of
various systems such as machine-to-machine scenarios[14].

Note that both single and multi-query optimization as well
as autonomic management implies system transformations.
Each of these can be enforced using similar techniques,
specifically by defining transformations stemming from an
existing graph-based framework. Use of such a representation
is supported by the fact that several CEP languages, such
as CQL [7], can easily be translated into directed attributed
graphs.

V. CONCLUSIONS

This work has presented the Query Analyzer and Manager,
a generic CEP module that can be used to analyze user-defined
queries and manage their execution. QAM represents queries
and the deployment environment as directed attributed graphs
and uses graph transformations to express reconfigurations and
other dynamic aspects of the system. In particular, QAM is re-
sponsible for completion of four important CEP-related tasks:
single-query optimization, multi-query optimization, operator
placement, and autonomic runtime query management.

In the future, the authors plan to develop, implement,
and evaluate each step of the QAM using graphs and graph
transformations. Note that the mechanisms implied in the
various transformational steps are very similar to each other. In
particular, the authors believe that transformations and policies
can be built in an iterative fashion, in the sense that single-
query optimization transformations (e.g., operator duplication)
can still be relevant in multi-query optimization that and in turn
can be used in the dynamic (autonomic) management task.

REFERENCES

[1] D. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, 1st ed. Addison-Wesley
Professional, 2002.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” The International Journal
on Very Large Data Bases, vol. 12, no. 2, pp. 120–139, Aug. 2003.

[3] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, “STREAM: The Stanford
Data Stream Management System,” Stanford InfoLab, Technical Report
2004-20, 2004. [Online]. Available: http://ilpubs.stanford.edu:8090/641/

[4] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang, “TimeStream: Reliable Stream Computation in the Cloud,”
in Proceedings of the 8th ACM European Conference on Computer

Systems. New York, New York, USA: ACM Press, 2013, p. 1.

[5] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez,
“StreamCloud: A Large Scale Data Streaming System,” in 2010 IEEE
30th International Conference on Distributed Computing Systems. Ieee,
2010, pp. 126–137.

[6] G. Cugola and A. Margara, “Processing flows of information: from data
stream to complex event processing,” ACM Computing Surveys, vol. 44,
no. 3, pp. 1–62, Jun. 2012.

[7] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query lan-
guage: semantic foundations and query execution,” The VLDB Journal,
vol. 15, no. 2, pp. 121–142, Jul. 2005.

[8] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan,
U. Çetintemel, M. Cherniack, R. Tibbetts, and S. Zdonik, “Towards a
Streaming SQL Standard,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1379–
1390, Aug. 2008.

[9] M. Eckert, F. Bry, S. Brodt, O. Poppe, and S. Hausmann, “A CEP
Babelfish: Languages for Complex Event Processing and Querying
Surveyed,” in Reasoning in Event-Based Distributed Systems SE - 3,
ser. Studies in Computational Intelligence, S. Helmer, A. Poulovassilis,
and F. Xhafa, Eds. Springer Berlin Heidelberg, 2011, vol. 347, pp.
47–70.

[10] E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn, and P. Pietzuch,
“SQPR: Stream query planning with reuse,” in 2011 IEEE 27th In-

ternational Conference on Data Engineering. Ieee, Apr. 2011, pp.
840–851.

[11] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J.-H. Hwang,
W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik, “The design of the Borealis stream processing engine,”
in Proceedings of the Second Biennial Conference on Innovative Data
Systems Research (CIDR’05), 2005, pp. 277–289.

[12] I. Houidi and D. Zeghlache, “Exact adaptive virtual network embedding
in cloud environments,” in 2013 IEEE 22nd International Workshop

on Enabling Technologies: Infrastructure for Collaborative Enterprises,
2013, pp. 319–323.

[13] D. Hirsch and U. Montanari, “Consistent transformations for software
architecture styles of distributed systems,” Electronic Notes in Theoret-
ical Computer Science, vol. 28, no. 0, pp. pp.4–25, 2000.

[14] C. Eichler, G. Gharbi, N. Guermouche, T. Monteil, and P. Stolf,
“Graph-based formalism for machine-to-machine self-managed com-
munications,” in 2013 IEEE 22nd International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2013, pp.
74–79.


