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Simplified Random-Walk-Model-Based Kalman Filter for Slow to

Moderate Fading Channel Estimation in OFDM Systems

Huaqiang Shu ∗†, Laurent Ros ∗, and Eric Pierre Simon †

Abstract—This study deals with multi-path channel estimation
for orthogonal frequency division multiplexing systems under
slow to moderate fading conditions. Advanced algorithms exploit
the channel time-domain correlation by using Kalman Filters
(KFs) based on an approximation of the time-varying channel.
Recently, it was shown that under slow to moderate fading, near
optimal channel multi-path complex amplitude estimation can
be obtained by using the integrated Random Walk (RW) model
as the channel approximation. To reduce the complexity of the
high-dimensional RW-KF for joint estimation of the multi-path
complex amplitudes, we propose using a lower dimensional RW-
KF that estimates the complex amplitude of each path separately.
We demonstrate that this amounts to a simplification of the joint
multi-path Kalman gain formulation through the Woodbury’s
identities. Hence, this new algorithm consists of a superposition of
independent single-path single-carrier KFs, which were optimized
in our previous studies. This observation allows us to adapt the
optimization to the actual multi-path multi-carrier scenario, to
provide analytic formulae for the mean-square error performance
and the optimal tuning of the proposed estimator directly as
a function of the physical parameters of the channel (Doppler
frequency, Signal-to-Noise-Ratio, Power Delay Profile). These
analytic formulae are given for the first-, second-, and third-
order RW models used in the KF. The proposed per-path KF
is shown to be as efficient as the exact KF (i.e., the joint multi-
path KF), and outperforms the autoregressive-model-based KFs
proposed in the literature.

Index Terms—Orthogonal frequency division multiplexing,
channel estimation, Rayleigh fading, Jakes’ spectrum, random-
walk model, Kalman filter.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is an

effective technique for alleviating frequency-selective channel

effects in wireless communication systems. In this technique, a

wideband frequency-selective channel is converted to a num-

ber of parallel narrow-band flat fading subchannels that are

free of inter-symbol interference and inter-carrier interference

(for negligible channel time variations within one OFDM

symbol period T ). For coherent detection of the information

symbols, reliable estimation of the channel in OFDM systems

is crucial.

Most of the conventional methods work in a symbol-by-

symbol scheme [1]–[3] using the correlation of the channel

only in the frequency domain; i.e., the correlation between

the subchannels. More advanced algorithms are based on the
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Kalman Filter (KF), to also exploit the time-domain corre-

lation. This paper deals with channel multi-path Complex-

Amplitude (CA) estimators based on KFs.

KFs require a linear recursive state-space representation of

the channel. However, the exact Clarke model does not admit

such a representation. An approximation often used in the

literature consists of approaching the fading process as auto-

regressive [4]. Hence, a widely used channel approximation is

based on a first-order Auto-Regressive model (AR1), as recom-

mended by [5], combined with a Correlation-Matching (CM)

criterion to fix the AR1 coefficient. The KF channel estimator

that results from this choice, hereafter called AR1CM -KF,

has been used in several studies concerning various systems,

such as in multiple-input-multiple-output systems [4], and

in OFDM systems [5]–[8]. The AR1CM -KF appears to be

convenient for the very high mobility case, which leads to

quasi-optimal channel estimation performance compared to

lower bounds, as seen, for example, in [7], [8] (in these studies,

the AR1CM -KF is actually used to track the basis extension

model coefficients of the high-speed channel). However, here

we consider moderate normalized Doppler frequency (fdT )

values; i.e., fdT ≤ 10−2. This corresponds to low mobility

(≤ 50km/h) with the actual systems such as Worldwide

Interoperability for Microwave Access (WiMAX) Mobiles.

However, with the development of the cognitive radio, lower

carrier frequencies are investigated for future systems. For

instance, VHF/UHF television broadcast bands from 54 MHz

to 862 MHz [9] and aeronautical bands from 960 MHz to

1215 MHz are planned to be deployed. For a given fdT , as

the speed is inversely proportional to the carrier frequency,

fdT values around 10−2 can correspond to a relative high

mobility with such systems (hundreds of km/h). This prompts

the need for a comprehensive study of channel estimation

for fdT ≤ 10−2. For this scenario, whereby the channel

variation within one symbol duration can be neglected ( [3]–

[6], [10]–[12]), the AR1CM -KF estimator usually exploited

in the literature is far from being effective [13]. This poor

performance was recently explained analytically by [14]. A

better tuning of the AR1 coefficient can focus on minimizing

the estimation variance in the output of the KF, as proposed by

[13] (with the analytic mean-square error (MSE) performance

for a given Doppler and signal-to-noise ratio (SNR) scenario

in [14]); i.e., using a Minimum Asymptotic Variance (MAV)

criterion without imposing the CM constraint. The resulting

estimator is referred to as AR1MAV -KF in the present study.

Equivalent asymptotic performance can also be obtained by a
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first-order Random Walk (RW)-model-based KF (RW1-KF) (

[15], [16]).

On the other hand, it has been shown recently that the MSE

performance of a KF can still be improved by switching from

the AR1 model to an integrated RW model (also called the

integrated Brownian model) for the approximation model. A

second-order RW model and a third-order RW model have

been respectively considered in [17] and [18]. They take into

account that the exact path CA continues in a given direction

during several symbols for low fdT , and shows a strong trend

behaviour. The Kalman estimators based on these second-order

and third-order models are here called the RW2-KF and RW3-

KF estimators, respectively.

The RW-KF estimators of the previously cited studies were

designed for single-path channel estimation in single-carrier

systems. In the present study, we consider multi-path channel

estimation in multi-carrier systems (i.e., OFDM systems). In

this context, we are interested in devising simplified methods

compared to the high-dimensional KFs that perform joint

estimation of the path CAs. Some simplified methods have

lately been proposed in [19]–[23]. Reference [19] converts

the vector of pilot subcarriers into L multi-path values where

L is the number of multi-paths and applies a KF to each

path. The VSSO approach (Vector State - Scalar Observation)

is proposed in [20]–[23], where single-path KFs are used to

separately track each tap of the discrete-time-equivalent (DTE)

channel. This has the advantage of reducing the complexity of

the joint estimation given by the VSVO (Vector State - Vector

Observation) approach, reported in [24] and [25, Equations

(18)-(21)]. In [22], it is theoretically shown that the VSSO

approach and the VSVO approach attain the same performance

in the case of Wide-Sense Stationary Uncorrelated Scattering

(WSSUS) DTE channel. Like aforementioned ideas, we pro-

pose in this paper a structure that uses a lower-dimensional

KF for each channel path. However, unlike those, our study

• is developed in the framework of parametric (physical)

channel model with the assumption of primary acquisition

of the path delays as in [7], [11], [12], [26]–[28], instead

of the DTE channel framework in [20]–[23],

• provides analytic results on the tuning and performance

of the proposed estimator,

• is based on the RW model-based KF (instead of the AR1

model).

Our study also permits to shed new light on the behavior

of per-path Kalman estimators (per-path RW-KF) and their

link with joint multi-path Kalman estimators, this additionally

corroborates previous results of [22].

The per-path Kalman estimator is achieved in two steps.

First, we need to define an error signal for each path. To do

this, we use the least-square (LS) estimator of the path CAs

obtained only from the current OFDM symbol. This first step

explores the frequency-domain correlation of the channel and

the knowledge of the delays to convert the primary observation

at pilot frequencies into a primary (instantaneous) estimate of

the path CAs. Second, we apply a low-dimensional RW-KF

for each path, to exploit the time-domain correlation of the

channel. In this work, we show how to use our previous results

[15], [17], [18] obtained in single-path single-carrier systems

to fix the approximation model parameters of the proposed per-

path RW-KF. We will show through simulations that the pro-

posed estimator provides as good a performance as the high-

dimensional KF, with reduced complexity in case the number

of multi-path components is small compared to the number of

pilot subcarriers. This condition is generally true and necessary

to the VSSO method [21], [22]. Another interesting aspect of

this study, in addition to being a comprehensive study, is that

the expression of the asymptotic variance performance of the

proposed estimator is provided for the first to third orders of

the RW model.

This paper is organized as follows: Section II introduces

the OFDM system model, the wireless channel model, and

the estimation objective. In Section III, we start from the joint

multi-path KF equations based on the auto-regressive and RW

models, and then we transform the KF equations to summarize

an equivalent form that gives a path-wise presentation of the

KF. Then, a per-path RW-KF is proposed to allow independent

analysis of each single path, which allows the optimization

results obtained in the single-carrier single-path context to

be applied directly. Section IV validates first the per-path

RWr-KF, by comparison with a numerically optimized joint

multi-path RWr-KF, and then the theoretical analysis and the

performance in terms of the asymptotic MSE.

Notations: [x]k denotes the kth entry of the vector x, and

[X]m,n denotes the [m,n]th entry of the matrix X (indices

begin from 1). The notation diag{x} is a diagonal matrix with

x on its main diagonal and blkdiag{X,Y} is a block diagonal

matrix with the matrices X and Y on its main diagonal. IN is

an N ×N identity matrix. The symbols of {·}T , {·}H and ⊗
stand for the transpose, Hermitian and Kronecker production

operators respectively.

II. OFDM SYSTEM, CHANNEL MODEL AND ESTIMATION

OBJECTIVE

A. OFDM system model

Let us consider an OFDM system with N subcarriers,

and a cyclic prefix length Ng . The duration of an OFDM

symbol is T = NTTs, where Ts is the sampling time and

NT = N + Ng . Let x(k) be the sequence of transmitted

elementary symbols of the kth OFDM symbol.The nth element

[x(k)]n (n = 1, . . . , N) is phase-shift (M -PSK) or quadrature

amplitude modulated (M -QAM) symbol transmitted on the

sub-carrier with indice n−1− N
2 . The sequence of transmitted

symbols is assumed to be zero-mean and stationary with

normalized variance: E
{

∣

∣[x(k)]n
∣

∣

2
}

= 1. After transmission

over a slowly time-varying multi-path channel and fast Fourier

transform demodulation, the kth received OFDM symbol y(k)
is given by:

y(k) = H(k)x(k) + w(k), (1)

where w(k) is an N ×1 zero-mean complex circular Gaussian

noise vector with covariance matrix σ2
wIN , and H(k) is an
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N ×N diagonal matrix1 with its diagonal elements given by:

[H(k)]n,n =
1

N

L
∑

l=1

[

α
(l)
(k) · e

−j2π(n−1
N

− 1
2 )τ

(l)
]

, (2)

where L is the total number of propagation paths, α
(l)
(k) is

the CA of the l-th path at kth OFDM symbol with variance

σ2
α(l) (with

∑L

l=1 σ
2
α(l) = 1), and τ (l) × Ts is the l-th delay

(τ (l) is not necessarily an integer, but τ (l) < Ng). The L

individual elements of {α(l)
(k)} (l = 1, . . . , L) are uncorrelated

w.r.t. one another. So, we adopt a parametric channel model

as in [11], [12] with a WSSUS assumption of this physical

channel. Note that there exists a corresponding DTE channel

with taps uniformly spaced every Ts, and this DTE channel

might be correlated (see the link between physical and DTE

channels in Appendix A). Using Equation (2), the observation

model of Equation (1) can be re-written [11] as:

y(k) = diag{x(k)}F α(k) + w(k), (3)

where α(k) = [α
(1)
(k) ... α

(L)
(k) ]

T and F is an N × L Fourier

matrix depending on the delay distribution, with elements

given by: [F]k,l = e−j2π( k−1
N

− 1
2 )τ

(l)

.

We assume the “Rayleigh-Jakes” model [29] for the multi-

path channel, with Doppler frequency fd. This means that the

L CAs α
(l)
(k) are independent wide-sense stationary zero-mean

complex circular Gaussian processes, with the correlation

coefficients for the time-lag q given by:

R
(q)

α(l) = E[α
(l)
(k)α

(l)H
(k−q)] = σ2

α(l)J0(2πfdTq), (4)

where J0 is the zero-th order Bessel function of the first kind.

For each given path l, the Jakes’ Doppler spectrum with fd of

the path CA α
(l)
(k) is defined as:

Γα(l)(f) =











σ2

α(l)

πfd

√

1−
(

f
fd

)2
, if |f | < fd

0, if |f | ≥ fd.

(5)

B. Pilot pattern

We use Np pilot sub-carriers, they are evenly inserted

into the N sub-carriers at the positions P = {np|np =
(p−1)Lf+1, p = 1, ..., Np} with Lf as the distance between

two adjacent pilots. The received pilot sub-carriers can be

written as:

yp(k) = diag{xp(k)}Fpα(k) + wp(k) (6)

where xp, yp and wp are Np × 1 vectors, which correspond

to the sent and received data symbol, and the channel noise

on the pilot sub-carriers, respectively. The Np × L matrix Fp

is the Fourier matrix of the pilot sub-carriers, with elements

given by: [Fp]np,l = e−j2π(
np−1

N
− 1

2 )τ
(l)

, where np ∈ P .

1We assume in the present study that during one OFDM symbol time, the
CA in each path can be considered as a constant.

C. Bayesian Cramer-Rao bound

For any estimator α̂(k) of α(k), we define the asymptotic

MSE (valid for k → ∞) by:

σ2
ǫ =

1

L
· E

{

(α(k) − α̂(k))
H · (α(k) − α̂(k))

}

, (7)

The estimation objective is to approach the asymptotic MSE

σ2
ǫ to the Bayesian Cramer-Rao Bound (BCRB). The on-line

BCRB for the estimation of α(k) from the present and previous

observations over a multi-path Rayleigh fading channel and

OFDM modulation was derived by [30] for data-aided and

non-data-aided contexts. For the pilot-based observation set

[yp(1), · · · , yp(k)] in the present case, any unbiased estimator

α̂(k) should satisfy:

σ2
ǫ ≥ BCRB(k), (8)

where the on-line BCRB is calculated by:

BCRB(k) =
1

L
·

kL
∑

i=(k−1)L+1

[BCRB(k)]i,i, (9)

with

BCRB(k) =
(

blkdiag{J, J, · · · , J}+ R−1
α

)−1
,

where J =
1

σ2
w

FH
p Fp is an L × L matrix, and the covariance

matrix Rα of size kL× kL is defined by the elements:

[Rα]i(l,q),i(l′,q′) =
{

R
(q−q′)

α(l) if l′ = l ∈ [1, L]; q, q′ ∈ [0, k − 1]
0 if l′ 6= l,

(10)

with i(l, q) = 1 + (l − 1) + qL. In the simulation section, we

will plot BCRB = limk→∞ BCRB(k) as a reference.

III. RANDOM-WALK-MODEL-BASED KALMAN FILTERS

A. Joint multi-path KFs

To design and apply a KF, the channel can be first approx-

imated using a Gauss-Markov process to construct a state-

space model [31]. For a slow to moderate fading channel,

the path CA α
(l)
(k) shows a strong trend behaviour within

several successive OFDM symbols. Based on this, we use

the (integrated) RW model instead of AR1 to approach the

CA variations. The rth-order RW model (RWr) indicates that

the (r − 1)th derivative of the variable that is approximated

by the finite difference method is modeled as a RW process.

Therefore, for the RW1 model, the approximate process of

α
(l)
(k), which is denoted as α̃

(l)
(k), is updated at symbol time by

adding zero mean circular complex Gaussian state noise. The

variance of the state noise is adjustable, and this is used as

the model parameter to be tuned. The RW2 model includes a

linear drift δ
(l)
(k), that is updated at symbol time by adding the

state noise. The variance of the state noise should also be well

calibrated, such that the drift (which is regarded as the slope

of the CA) varies slowly with time, by taking into account the

time variation of the channel. In expecting a more accurate

estimation, the RW3 model is obtained by considering the first

and second approximate derivatives of CA at the previous time
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TABLE I: List of terms in the KF state-space model

AR1CM AR1MAV RW1 RW2 RW3

a
(l)
(k) α̃

(l)
(k) α̃

(l)
(k) α̃

(l)
(k) [α̃

(l)
(k) δ

(l)
(k)]

T [α̃
(l)
(k) δ

(l)
(k) ξ

(l)
(k)]

T

u
(l)
(k) u

(l)
(k) u

(l)
(k) u

(l)
(k) [0 u

(l)
(k)]

T [0 0 u
(l)
(k)]

T

U(l) σ2
u(l) σ2

u(l) σ2
u(l)

[

0 0
0 σ2

u(l)

]





0 0 0
0 0 0
0 0 σ2

u(l)





M γCM γMAV 1

[

1 1
0 1

]





1 1 1
2

0 1 1
0 0 1





S 1 1 1
[

1 0
] [

1 0 0
]

slot, and the second derivative is driven by the state noise. The

third-order model has been widely applied to KF and phase-

locked loops for phase tracking problems in satellite receivers

[32].

The state model of the L-path CAs can be expressed in

vector form as:

a(k) = Ma(k−1) + u(k), (11)

where a(k) =
[

a
(1)T
(k) · · · a

(L)T
(k)

]T

with a
(l)
(k) as the state

vector of the l-th path, u(k) =
[

u
(1)T
(k) · · · u

(L)T
(k)

]T

with

u
(l)
(k) as the state noise vector of the l-th path, M = IL ⊗ M

is the channel state evolution matrix. The path variables a
(l)
(k),

u
(l)
(k) and the path state evolution matrix M are defined in Table

I, according to the model order.

From Equation (6), we first derive the transmitted pilot

symbol xp(k) from the received pilot symbol yp(k) as:

ỹp(k) = Fpα(k) + w̃p(k), (12)

where ỹp(k) and w̃p(k) are respectively defined by:

[

ỹp(k)

]

p
=

[y(k)]np

[x(k)]np

,
[

w̃p(k)

]

p
=

[w(k)]np

[x(k)]np

,

with p = 1, ..., Np and np = (p − 1)Lf + 1. Note that w̃p

has the same covariance matrix as wp, given that xp(k) is a

quadrature phase shift keying symbol. We define the multi-

path selection matrix S = IL⊗S with S being given in Table

I according to the model order. This matrix allows us to pass

from the vector a(k) to α(k) using α(k) = Sa(k). By defining

Fs = FpS, we obtain from (12) the observation equation of

the joint multi-path KF:

ỹp(k) = Fsa(k) + w̃p(k). (13)

According to Equation (13) and the state-space Equation

(11), the joint multi-path KF is then given by:

Time update equations

â(k|k−1) = Mâ(k−1|k−1), (14)

P(k|k−1) = MP(k−1|k−1)M
T + U, (15)

Measurement update equations

K(k) = P(k|k−1)F
H
s

(

FsP(k|k−1)F
H
s + σ2

wINp

)−1
, (16)

â(k|k) = â(k|k−1) + K(k)(ỹp(k) − Fsâ(k|k−1)), (17)

P(k|k) = (IrL − K(k)Fs)P(k|k−1), (18)

where â(k|k−1) and â(k|k) are the prediction and estimation

vectors, respectively, of the path CAs, and they have the same

vector structure as a(k). The state noise variance matrix U is an

rL× rL block-diagonal matrix, with U(l), (l = 1, . . . , L) on

its main diagonal, and the r×r matrix U(l) is defined in Table

I. The rL×rL matrices P(k|k−1) and P(k|k) are the prediction

and estimation error variance matrices, respectively. The term

of (ỹp(k) − Fsâ(k|k−1)) in Equation (17) is an Np × 1 error

signal, which is updated by the received signal at the symbol

rate. Each element of this signal represents the estimation error

(from the prediction) of the corresponding sub-carrier.

In section III-B, we propose a KF that processes a path

by path estimation (denoted per-path RW-KF). This allows

us to directly apply the results of the single-path scenario.

In the scope of establishing the link between the joint multi-

path KF and the per-path RW-KF, a new formulation of the

joint multi-path KF equations should be provided. By using

Woodbury’s identities (the deduction of this transformation is

given in Appendix B), Equation (16) can be rewritten as:

K(k) = Keq(k) · (FH
p Fp)

−1FH
p , (19)

with Keq(k) as an rL× L matrix defined by:

Keq(k) = P(k|k−1)S
H
(

SP(k|k−1)S
H + (FH

p Fp)
−1σ2

w

)−1

.

(20)
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Then, the measurement Equations (17) and (18) of the KF can

be reformulated as:

â(k|k) = â(k|k−1) + Keq(k) · vǫ(k), (21)

P(k|k) = (IrL − Keq(k)S)P(k|k−1), (22)

with the error signal defined by:

v
ǫ(k) = (FH

p Fp)
−1FH

p ·
(

ỹp(k) − Fsâ(k|k−1)

)

. (23)

Then Equations (14), (15), (20), (21) and (22) form an

equivalent KF with Keq(k) as the equivalent Kalman gain.

Note that this equivalent KF gives a path-wise presentation

based on the error signal v
ǫ(k) of size L × 1, as defined in

Equation (23), while the original error signal in Equation (17)

is of size Np × 1. The L elements of v
ǫ(k) correspond to the

estimation errors on the L corresponding paths. By observing

this compressed version of the error signal (23), we find that it

is actually the difference between the LS estimation of the CA

calculated from the current received OFDM symbol α̂LS(k),

and the last prediction of the CA α̂(k|k−1) :

v
ǫ(k) = α̂LS(k) − α̂(k|k−1), (24)

since the LS estimate is obtained by [28], [33, Sec. III.B.1] :

α̂LS(k) = (FH
p Fp)

−1FH
p ỹp(k). (25)

Hence, each component of the error signal vector v
ǫ(k) in

Equation (24) (instead of Equation (23)) corresponds to one

individual path. However, the joint multi-path KF in Equation

(21) does not process each path independently, due to the

presence of (FH
p Fp)

−1 in Keq(k) (see Equation (20)). This

matrix depends on the power delay profile of the channel.

B. The per-path KF and its interpretation

In this section, we present our less complex per-path RW-

KF solution that is based on independent processing of the

paths. Firstly, a KF for a single path is proposed to filter the

LS estimate of the path CA. Secondly, based on this, the global

per-path KF formulation for the L paths is presented. Finally,

the link with the joint multi-path KF is established.

1) Single-path KF: We use the LS estimation of α (defined

in Equation (25)) instead of ỹp(k) as the input signal to

reformulate the KF, and impose independent processing of

the L paths. The l-th element of α̂LS(k), denoted by α̂
(l)
LS(k),

corresponds to the LS estimation of the l-th path CA. Also, let

us define the LS estimation error as the loop noise applied on

the per-path KF, denoted by wLS. Then, the state-space model

of the per-path KF for the l-th path is given by:

α̂
(l)
LS(k) = α

(l)
(k) + w

(l)
LS(k), (26)

a
(l)
(k) = Ma

(l)
(k−1) + u

(l)
(k), (27)

where w
(l)
LS(k) =

[

(FH
p Fp)

−1FH
p w̃p(k)

]

l
in the per-path obser-

vation equation (26) is the l-th element of the loop noise wLS

with variance:

σ2
LS(l)

= σ2
w ·

[

(

FH
p Fp

)−1
]

l,l
. (28)

Fig. 1: Per-path KF structure

The single-path KF for the l-th path can thus be written as

[18]:

Time update equations

â
(l)
(k|k−1) = Mâ

(l)
(k−1|k−1), (29)

P
(l)
(k|k−1) = MP

(l)
(k−1|k−1)M

T + U(l), (30)

Measurement update equations

K
(l)
(k) =

P
(l)
(k|k−1)S

T

SP
(l)
(k|k−1)S

T + σ2
LS(l)

, (31)

â
(l)
(k|k) = â

(l)
(k|k−1) + K

(l)
(k)(α̂

(l)
LS(k) − Sâ

(l)
(k|k−1)), (32)

P
(l)
(k|k) = (Ir − K

(l)
(k)S)P

(l)
(k|k−1). (33)

Note that in the denominator of (31), SP
(l)
(k|k−1)S

T reduces to

the first element of the matrix P
(l)
(k|k−1).

2) The per-path KF: We can merge previous single-path KF

equations for the L paths of the channel into a global formu-

lation, as illustrated in Figure 1. This is done for comparison

with the joint multi-path KF. The prediction and estimation

vectors of the multi-path channel state â(k|k−1), â(k|k), the

state noise variance matrix U, the state evolution matrix M,

and the selection matrix S remain the same structure as

defined in the joint multi-path KF. As the processing of the

paths is independent, we get the multi-path Kalman gain

simply by overlaying the r × 1 single-path Kalman gains as:

Kpp(k) = blkdiag{K
(1)
(k) · · ·K

(L)
(k) }, (34)

and we obtain the per-path KF equations as:

Time update equations

â(k|k−1) = Mâ(k−1|k−1), (35)

P(k|k−1) = MP(k−1|k−1)M
T + U, (36)
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TABLE II: Closed-form expressions for the per-path RWr-KF in steady-state mode for the l-th path ( [15] [16] for r = 1, and

[17] [18] for r = 2, 3, respectively), under the assumption fdT ≪ 1 and σu(l) ≪ σ
LS(l)

RW1 RW2 RW3

K
(l)
(∞)

σ
u(l)

σ
LS(l)

[

(

2
σ
u(l)

σ
LS(l)

)
1
2 σ

u(l)

σ
LS(l)

]T [

2
(

σ
u(l)

σ
LS(l)

)
1
3

2
(

σ
u(l)

σ
LS(l)

)
2
3 σ

u(l)

σ
LS(l)

]T

σ2
ǫα(l) 2 · (πfdT )2 ·

σ2

LS(l)

σ2

u(l)

· σ2
α(l) 6 · (πfdT )4 ·

σ2

LS(l)

σ2

u(l)

· σ2
α(l) 20 · (πfdT )6 ·

σ2

LS(l)

σ2

u(l)

· σ2
α(l)

σ2
ǫw(l)

σ
u(l)σLS(l)

2
3
4 · (2σu(l))

1
2σ

3
2

LS(l)
5
3σ

1
3

u(l)σ
5
3

LS(l)

σ2
u(l) opt

4 ·
[

(πfdT )
4σ4

α(l)σ
2
LS(l)

]
1
3

[

218(πfdT )
16σ8

α(l)σ
2
LS(l)

]
1
5

[

312 · 218(πfdT )36σ12
α(l)σ

2
LS(l)

]
1
7

σ2
ǫ(l) min

3
2 · (πfdT · σ2

LS(l)
)

2
3 · (σ2

α(l))
1
3

15
8 · (

√
2πfdT · σ2

LS(l)
)

4
5 · (σ2

α(l))
1
5

35
16 · ( 169 πfdT · σ2

LS(l)
)

6
7 · (σ2

α(l))
1
7

Measurement update equations

Kpp(k) = P(k|k−1)S
H
(

SP(k|k−1)S
H

+diag{[σ2
LS(1)

· · · σ2
LS(L) ]}

)−1
(37)

â(k|k) = â(k|k−1) + Kpp(k) · vǫ(k), (38)

P(k|k) = (IrL − Kpp(k)S)P(k|k−1), (39)

with the time update equations (35) and (36) repeated from

Equations (14) and (15), and with the error signal v
ǫ(k) defined

in (23), or in (24). Note that in (37), P(k|k−1)S
H is an rL×L

block-diagonal matrix, and SP(k|k−1)S
H is an L×L diagonal

matrix.

3) Comparison with the joint multi-path KF: Due to the

earlier defined block-diagonal matrix Kpp(k) of Equation (34),

when choosing a block-diagonal matrix for the initialization

of P(−1|−1), it is easy to find that P(k|k−1) and P(k|k) are

now block-diagonal matrices with P
(l)
(k|k−1) and P

(l)
(k|k), (l =

1, . . . , L) on their main diagonals, respectively. By comparing

the joint multi-path KF Equations (14), (15), (19) ∼ (22),

and the per-path KF Equations (35)∼(39), we find that the

only difference between these lies in the equations of Kalman

gain: the joint multi-path KF exploits the covariance matrix

of the loop noise (FH
p Fp)

−1σ2
w in (20), while the per-path KF

considers only the main diagonal elements of (FH
p Fp)

−1σ2
w in

(37). This is why our proposed per-path KF can be viewed as

an approximation of the joint multi-path KF.

4) Comparison with the literature results: From the previ-

ous analysis we can conclude that the joint multi-path KF

and the per-path KF are strictly equivalent if FH
p Fp is a

diagonal matrix. However, FH
p Fp is not such a diagonal matrix

in general, unless the physical multi-path delays τ (l)Ts are

multiples of the sample time Ts, yielding FH
p Fp = NpIL (see

Appendix A). Having delays multiple of Ts also means that the

DTE channel is uncorrelated (see the correspondence between

the parametric channel model and the DTE channel model).

Hence, our result corroborates that of the latest reference [22]

stating the equivalence between (vectorial) VSVO KF and

(scalar) VSSO KF under the condition that the DTE channel

is uncorrelated (WSSUS).

The per-path KF applied in this condition has been analyzed

in [21]–[23] (called VSSO KF associate to a DTE channel

channel). But in practice, the physical multi-path delays are

not ensured to be multiples of Ts, thus FH
p Fp 6= NpIL, or

equivalently the DTE channel is correlated. The following

KF analysis will consider uncorrelated and correlated DTE

channels, and will bring new analytical results for both channel

conditions.

C. Asymptotic mean-square error of the per-path KF

We aim to find the asymptotic MSE, σ2
ǫ , as defined in

Equation (7), for the proposed unbiased estimator.

In the single-path scenarios, the asymptotic MSE expres-

sions of the RWr-KF (r = 1, 2, 3) were deduced in our

previous studies [15]–[18]. These results can be applied to

the per-path KF as it deals with each path independently, in

the same way as a single-path channel scenario according to

Equation (26). However, in the present study, the loop noise

variance σ2
LS(l)

represents the observation noise variance in our

previous studies.

The variance of estimation error is then comprised of two

parts, one of which comes from the variation of the parameter

α, and the other comes from the input loop noise wLS. Thus

for a given path l, we have:

σ2
ǫ(l)

= σ2
ǫα(l) + σ2

ǫw(l) . (40)

The component σ2
ǫα(l) (i.e., the dynamic error variance) results

from the high-pass filtering of the input CA α
(l)
(k), which can

be expressed in the frequency-domain, by:

σ2
ǫα(l) =

∫ + 1
2T

− 1
2T

Γα(l)(f) · |1− L(ej2πfT )|2df, (41)

where L(ej2πfT ) is the low-pass transfer function (expressed

in the z-domain, with here z = ej2πfT ) of the steady-state

RWr-KF. The expressions of L(z) can be found in [15] [16]
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for r = 1, and in [17] [18] for r = 2, 3. It should be noted

that L(z) depends on the elements of the Kalman gain vector

K
(l)
(k) of size r×1 obtained for the steady-state mode (k → ∞).

The previously cited studies give the approximate closed-form

expressions of K
(l)
(∞) with respect to the ratio of the state

noise to the loop noise standard deviations,
σ
u(l)

σ
LS(l)

, as reported

in Table II. Note that all these formulae are obtained under

the following two assumptions: a low normalized Doppler

frequency fdT ≪ 1 and a weak state noise standard deviation

of the KF compared to the observation noise (σu(l) ≪ σ
LS(l) ).

This latter assumption means that we have a low Kalman gain

(first element) [K
(l)
(∞)]1 ≪ 1. The component σ2

ǫw (i.e., the

static error variance) results from the low-pass filtering of the

input loop noise, and is expressed by:

σ2
ǫw(l) = σ2

LS(l)
· T

∫ + 1
2T

− 1
2T

|L(ej2πfT )|2df. (42)

The static error variance is also a function of the state noise

variance σu(l) , as reported in Table II.

Then, σu(l) is the parameter which permits us to tune the

per-path RW-KF. To do this, we find the optimum value

σ2
u(l) opt

for which the per-path MSE σ2
ǫ(l)

is minimum. This

minimum value is denoted σ2
ǫ(l) min

. The dynamic error variance

σ2
ǫα(l) , the static error variance σ2

ǫw(l) , the optimized path

state noise for the RWr model σ2
u(l) opt

, and the corresponding

minimized asymptotic MSE σ2
ǫ(l) min

are summarized in Table

II. It should be noted that these amounts depend on the multi-

path channel delay profile, via the path loop noise variance

σ2
LS(l)

(see Equation (28)). The global mean MSE (per path)

of the channel estimation is then calculated by:

σ2
ǫ min

=
1

L

L
∑

l=1

σ2
ǫ(l) min

. (43)

For interpretation, we split the latest formula into several

contributions as follows:

σ2
ǫ min

= Cr · (fdT )
2r

2r+1 · (σ2
w)

2r
2r+1 · βr (44)

where Cr is a constant related to the KF order. For r = 1, 2, 3,

we define respectively: C1 = 3
2π

2
3 , C2 = 15

8 (
√
2π)

4
5 , C3 =

35
16 (

16
9 π)

6
7 . The coefficient βr (r = 1, 2, 3) is a noise factor

that depends on the channel PDP defined as follows:

βr =
1

L

L
∑

l=1

{

[

(FH
p Fp)

−1
]

2r
2r+1

l,l
· (σ2

α(l))
1

2r+1

}

. (45)

This new formulation (44) clearly shows a slope of 2r
2r+1 in

logarithmic scale w.r.t. the channel noise variance σ2
w and the

normalized Doppler frequency fdT which will be confirmed

in the simulation Section.

An interesting result ensuing from (45) is that for uncor-

related DTE channels, the performance no longer depends on

the delay distribution (i.e., the set of integer values τ (l)), but

only depends on the energy distribution of the paths. Indeed,

when FH
p Fp = NpIL, the parameter βr becomes:

βr =
1

L ·N
2r

2r+1
p

L
∑

l=1

{

(σ2
α(l))

1
2r+1

}

. (46)

D. Complexity

As well as the availability of the analytical optimization,

another key advantage of the per-path RWr-KF is its simplicity

compared to algorithms based on the joint multi-path KF.

We illustrate the complexity of both of these algorithms by

counting the complex multiplications in each iteration body

(Equations (14)∼(18) for the joint multi-path RWr-KF, and

Equations (35)∼(39) for the per-path RWr-KF) in Tables III

and IV.

TABLE III: Number of complex multiplications of the joint

multi-path RWr-KF within each iteration

Operation Equation Multiplications

Mâ(k−1|k−1) (14) 0 (L4 for RW3)

MP(k−1|k−1)M
T (15) 0 (rL2 for RW3)

A1 = P(k|k−1)F
H
s (16) rNpL

2

A2 = FsA1 (16) N2
pL

A3 =
(

A2 + σ2
wINp

)−1
(16) N3

p

A1A3 (16) rLN2
p

A4 = ỹp(k) − Fsâ(k|k−1) (17) (L+ 1)Np

K(k)A4 (17) rLNp

K(k)A
H
1 (18) r2L2Np

TABLE IV: Number of complex multiplications of the per-

path RWr-KF within each iteration

Operation Equation Multiplications

Mâ(k−1|k−1) (35) 0 (L4 for RW3)

MP(k−1|k−1)M
T (36) 0 (rL2 for RW3)

A5 = P(k|k−1)S
H (37) 0

A6 = SA5 (37) 0

A7 =
(

A6 + diag{σ2
LS(1)

· · · σ2
LS(l)

}
)−1(37) L∗

A5A7 (37) rL
A8 = α̂LS(k) − Sâ(k|k−1) (38) (L+ 1)Np

Kpp(k)A8 (38) rL

Kpp(k)A
H
5 (39) r2L

* as the matrix is diagonal, the inversion operation is equivalent to division
operations of the main diagonal elements, and here the division operation
is considered to have the same order of complexity with multiplication.

Note that M, S and P(k|k) are real matrices, hence the first

two equations of both of the RW-KFs are real operations, and

thus the multiplications in these equations contribute to only

a quarter of the complexity of the complex multiplications.

Moreover, any multiplication with a matrix where the elements

are only 0 and 1 does not contribute to the complexity; e.g.,

M for the first two orders and the matrix S. Note that if

the matrix P(k|k) is initialized by a zero matrix, P(k|k) and

P(k|k−1) for the per-path RWr-KF should be always kept

block-diagonal (or diagonal for r = 1). Hence in Table IV,
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TABLE V: Complexity comparison (L = 6)

Multiplications
Np r joint RWr-KF per-path RWr-KF Complexity saving

1 1790 72 95.98 %

8 2 3074 102 96.68 %

3 4790 122 96.99 %

1 3966 96 97.58 %

12 2 5730 126 97.8 %

3 7926 168 97.88 %

1 7678 120 98.44 %

16 2 10114 150 98.52 %

3 12982 192 98.52 %

1 259710 384 99.85 %

60 2 282210 414 99.85 %

3 305124 456 99.85 %

1 1901310 744 99.96 %

120 2 1988610 774 99.96 %

3 2076342 816 99.96 %

A5 is block-diagonal, A6 and A7 are diagonal, so A5A7

needs rL complex multiplications. The calculation of ỹp(k)

has Np complex multiplications and α̂LS(k) has NpL, since the

calculation of (FH
p Fp)

−1FH
p in α̂LS(k) can be done in advance

and thus does not contribute to the complexity.

By summing Tables III and IV (here the complexity of

the first two equations in Tables III and IV are not taken

into account as they are negligible compared to the complex

multiplications), we find that the joint multi-path RWr-KF

has N3
p + (r + 1)LN2

p + (r2L2 + rL2 + rL + L + 1)Np

complex multiplications, while the per-path RWr-KF has only

[(r+1)2+Np]L. Therefore, the joint multi-path RWr-KF has

a complexity of O(N3
p ), while the per-path RWr-KF has a

complexity of O(NpL). The complexity depends only on the

number of paths of the channel model, the number of pilot

subcarriers and the estimator order r. The advantage of the per-

path RWr-KF becomes evident in the case where the number

of pilots Np > L, which is most often the case in practice

[34]. Furthermore, this condition is necessary for the VSSO

method.

Table V gives a complexity comparison with L = 6 (as

in ETSI channel model used for 3GPP-UMTS standard) and

with different Np (corresponding to different WiMAX profiles

[35]). We find that for these scenarios, the complexity of per-

path RWr-KF is reduced by more than 95%.

IV. SIMULATIONS

In this simulation section, we use by default a 4QAM-

OFDM system with N = 128 sub-carriers to validate the

proposed approximate method and the analytic results. By

default, the OFDM system has Ng = 16 samples of CP,

Np = 16 pilot sub-carriers in each transmitted OFDM symbol,

and the system bandwidth is 1/Ts = 2 MHz. The GSM 6-

path outdoor channel model [36] was chosen as the default

simulation channel, and its power delay profile is given in

Table VI.

Figure 2 gives a comparison between the MSE performance

of the joint multi-path RW-KFs and the per-path RW-KFs. In

TABLE VI: Power delay profile of the simulation channel

Path 1 2 3 4 5 6

correlated DTE channel (GSM):

τ (l) 0 0.4 1 3.2 4.6 10

σ2
α(l) (dB) -7.219 -4.219 -6.219 -10.219 -12.219 -14.219

uncorrelated DTE channel:

τ (l) 0 1 2 3 4 10

σ2
α(l) (dB) -7.219 -4.219 -6.219 -10.219 -12.219 -14.219

this simulation, the per-path KFs are analytically optimized

with state noise variance σ2
u(l) opt

given in Table II, while all

the joint multi-path KFs are numerically optimized using a grid

search around σ2
u(l) opt

. We can observe that the joint multi-path

KFs slightly outperform the per-path KFs, but the difference

between both remains negligible. This validates the efficiency

of the per-path KF.

Figure 3 shows the simulated asymptotic MSE (mean value

per path) of the AR1CM -KF and the RW-KF, the theoretical

asymptotic MSE of the RW-KF, and the BCRB for fdT =
10−3 as a function of the SNR. We can observe that all

the theoretical curves are very close to the simulated ones,

except at high SNR where there is a sligth difference. This is

explained by the fact that the theoretical formulae are obtained

under the assumptions of a low Doppler frequency and low

SNR scenarios (see Section III-C).

Figure 4 presents the MSE evolution as a function of

fdT . We can see clearly that the RW-KFs outperform the

AR1CM -KF. Moreover, the MSEs obtained by the simulation

approximately coincide with the theoretical values (note that

we have made approximations for the analytical expressions

of the asymptotic MSE with the low fdT assumption; these

approximations become poorer when fdT increases, and we

observe an overestimated MSE for high fdT , as shown in Fig.

4). For RW1-KF, RW2-KF and RW3-KF, the asymptotic MSE

are respectively proportional to the 2/3, 4/5, 6/7 powers of the

fdT , and are inversely proportional to the 2/3, 4/5, 6/7 powers

of the SNR, as argued in the theoretical analysis.

Figure 5 gives a comparison between a correlated and an

uncorrelated DTE channel scenario. The PDP of these two

channels are given in Table VI. The considered channel estima-

tor is the per-path RW3-KF. As explained in Section III-B4, the

physical delays for the uncorrelated DTE channel are multiples

of Ts. The MSE obtained with the correlated DTE channel is

greater than that obtained with the uncorrelated DTE channel.

This is confirmed by the calculation of the loop noise factor

βr (45) (see Section III-C) which gives β3 = 0.0719 for the

uncorrelated DTE channel and β3 = 0.173 for the correlated

DTE channel.

We simulate the Bit Error Rate (BER) performance for the

proposed RW-KFs implemented with a zero-forcing equalizer

in Figure 6. Here, we use 16-QAM modulation with and

without coding and Np = 8 pilots for fdT = 10−3. As other

references, we have added the BER obtained for AR1CM -

KF estimator and that with perfect Channel State Information

(CSI). Without coding, we can observe that the AR1CM -KF

curve and the RW1-KF curve are very close. Furthermore,
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the RW2-KF curve and the RW3-KF curve nearly coincide.

At a BER target of 10−3, there is an SNR loss of about 2
dB between the RW2-KF and the RW1-KF. Then, we use a

Non-Recursive Non-Systematic Convolutional (NRNSC) code

[5, 7]8. This time, the RW1-KF curve is far from the AR1CM -

KF and closer to the RW2-KF curve. At a BER target of 10−5,

there is an SNR loss of about 2.5 dB between the RW1-KF

and the AR1CM -KF curves, and only 0.5 dB between the

RW1-KF and RW2-KF curves. To sum up, the BER of the

AR1CM method is close to that of the RW method in the

uncoded scenario while the difference is appreciable in the

coded scenario. Indeed, a bad channel estimation (see MSE

performance in Figure 3) has more impact on the detection in

a coded scenario. It is interesting to note this, as coding could

be always found in modern systems.

Now, we investigate an iterative detection and decoding

scenario, in order to exploit soft data symbols in addition

to pilot symbols. To do this, we use at the transmitter the

classical bit-interleaved coded modulation scheme based on a

convolutional code (the NRNSC code [5, 7]8) and a pseudo-

random interleaver. At the receiver, we perform iterative soft

channel estimation and channel decoding. The channel estima-

tor/equalizer and the decoder exchange soft information in the

form of Log-Likelihood Ratio (LLR) between them through a

few iterations until convergence [37]. The channel decoder is

based on the Soft-Output Viterbi Algorithm (SOVA). At the

first iteration, only the pilots are used for channel estimation.

Then, the next iterations exploit in addition the soft data

symbols. The resulting MSE and BER are plotted in Fig. 7

as a function of fdT for Np = 8, QPSK symbols and an SNR

of 10 dB. The channel estimator is the RW1-KF. We notice

a great performance improvement between the first iteration

and the second iteration. Then, the algorithm converges. As

expected, the MSE increases with an increasing fdT , which

is not necessarily the case for the BER. This is understood

since the diversity is greater when fdT increases (see [38,

Fig. 11]).

V. CONCLUSIONS

We have here proposed a low-dimensional KF solution for

the estimation of the channel multi-path complex amplitudes.

The considered approximation models for the KF are the RW

models of the first, second and third orders. Our solution is a

two-step solution: first, an error signal for each channel path

is calculated with the LS criterion. Secondly, based on this

error signal, a KF is applied to each path independently. This

per-path KF solution explores the time-domain correlation of

the channel, while the LS step exploits the frequency-domain

correlation of the channel. We have shown how to apply the

previous results we obtained for a single-path single-carrier

to the multi-path multi-carrier context. This has allowed us

to provide Tables with the optimal RW parameters, together

with the theoretical formulae of the variance of the estimation

error. Furthermore, we have demonstrated that our per-path KF

solution can be interpreted as a simplified version of the more

complex joint multi-path KF. This has been done through the

Woodbury’s identities. The simulation results show that the
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Fig. 4: MSE versus fdT with SNR =20 dB, Np = 16, GSM channel

performance of this low-dimensional solution is comparable

to that of the joint multi-path KF. A possible way to extend

this work could be by applying it to MIMO-OFDM systems.

APPENDIX A

DISCRETE-TIME EQUIVALENT CHANNEL

We assume a classical analogue “physical channel” with

L multi-path delays and L uncorrelated multi-path CAs. The
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impulse response of this channel is written as [39]:

hphy(τ) =

L
∑

l=1

α(l)δ(τ − τ (l)Ts). (47)

where delays τ (l)Ts are not necessarily uniformly spaced every

Ts. This channel can also be replaced by a DTE channel with

impulse response truncated to L′ coefficients h[k] uniformly

spaced every Ts, for k = 1, 2, · · ·L′, obtained after limitation

to a bandwidth B = 1/Ts and sampling every Ts:

h[k] = h((k − 1)Ts + τ (1)Ts)

=

L
∑

l=1

α(l)sinc(π(k − 1− τ (l) + τ (1))). (48)

with h(τ) = hphy(τ) ∗ sinc(πτ/Ts), sinc = sin x
x

and * the

convolution operator. Without loss of generality, we assume

that τ (1) = 0 . This equation tells that each coefficient h[k]
can be linked to the L physical CAs. Thus we can conclude:

1) The DTE channel is uncorrelated if and only if the

physical path delays τ (l)Ts are multiples of the sampling

time Ts, i.e., if τ (l) are integers. Indeed, without this

condition, the L′ taps h[k] of the DTE channel are

correlated, since each tap is a function of the L CAs

α(l), l = 1 . . . L. However, in the special case where τ (l)

are integers, only L taps among L′ are non-zero. Those

L coefficients of h[k] are uncorrelated w.r.t. one another,

and coincide with the L physical CAs, amounting to an

uncorrelated DTE channel.

2) The condition where τ (l), l = 1, . . . , L are integers is

equivalent to the condition FH
p Fp = NpIL in our model

assumption. Indeed, according to the comb-type pilot

model with Np pilots spaced every Lf = N/Np sub-

carriers, the non-diagonal elements of the matrix (for

l 6= l′) is calculated by:

[

FH
p Fp

]

l,l′
=

Np−1
∑

k=0

e
j2π( k

Np
− 1

2 )(τ
(l)−τ (l′))

= e−jπ∆τ

Np−1
∑

k=0

(

e
j2π∆τ

Np

)k

=
2j

e
j2π∆τ

Np − 1
· sin(π∆τ). (49)

So, the coefficients
[

FH
p Fp

]

l,l′
= 0 if and only if ∆τ =

τ (l) − τ (l
′) are integers. By using τ (1) = 0, τ (l) should

be integers.

Finally, we can conclude that the DTE channel is uncorrelated

if and only if the condition FH
p Fp = NpIL is satisfied.

APPENDIX B

TRANSFORMATION OF THE KALMAN GAIN WITH THE

WOODBURY IDENTITIES

In this section, we use the following two identities [40, p.

1348] to develop the deduction:

Woodbury’s identity 1:

(ABAH + σ2I)−1 =
1

σ2
[I − A(AHA + σ2B−1)−1AH ] (50)

Woodbury’s identity 2:

(A−1 + BHCB)−1 = A − ABH(BABH + C)−1BA (51)

We rewrite the Kalman gain of Equation (16) as:

K(k) =P(k|k−1)F
H
s

(

FsP(k|k−1)F
H
s + σ2

wINp

)−1
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(50)
= P(k|k−1)F

H
s

1

σ2
w

[

INp
− Fs(F

H
s Fs + σ2

wP−1
(k|k−1))

−1FH
s

]

=
1

σ2
w

P(k|k−1)(FpS)H
[

INp
− FpS

(

(FpS)H(FpS)

+σ2
wP−1

(k|k−1)

)−1

(FpS)H
]

=
1

σ2
w

P(k|k−1)S
H
[

FH
p − FH

p FpS

(

S
HFH

p FpS

+σ2
wP−1

(k|k−1)

)−1

S
HFH

p

]

=
1

σ2
w

P(k|k−1)S
H
[

IL − FH
p FpS

(

S
HFH

p FpS

+σ2
wP−1

(k|k−1)

)−1

S
H

]

FH
p . (52)

Let A = FH
p Fp, B = S

H , C = σ2
wP−1

(k|k−1), and we continue

the deduction:

K(k) =
1

σ2
w

P(k|k−1)S
H
[

IL − ABH
(

BABH + C
)−1

B
]

FH
p

=
1

σ2
w

P(k|k−1)S
H
[

A − ABH
(

BABH + C
)−1

BA
]

A−1FH
p

(51)
=

1

σ2
w

P(k|k−1)S
H
(

A−1 + BHC−1B
)−1

A−1FH
p

=
1

σ2
w

P(k|k−1)S
H

(

(FH
p Fp)

−1 +
1

σ2
w

SP(k|k−1)S
H

)−1

(FH
p Fp)

−1FH
p

=P(k|k−1)S
H
(

(FH
p Fp)

−1σ2
w + SP(k|k−1)S

H
)−1

(FH
p Fp)

−1FH
p

=Keq(k) · (FH
p Fp)

−1FH
p , (53)

with Keq(k) defined by:

Keq(k) = P(k|k−1)S
H
(

(FH
p Fp)

−1σ2
w + SP(k|k−1)S

H
)−1

.

(54)
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