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Abstract. In this article we introduce mathematical morphology on
hypergraphs. We first define lattice structures and then mathematical
morphology operators on hypergraphs. We show some relations between
these operators and the hypergraph structure, considering in particular
duality and similarity aspects.

1 Introduction

Mathematical morphology is a widely used theory for contemporary informa-
tion processing in various lattice frameworks. Concerning structural information
processing, mathematical morphology has been developed on graphs [6]10[15]16],
but nothing has been done yet on hypergraphs to the best of our knowledge.

Hypergraphs were introduced in the 60s as a generalization of graphs [1], where
edges become hyperedges and can connect more than two vertices, and have then
been intensively studied. They have shown their interest in various fields such as
computer science, game theory, databases, data mining, optimization [17], image
processing and segmentation [4]5].

The aim of this paper is to propose preliminary definitions and results in this
context. We consider an hypergraph defining the underlying space: H = (V, )
with V the set of vertices and £ the set of hyperedges. The powerset of V and
& are denoted by P(V) and P(£), respectively. We denote a hypergraph by
H=(V,E) with V CVand E C £.

After introducing some more notations and basic concepts related to hyper-
graphs in Section[2] our first objective (Section[3) is to define a lattice structure
(7,=) on the hypergraphs of H, with < a partial ordering on 7 such that
(7,=) is a complete lattice (suitable structure for mathematical morphology,
as shown in [3]7]8]11]). Mathematical morphology operators on hypergraphs are
then defined in Section [4l Then, in Section [5] we consider dual hypergraphs
and establish some links between morphological dilations and hypergraph dual-
ity concepts. Finally, in Section [6] we propose a simple example for computing
similarity between hypergraphs based on dilations.

* This work was partially funded by a grant from Institut Télécom / Télécom Paris-
Tech, and was done during the sabbatical stay of A. Bretto at Télécom ParisTech.



2 Basic Concepts on Hypergraphs [1]

A hypergraph H denoted by H = (V, E = (e;)icr) on a finite set V is a family
(which can be a multi-set) (e;);er, (where I is a finite set of indices) of subsets of
V called hyperedges. Sometimes we will denote V' as V(H), and F as E(H). Let
(€j)jeq1,2,..1y be a sub-family of hyperedges of E. The set of vertices belonging
to these hyperedges is denoted by V(Ujc1,2,..13€5), and V(e) denotes the set
of vertices forming the hyperedge e. When no confusion may arise, we will just
denote by e the set of vertices it contains. If (J;c;e; = V, the hypergraph is
without isolated vertex (a vertex x is isolated if x € V'\ J,¢; €i). By definition
the empty hypergraph is the hypergraph Hy such that V =0 and E = ().

Let H = (V,(ei)ier) be a hypergraph. A induced subhypergraph H(V') of H
with V' C V' is a hypergraph defined as H(V') = (V',(e; NV’),. ). The
partial hypergraph H' of H generated by J C I is the hypergraph (V, (ej)j c)-
Given a subset V' C V., a subhypergraph H' is the partial hypergraph H' =
(V' {ei,i € T | e; € V'}). Without loss of generality we can suppose that
the empty hypergraph, Hy = (0,0) is a partial hypergraph, (resp. (induced)
subhypergraph) of any hypergraph.

The star centered at z is the set of hyperedges containing x, denoted by H(x).
The value d(z) = |H(x)| is the degree of x.

If the family of hyperedges is a set of subsets of V', we say that H is without
repeated hyperedge i.e. i # j <= e; # e;. The rank of H is the maximum
cardinality of a hyperedge. A hypergraph is linear if |e; Nej| < 1 fori # j. A
loop is a hyperedge with a cardinality equal to one. A simple hypergraph is a
hypergraph H = (V, E = (e;);er) such that: e; Cej =i = j.

The dual H* of a hypergraph without empty hyperedge and isolated vertex
H is a hypergraph whose set of vertices is isomorphic (denoted ~) to the set
of hyperedges of H, and whose hyperedges are given by X, Xo,...X,, where
X; = {eilz; € e;}. The transpose A® of the incidence matrix A = ((a;;)) of a
hypergraph H (i.e. a;; = 1 iff vertex ¢ belongs to hyperedge j) is the incidence
matrix of H* = (V* ~ E, E* ~ (H(z))zev): for v; € V* and e] € E*, v} € ]
if and only if a;; = 1. Consequently (H*)" = H. Note that a hypergraph can be
equivalently defined as a family (potentially multi-set) of hyperedges on a set of
vertices, or as an incidence matrix.

A hypergraph H = (V, E) is isomorphic to a hypergraph H' = (V'  E') (H ~
H'), if there exist a bijection f : V — V' and a permutation 7 of I such that:
f(V(ei)) = axg), for e; € E and ar;) € E'. The mapping f is then called
isomorphism of hypergraphs. Note that H ~ H’ if and only if H* ~ H'*.

Let H = (V, E) be a hypergraph, E = (e1, ea,...,¢en). A path Pin H from x;,
to x;,,, is an alternated vertex-edge sequence x;,,€;,, Ti,, €y, - - - Ti,, €iys Tiy
such that {$ik,$ik+1} (ST (/C =11, 19, ...,is) and Ti, 75 Ti; 5 €i 75 €i; (ik 75 ij),
where s is called the length of path P. The distance between vertices x and y,
d(z,y) is the minimum length among those of all paths which connect z and y.
If for each pair of vertices (z,y) there is a path from z to y, the hypergraph H
is said connected.



3 Lattice Structures on Hypergraphs

In this section we define a few lattices on hypergraphs, as the basic algebraic
structures on which mathematical morphology operators are then defined.

A lattice on the set of vertices can be simply defined by 7 = (P(V), C).
This is the classical lattice defined on the powerset of a set, with the standard
set inclusion as partial ordering. It is a complete lattice. However is it not really
interesting since it does not say anything on the structure of the hypergraph.

A more interesting lattice can be defined, based on closed sets of vertices,
involving the stars of vertices. Let H = (V, E') be a hypergraph and let V/ C V.
We say that V' is a closed set if V(x,y) € V2, V(H(z)NH(y)) C V’'. We denote
by C(H) the family of closed sets with the empty set.

Proposition 1. The structure (C(H), C) is a complete lattice. The infimum is
A =N and the supremum is: V(V'. V") € C(H)?,V'VV”" =n{V" € C(H) | V'U
V" C V'Y, i.e. the intersection of all closed sets containing V' UV”, and its
extension to any family. The smallest element is O and the largest element is V.
Note that C(H) is a Moore family [3).

A lattice on the set of hyperedges can be defined by 7 = (P(€), C). Again
it is a classical complete lattice on the powerset of a set and classical results
can be used directly. The next definitions, on the hypergraphs themselves, are
probably more interesting.

Lattices on the hypergraphs will allow us to better account for the whole
structural information encoded in hypergraphs, considering both vertices and
hyperedges in the definition of the lattice structure.

The simplest idea is to consider the inclusion on the powerset of vertices and
edges, respectively. Other ideas could be to define a partial ordering based on
the notions of induced sub-hypergraph, partial hypergraph and sub-hypergraph.

In all cases, 7 is defined as:

VCy
H=(V,E)eT s J{ECE (1)
{xeV|JecE,xce} CV

The last condition ensures that H is actually a hypergraph, where the hyperedges
are sets of vertices of V, and can be equivalently written as Ve € E,V(e) C V.
There is no equivalent restriction on V' if isolated vertices are accepted.

Partial ordering based on the inclusion on the powersets of vertices and hyper-
edges
Definition 1

VicVs

V(H17H2) S T27Hl = (‘/17E1)7H2 = (‘/27E2)7 Hl j H2 ad {EQ g E2 (2)

This definition is similar to the one used in [6] for graphs.



Proposition 2. The following properties hold:

— = defines a partial ordering on T .

— The infimum is: Hy AN Hy = (V1 N Vo, E1 N Ey), and for any family (H;):
/\'L H; = (ﬂz Vi, ﬂz Ez)

— The supremum is: Hy V Hy = (V1 UV, By U Es), and for any family (H;):
\/i H; = (Uz Vi, Uz Ey).

— (7,=) is a complete lattice, which is moreover sup-generated. Its smallest
element is Hy = (0,0) and its largest element is H = (V,£). We have
VO=AT =Hy and N\O=V T =H.

Note that it is not complemented (in order to have F U E° = £, we would have
to consider in E€ all hyperedges that are not in F, including those which have
vertices both in V' and in V¢, so (V¢, E€) would not be a hypergraph in 7).

Partial ordering based on the notion of induced sub-hypergraph

Definition 2. A partial ordering can be defined from the type of inclusion which
is implicit in the definition of induced sub-hypergraph, as:

VicV,

2 .
V(HLHZ)GT7H151H2<:>{E1:{6mv1|66E2} (3)

i.e. Hy is the sub-hypergraph induced by Ho for Vi.
Proposition 3. The relation =; is a partial ordering on T .

It might be more suitable (to allow for more frequent comparisons between
hypergraphs) to propose a less strict version where F; is only required to be
included in the set of hyperdeges of the induced sub-hypergraph:

Definition 3

VicV,

) /
V(HLHZ)GT7HljiH2<:>{Elg{eﬂV1|€€E2} @

Proposition 4. The following properties hold:

— <L is a partial ordering on T .

— (7, =) is a complete lattice.

— The infimum is: Hi N, Hy = (ViNVa,{e1NVa,eaNV; |e1 € E1,e2 € E3}NEY),
and a straightforward extension to any family (H;).

— The supremum is: Hy V, Hy = (V1 U Va, By U E3), and its extension to any
family (H;).

— The smallest element is Hy = (0,0) and the largest element is H = (V,£).

Another idea involves isomorphisms, as in the following definition.

Definition 4. Let H be the set of isomorphism classes of hypergraphs. A partial
order on H can be defined, for all Hy, Hy in H as:

H, <y Hy <= H; is isomorphic (by f) to an induced subhypergraph of Ha

(5)



Proposition 5. The structure (H, <) is a complete lattice. The supremum is
sup{H1, Ho} = H1V Hs (as in Proposition[2 for <), and the infimum inf{ H,, Ho}
is the mazimum common induced subhypergraph (and their extension to any
family).

Partial ordering based on the notion of partial hypergraph
Definition 5

Vi=V,

V(Hl,Hz) S T27H1 jp Hy; & {El CE, (6)

Proposition 6. =<, is a partial ordering on T, and (T, =,) is a complete lattice.

This is simply a restriction of < by considering only the hypergraphs with the
same set of vertices, so it will not be further considered.

Partial ordering based on the notion of sub-hypergraph
Definition 6

VicVs

2
v(1117]{2)67ﬂ7111jSI{2<:>{Ew1:{€|€€EV2 andv(e)g‘/l} (7)

Note that the condition on the hyperegdes is stronger than F; C E5 and we may
have more hyperegdes.

Another possibility would be to define <’ by replacing the equality in the
condition on the hyperedges by an inclusion (as for <7).

Proposition 7. <, and <’ are partial ordering on T .

These partial orderings may be interesting when the notions of (induced) sub-
hypergraphs are explicitly involved in the application at hand.

In the following, we use < for defining in a general way a partial ordering
between two hypergraphs.

4 Mathematical Morphology on Hypergraphs

Algebraic Dilation and Erosion. Once we have a complete lattice, the whole
algebraic apparatus of mathematical morphology applies.

Let (7,=) and (7', =’) be two complete lattices (which can be any of those
defined in Section[3] and do not need to be equal). All the following definitions
and results are common to the general algebraic framework of mathematical
morphology in complete lattices [3[7|8]11]13].

Definition 7. An operator § : T — T’ is a dilation if: ¥(x;) € T, 6(Vix;) =
V%0 (x;), where V denotes the supremum associated with < and V' the one asso-
ciated with <'. An operator € : T' — T is an erosion if: V(x;) € T', e(Na;) =
Nie(x;), where A and N denote the infimum associated with < and =<', respec-
tively.

All classical properties of mathematical morphology then hold [3[7]8|, and are
therefore not recalled here.



Structuring Element and Morphological Operations. In classical mor-
phology dilations and erosions can be expressed by means of a set, called struc-
turing element, which defines a neighborhood at each point [12], and this idea
has been used for graphs as well [16]. The structuring element “centered” at x
is By = 0({z}). More generally, the structuring element can be interpreted as a
binary relation between two elements, thus enabling the extension of this idea
to any lattice.

Defining morphological dilations on hypergraphs calls for canonical decompo-
sitions of the elements of the considered lattice.

In the case of the lattice (P(V), C), each subset of vertices V' can be trivially
decomposed as V = U,ey{z}, and a morphological dilation then writes dg(V) =
Uzev Bz = Ugevd({x}).

In the case of the lattice (P(£), C), each subset of hyperedges E can be decom-
posed as E = Ugegp{e}, and a morphological dilation is then 0g(F) = Uec g Be =
Ueerd({e}).

Let us now consider the lattice of hypergraphs, with the partial ordering
= (see Definition [I). Let H = (V, E) be a hypergraph of this lattice. For E,
a natural decomposition consists of F = V.ecg{e}. For V the decomposition
should be consistent with the one of E, in order to associate an “elementary”
hypergraph to each e. We thus consider V' (e), the set of vertices associated with
e. Additionally, the decomposition should also involve all vertices that do not
belong to any hyperedge. We denote by WA g this set of vertices. Finally we
propose the following canonical decomposition of H, from its sup generating
property: H = (Veer(V(e),{e})) V (Vaev, ({2}, 0)).

The question of how the structuring element should be defined depends on
the application and on the type of desired results. Examples are provided next.

Example 1. Let us consider 7 = (P(€), C). An example of structuring element,
defining the elementary dilation of each hyperedge, consists in taking all hyper-
edges which have at least one vertex in common with the considered hyperedge:

Vee E, B.=d0({e}) ={e €| V(e)nV(e) # 0}, (8)

where the intersection applies on the sets of vertices defining e and e’. Dilating
a subset F by this structuring element means adding all hyperedges that are
directly connected to F.

As an illustration, let us consider the two hypergraphs depicted in Figure [Tl
For the first one, we have for instance d(e1) = {e1, ea,€3,e4},0(e2) = {e1, 2, €3},
and for the second one, d(e;) = {e1, ea,ea}, for i =1,2,3.

Example 2. Another example, where less hyperedges are added, can be obtained
by imposing a minimal cardinality on the intersection: Ve € E,B*¥ = {¢' €
EV(e)nV(e)| = k}.

Example 3. Let us now consider dilations from 7 = (P(£),C) into 7' =
(P(V),C). This will be useful later on when considering dual hypergraphs (see
Section[5). Then the elementary dilation should map a hyperedge to a subset of



Fig. 1. Two hypergraphs (V, E1), (V, E2), defined on the same set of vertices. Hyper-
edges are displayed as sets of vertices.

vertices. A trivial example is: Ve € E,B. = 6({e}) = {x € V | z € e} = V(e),
where again e is considered as a subset of vertices. This achieves the required
mapping, but does not really dilate anything.

Example 4. More interesting, we can define a structuring element as in Example
1, but considering the resulting subset of vertices: Ve € E, B, = §({e}) = {z €
Vi3 e axzeceand Vie)NV(e) # 0} =U{V(e) | V()N V(e) # 0}. As in
Example 2, we could add more strict constraints on the intersection, if we want
the dilation to include less vertices.

Example 5. Let us now consider 7 = ({H = (V, E)}, <). An elementary di-
lation can be defined according to the proposed canonical decomposition as:
Ve € W, 6({z},0) = ({x},0), for isolated vertices, and for elementary hyper-
graphs associated with hyperdeges: Ve € E, 6(V(e),{e}) = (U{V (e) | V(') N
Vie) #0},{e' €& |V(e)NV(e) #D}).

Note that if we consider also attributes on the vertices (or hyperedges), other
examples can be provided by using a similarity between attributes. For instance
isolated vertices could be dilated by adding all vertices that have similar attribute
values.

5 Dualities

In the sequel §({u}) will be simply denoted by §(u).
Let H = (V, E) be a hypergraph with V # (0, E # 0, and let H* = (V*, E*) its
dual. Let also

§:V—PV)

be a mapping. From this mapping we define another one as:

vV — P(V)
v — 6 (r) ={y e V;z €di(y)}

Let us notice that we can also define 0** as

vV — P(V)
T 0 (z) ={ye Viz €d*(y)}



The following proposition establishes basic results which will be useful next
for deriving other results on duality, an important concept on hypergraphs. A
particularly interesting result is the one expressed in Corollary[T]at the end of this
section, linking morphological operators, derived rough spaces, and probability
distributions.

Proposition 8. Let H = (V, E) be a hypergraph with V # 0, E # 0 and 6 and
0* as introduced above; we have:

o) for all X € P(V), 8(X) = Upex 0°(2) = {y € V, X Né(y) £ 0} (resp.
0(X) =Uex d(x) ={y € V, X N6*(y) # 0}) iff 0% is a dilation (resp. § is
a dilation);

b) for all X € P(V), if Upex 6" (x) =V (resp. Uyex d(x) = V) then X C
Uxcrs= )20 0 () (resp- X C Uxnsey) 20 0)):

c) 0** =6 onV;

d) if 6** and § are dilations then §** = 4.

Proof. a) Assume that §* is a dilation. The first equality is obvious by definition.
Let us show the second one. Let y € 0*(X) = (J,cx 0" () then thereis a x € X
such that y € §*(z) <=z € d(y),soy € {z € V, X Nd(z) # 0}.

Let X € P(V),and y € {z € V,X NJz) # 0}, there is x € X such that
x € 0(y) <=y € 6" (), consequently y € |J, .y 0*(x).

Conversely, if the equalities hold, then it follows from the first one that §* com-
mutes with the supremum, and is hence a dilation.

b) Obvious.

¢) Let z € **(x) then = € 6*(z), and therefore z € §(z).

In the same way z € §(x) = x € 6*(z) and z € 6**(z). So 6™ =Jon V.

d) From the definition of a dilation.

Let § : P(V) — P(V) be a dilation. It gives rise to a hypergraph Hs =
(V, (6(x))zev), where d(x) is seen as a hyperedge built by the vertices defining
d(x). Now, let H = (V, E) be a hypergraph. We can associate a dilation to H,
for instance by considering the following structuring function:

V — P(E)
x —d(x)={e€ E;x e}

Proposition 9. Let 6 : V. — P(V) be a mapping and H = (V, E) be an hy-
pergraph (V # 0, E # () without isolated vertex and without repeated hyperedge.
We have: H ~ Hs <= H* ~ Hg-.

Proof. Suppose that H ~ Hs. Because H is without repeated hyperedge, if x # y
then d(z) # d(y), 1. e. §(x) = d(y) implies that z =y, so ¢ is injective on V.
Let H=(V;E) and Hs = (V5 = V; Es = (§())zecv) be hypergraphs. We have:
H ~ Hs <= there a bijection f : V — Vs such that e € E <= f(e) = §(z) €
Es, x € V. Since Hs has no repeated hyperedge, notice that (§(z)).ecv ) is a set
{§(z),xz € V}.



It is known that H ~ Hj <— H* Hf, with H* = (V* ~ E;E* ~
(H(z)zev)), Hf = (V5 ~ (6(z ))xe\/) (H(z)zev)- It is sufficient to show
that Hy ~ Hs«, with Hs« = (Vor > V; Eg* ~ (6*(z))ev). Let g be a correspon-
dence defined by:

~
~

{0(y),yeV} —V
d() —g(0(z)) ==

Since 4 is injective, we have §(z) = 6(y) = = = y = g(6(z)) = g((y)), this
correspondence is well defined i. e. it is a mapping.

Clearly g is surjective; moreover g is injective since |{d(y),y € V'}| = |[V|. Hence
g is a bijection.

Now, H(z) € Ef <= H(z) = {0(w;),z € 6(u;)} = {d(u1),d(u2),...0(uk)} €
By = g(H(z)) = {g(0(u),i € {1,2,3,...k}} = {u,uz,...ux} = 6" (2),
because x € §(u;) <= u; € §*(x).

Hence H(z) € Ef < g(H(z)) = 6*(z) € Es-. So Hf ~ Hj;-, and finally
H~Hs <= H* ~ Hg~.

Proposition 10. Let H* = (V*, E*) be a hypergraph and let P = (p;)ic{1,2,....t}
be a discrete probability distribution on V*, taking rational values. This proba-
bility distribution gives rise to a dilation, (resp. a erosion).

Let 6 be a dilation on V*, then this dilation gives rise to a discrete probability
distribution on V*.

Proof. To prove the proposition, we will exhibit a particular dilation from P,
and respectively a particular probability distribution from a dilation.

Let P = (pi)icq1,2,... 1} be a discrete probability distribution with rationale values
on V*. For all i € {1,2,...,t} there are a;,b; € N, b; # 0, such that p; = ‘g— =

HV\

ai|V*| _

W = . We have:

ailv’)
% |V|j V=515 V=] SEAVEHIVE =2, L5 V)

224 b|v*| )+ TV l|7 = Zl( Vo] = )-
Let Vi* = {aF, 23, .. 'xLZ—jIV*IJ}’ Vs = {xLZ—ll~|V*IJ+1’ . "xLZ—ll~|V*|J+LZ—§~IV*IJ}
Vi =V*o\ Ui_, Vi*. Without loss of generality, we can assume that V;* #
for all i € {1,2,...,¢+ 1}. By construction we have: V;* N V;* = () for all 4, j €
{1,2,...,t +1},i # j. Consequently (V;*)ic{1,2,....t+1} is a partition of V*.
The hypergraph H* = (V* E*) can be seen as a dual of a hypergraph H =
(V,E). Because V* ~ E <= UZ V¥ ~ UL Ei, K = (Ei)icqio,. 111y is a
partition of E, where E; is a subset of E, dual of V;*. Let us define for A C E

IV*

It is easy to verify that e is an erosion and § a dilation from (P(E),C) into
(P(P(E)), ©)



Now, let 0 be a dilation on V*; the relation z} ~s y; <= d(x}) = d(y;) is an
equivalence relation on V*. We then denote by V*; the equivalence classes:
V*) ~s={V*5i € {1,2,...t}}.
Let us now define p; = ||“//_*j||. We then have 0 < p; <1 foralli € {1,2,...t} and
> :pi = 1, thereby (pi)ic(1,2,....} is a discrete probability distribution.

This proposition is also interesting to establish links with rough sets. The defi-
nition of lower and upper approximations in terms of erosion and dilation, and
the equivalence with rough sets have been developed in [2[3]. This result ex-
tends these notions to the case of hypergraphs, and £(A4) and 6(A) exhibited
in the proof are then lower and upper approximations of A in a rough space
(this is close to the approach proposed in [14]). Moreover, it adds a link with
probabilities.

Corollary 1. Any discrete distribution of probability on V* gives rise to a rough
space on E.

Conversely any rough space on E gives rise to a discrete distribution of proba-
bility on V*.

6 Hypergraph Similarity Based on Dilations

As an example of using mathematical morphology on hypergraphs, we briefly
propose a notion of similarity between hypergraphs, based on dilations. It is
well known that hypergraphs can be used to model several types of networks,
such as biological, computer science, semantic networks [9[18[19]. One of the
most important tasks is to compare two networks. This comparison can be done
using isomorphisms. However, there are two main drawbacks related to the use
of isomorphisms:

— the first one concerns tractability, since there is no efficient algorithm to
produce an isomorphism between two hypergraphs;

— the second one is that the isomorphism assumption is too rigid, and does
not allow considering two hypergraphs as similar if they are not strictly
isomorphic.

So we propose to define a new type of “comparator” between hypergraphs, based
on dilation, which allows to introduce some “tolerance” for comparing sets of
hyperedges, defining a similarity as a degree of overlap between dilated sets of
hyperedges.
For any hypergraph (V, E), we define a dilation on the hyperedges E, for

example as:

P(E) — P(E)

A +— A ={ecE;V(A)Nne+#D}

In the sequel we suppose that if §(A) = () then A = ) (this typically holds when
J is extensive).



Let H! = (V,E') and H? = (V,E?) be two hypergraphs without empty
hyperedge and dz1 and d 2 dilations defined on the set of hyperedges of H' and
H?, respectively. We define a similarity function s by:

P(EY) x P(E*)\ (0,0) — R*

g — .0 Bt
As an illustration, let us consider again the example in Figure[I] with the defini-
tion of dilation as in Equation[§] We have quite high similarity values, which fit
with the intuition, although the hypergaphs are not isomorphic: s(eq,e;) =
1 €{1,2,3}; s(ea,€;) = %, 1 €{1,2,3}; s(es,e;) = %, 1€ {1,2,3}; s(eq,€;) =
1 € {1,2,3}; s({e1,ea}; B) = s({e1,e3}; B) = s({e1,es}; B) = s({ea,e3}; B)
s({e2,ea}; B) = s({es,es}; B) = 2, for B C Ey, B # 0; s({e1,e2,e3}; B) =
s({ea, e3,e4}; B) = s({e1,es,e4}; B) = s({e1, €2, €4}; B) = 2, for B C Ey, B # (;
and s({e1, €2, €3,e4}; B) = 2, for BC Ey, B # 0.

[SM]] SN [N

Proposition 11. Let H! = (V, E') and H? = (V, E?) be two hypergraphs with-
out empty hyperedge, and §g1 and dg= extensive dilations (i.e. for each hyperegde
e, we have e € dgi(e)) defined on E' and E*. We have the following properties:

a) V(e e;) € E' x E?, s((ei,ej)) =0 <= E'NE?=(;
b) V(e e;) € B x E?, s((e;,e5)) =1 = E' = E?,
¢) s is symmetrical.

Proof. a) ¥(e;,e;) € E' x E?, s((e;,¢e5)) =0 <= V(es e;) € B x E?, dpi(e;) N
5E2(€j) =0 = V(Ei,ej') € B x Ez, e; ¢ 5E2(6j) and e; & dp1(e;) hence
E'N E? = 0. Indeed, since dg2 is extensive, e; € dp2(e;) and Ue, 652 (e;) = E?,
and therefore having e; & dp2(e;) for all e; implies e; ¢ E?. Similarly e; ¢ E'.
Conversely, if E? N E? # (), then P(E') N P(E?) # () and any §g1(A) is disjoint
from any dg2(B).

b) V(ei,ej) € Bl x Ez, s((ei,ej)) =1« V(ei,ej) € Bl x E25E1(61') = 5E2(€j).
Since § is extensive, Ve; € E',e; € dgi(e;), hence e; € dp2(e;) and therefore
e; € E%. Similarly Ve; € E? e; € E'. Therefore E' = E?.

¢) The symmetry of s is straightforward.

7 Conclusion

In this article we introduced mathematical morphology on hypergraphs. To show
the relevance of this relationship between these two domains, we have exhibited a
notion of duality in mathematical morphology which corresponds to the concept
of duality which is important in the theory of hypergraphs. Other properties
of hypergraphs can undoubtedly be expressed using morphological operators
(probably such as transversal of a subset of hyperedges of a hypergraph, match-
ing contained in a subset of vertices of a hypergraph). Future work will aim on
the one hand at exploring such properties, and on the other hand at studying in
more depth the concept of similarity.
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