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CYLINDRICAL CYCLIC ACOUSTIC IMAGING WITH A BAYESIAN APPROACH
FOR RECONSTRUCTION OF CYCLOSTATIONARY SOURCES

Abstract

Standard acoustic imaging techniques, such as loeamnfy or near-field acoustical holography, are neidely
used in engineering contexts. However, large ar@ysnicrophones are sometimes required to have @ go
resolution. Besides new challenges arise, partiguia the field of non-stationary sources, whicked to be
identified and solved.

Cyclostationary sound sources, a specific kind of-gstationary signals, are characterized by sitist
properties evolving periodically in time. In prasithe first-order statistical properties contagme periodic
components while the second orders may be randonth wa periodic flow of energy.
The present work tackles the acoustic imaging ofastationary sources with a scanning microphoaewithout
any array. Cylindrical surfaces, adapted to stahdatating machines, are considered. The difficuitly
reconstructing non-stationary acoustic sources frdiscrete measurements is then alleviated suingr the
cyclostationary properties. A cyclic sound fielchisnce extracted that can show how sources argiegoh space
and time.

Finally, a Bayesian formulation, gathering both sibgl and probabilistic information on the invemeblem, is
used to back-propagate the sound over the radistirfgce.

1. Introduction
a. Objective

Considering the development of a rotating machieduction of noise radiation is more and more actap
concern. This requires the identification and lizedion of sources of noise.

A useful framework has been developed for signafeing from rotating machine (see [1]) that can lmleted
as

X(t) = p(t) +n(t) &

with p(t) a deterministic part which can be correlated witbyclic frame event anEI](t) a random part (for
example friction, etc...). The context of concernthis paper is a product development not a faiamalysis, thus
the periodic part is assumed to be dominant condparéhe random part. The goal is to localize teeqalic sources
radiating noise in space and time (what the authbrcyclic events”).

In this context acoustical imaging is an efficieanl to localize sources of vibration from pressomeasurement.
There is a lot of methods which are unified by d&la¢hor of [3] with the Bayesian formalism. For arr geometry,
the theory is strongly explained and the efficieti@as been well observed [4]. As far as the autkamw this
process has not been built for a cylindrical shalpe;following article will focus on this point. Béers can find a
specific case corresponding to the Statistical @ged Near-Field Acoustic in cylindrical coordinaite [6].
Usually, specificity of cyclostationary signals et taken into account and this entails informatloss. To
overcome this problem, the Authors in [7] have deved the Near-field acoustic holography for cytatisnary
sound field and the source reconstruction is ptesein the frequency domain.

The Authors will use another strategy taking adagatof filtering the periodical part of the signidde Fourier
transform can be applied on this part of the sigagply the image processing in the frequency doraad then use
inverse Fourier transform to come back in cycledidomain. This leads to reconstruction of theicyswurce field
in space and cyclic time. Figure 1 illustratesghabal procedure.
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FIGURE 1: synopsis of the procedure
b. Cyclostationary: definition and properties

This paragraph is a very short introduction to Ogthtionarity and its properties. For more detaitsthe
cyclostationary analysis the reader can refer to L [ [2].
Cyclostationarity gives a theorical framework t@gesses whose statistical properties are peridgicatying in
time. By definition it embodies a class of non-staéry stochastic processes, with stationary artdroénistic
periodic processes as specific cases.
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FIGURE 2: Typology of stochastic processes

When defined on the first order it means that igead contains some periodic component then CSlirefiér to
the deterministic part of the cyclostationary psx;eon the second order it means the signal magrimom while
energy is flowing periodically with time.

A formal definition can be done in terms of the esfation operator. A stochastic proc@&,) , this process is
said to be cyclostationary of order i and of period any of its i-th order statistics is a periodunction of time
with main period T. In this work only the first-adcylostationarity will be considered. Condending expression

with expected value giveg,lx (t) = E{X(t)} exists and is periodic of period T, i.e.

m(t) =m(t+T) )
In practice the only way to estimate the expecteldiesis to perform a time synchronous averagind e
cycloergodicity assumption.

A stochastic procesé,(t) , is said to be cycloergodic of order 1 and pefloi its time-synchronous average is

deterministic, i.e.
K

() = lim g Z XKD = o

With the assumption of cycloergodicity, we have

E{x(V)} = (x(V), @

Equation (3) means that the time synchronous aedeagn estimator of the expected value.
Figure below shows three realizations of a cycltastary process (left part) and the correspondimg t
synchronous average (right part), reader can seehtb average reveal periodic phenomena.
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FIGURE 3: illustration of the time synchronous average arketed value construction

This points out the utility of the cyclostationdrgmework: since by construction the expected vauygeriodic,
it makes possible to apply in a second step alptheerful tools developed for stationary signalstsas the Fourier
transform and spectral analysis.

Initially developed for communication signals, thegpproach seems well adapted for mechanical rgtatin
machines. Due to the kinematics of machines, theltiag acoustic and vibration signals are perio#dith respect

to some angle of rotation and are therefore cyatmmary with respect to angle.
For steady-state operating conditions, angle and tan be reversed and signals are cyclostatioitlar@spect to
time as well.

The extraction of the CS1 part of the signal wil the first step of the procedure. Those periomjonads will be
used for cyclic sound imaging.

c. Bayesian approach to the inverse acoustic problem: optimal basis and regularization

Localization of acoustic sources using discretesuesaments of the acoustic field is a recurrent sitoinverse
problem. Many approaches exist, such as Beamformiepr-field Acoustic Holography, Inverse Boundary
Element Method, Helmholtz Equation Least-Squarés,.€hoosing the right technique depends on the stimou
source shape, the array geometry and the frequemge of analysis. However, most of the methodsesha
common process to solve the inverse problem:

1) the source field is reconstructed as linear doatton of spatial basis functions,

2) the coefficients of the basis function are cotagdwso as to match the measurement field at theoptiones
positions.

Let s be a radiating source in the acoustic domain ahdr array oM microphones measure the acoustic field. The
Green functionG between the source and the measurement arraypigosed to be known analytically or
numerically ¢ refers to the noise of measurement).

p= J' s(r)G(r)dr +n

r . (5)
The aim of the inverse problem is to reconstruetdbntinuous sound fiek{r) from theM discrete measurements.
The common formalism to get the reconstructed so8(t) can be expressed as:

X
8 =2.ca)
k=1 . (6)
where the unknowns of the problem are the basistifums ¢, , their coefficientsC and thex dimension of the

basis.
The following will give a brief theorical backgrodrof the Bayesian approach used to solve for thekaowns --
readers should refer to [3] for more details.

Bayesian inference is used to solve the problerodmgidering the unknown quantities as random viasathat

produce a random source field and by seeking théapitity distribution [S(C, o\ p] conditioned to the
observation of the measurements in the vegtdrhis is the so-called posterior probability distition, which may

be viewed as a cost function whose maximizatioh ledd to the optimal parametefsand 42; that best explain the
measured data.



By using the Baye’s rule:

[S(C, o)\ p] - [p \ S(C’[T:ESII[S(C’ ¢)] , @

Where [p\S(C, @] is the likelihood function, reflecting the probiilyi of observingp given the source field
s(c,¢), [S(C, (0)] is the a priori probability distribution of thewwoe before the data are measured, and

[P] is the evidence.

It is important to notice that with this formulatiothe inverse problem (inferring s(@) from p) has been turned in
its direct problem (inferring from s(c,®)).

From equation (4),p \ S(C, ¢) has the same probability distribution as the messent noisa (n is the vector of

noise measurement for the array). According to déetral limit theorem applied to the Fourier tramsf, the
measurement noise in frequency domain is a ciradarplex Gaussian random variablgroducing the covariance

matrix E{nn*}: B°Q,, where Q,is define as spatially white noise with normalizatitraCdQN} =M so

that the quantity,B2 reflects the mean energy of the noise.

The prior distribution[s(c, qo)] results from any knowledge the experimenter hashensource field before the
experiment. A prior can be a spatial informatioroatbthe radiating regions where the noise is mik&yl to
originate. This information is introduced by an éafure function ‘Ué(r) that takes positive or zero values on the
source surface. This leads to the following strrefor the spatial covariance function of the ramdsource field:

E{sr)s(r') }= aa2(n)a(r -r). ®)
j ag(nds(r) =1

with normalizatior” , so thatd  reflects the mean energy of the source field.
With the expression of the probability distributiorthe inverse problem corresponds to the maximizabf

[S(C, o/ p] with respect toc, ¢ and two hyperparamete®€ and3” .
Hereafter, only the main results of the algorithra eeported. We define the singular value decontiposbf the

propagation operatdg through the aperture function and whitened bydbeariance matrix of the nois@N as
follows:

M
2 -2 _ *
os(NG(r) Qg = Z/‘k‘//k (MU,
k=1 : )
where G is the vector containing the green funstiisom the source plane to each microphone of rtraa/aﬂk are

non-negative scalarﬁ#k(r) eigen-functions over the surface of the sourcd,ldpeigen-vector such that:
A=A, 224,20

(10)

[ (N (nodds(r) = 4,
r : (11)
U, =4, ' (12)

It is proved in [6] that the optimal basis functiosought in (5) are the eigen-function of (8), g (r) =, (r);
therefore
one hax=M with functions that are orthogonal through therape function Jé(r) according to the definition in

(10). The optimal coefficien€, sought in (5) are found as

A .
Cy :—/] 5 :_,72 UkQNlIZP
k ; (13)



2
wherel72 = — represents the noise-to-signal ratio and playsieiairrole for regularizing the problem.
a

To sum up results, the reconstructed source fieldtimately given by (13):
4O oA
a — *~-1/2
S(r) = Z/]Z—kZI/’k (NU, QP
k=1 7Tk +/7 (14)

In the present work, the reconstructed sourceds281 part of the sound field. So the vegan (13) contains the
CS1 part of théM signals measured by the microphones of the array.

2. Cylindrical cyclic acoustic imaging theory
a. Scanning measurement for CSL cyclostationary sound field construction

The shape of the acoustic source is a cylindeadifisr,. The hologram surface will also be a cylinderaifius
h>rs.

FIGURE 4: continuous source surface and discrete positiothEomicrophones of the virtual array

The goal of the procedure is to measure and rewaristhe cyclic part of the sound field by measgrihe
pressure on the hologram surface by scanning @aviarray of M microphones, from M sequential measents.

The scanned signals are not temporal synchronetigyyconstruction each post processed CS1 sigmddased
with a common angular event; therefore the M Cighas are synchronous and can be assembled iirtadlv
array” of microphones.

b. Bayesian approach to sound source reconstruction on a cylindrical shape

The expression for the radiation of a cylindelaisein from [5]
m=oo

1 ¢ imé ik,z
Pr.0.2)= 3, - Pulrk)e™e" dk, "
e : 15

where Pm(r'kz) is the cylindrical wave number spectrumpd't‘ (r’H’ Z) , themtth circumferential component of
the sound field. The wavenumber spectrum at radten also be expressed in terms of the wave nusgsstrum
of the sound field on a cylindrical source of radiy

Pm(r,kz) :M

Hr].;](krrs) Pm(rs’ kz)

, (16)
H 1
where " Mis themth-order Hankel function and

. - JKZ = K2, forlk| 2 |k,|
' \/W for|k| <|k,| (17)




@

with k= C | & the angular frequencyt the celerityand the convention for time dependence fact@ i¥*
Now introducing the Euler’s equation, ie,

1 op(r)
ip,w or (18)

() =

With U, the radial velocity ancj[JO air mass density.

one obtains the modified cylindrical wave propagato

—1 1 . .
oy m (r,6,2) = I—krwe'mge'kzz
z pOa) Hm(krrs) (19)

and finally the propagator,

1S5
G=__3 [ Pk,
T2 . (20)
In the computer implementation those infinite surtiamehave to be sampled and truncated.

Note that in theory this propagator is calculated dn infinite cylinder and is not valid for a fieicylinder.
However, the Baye’s formalism allows introductioha prior in the form of finite support-set apegufunction
along the z axis that forces a finite cylinderghei
The narrower the aperture function and the moraliped the prior; how the optimal spatial basis nges
accordingly is shown in the following figure.
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FIGURE 5: Evolution of the basis function for source recomstiion with prior on the source location along Zsax

Figure 5 shows that the optimal basis strongly ddpen the choice of the aperture function. Manraatice that
the spatial basis corresponding to a uniform aperfunction (linel in figure 5) is the specific easse for SONAH
in cylindrical coordinates [6].

3. Numerical smulation
a. Sourcesignal smulation

The simulation tries to represent the behavior @ftating machine; its housing has a cylindricahand is the
rotating part of the machine. The rotation is du&ihematics events which cause internal forceshEgclic event
produces a source with its localization and fronesternal point of view this corresponds to moviogirces within
the cycle.

Consider a cylinder in motion with a constant riotatspeed. Two acoustic sources rotate relativelyhts
cylinder. For the simulation the CS1 sound fieldcansidered only; accordingly the source variatiormade
periodic with one rotation but frequency changehimitthis period. The speed is 120rpm and Fs = 2(ddmpling
frequency);
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FIGURE 6: Evolution of sources with respect to time and asded instantaneous frequency. Signals are shown
over 1 cycle, T~=0,5s.

From the fix point of view of a sensor on the arnanan see two acoustics sources following a cirduégectory as
shows the figure 7.

Acoustic sources S1
S2 following the
cylinder motion

FIGURE 7: geometry used in simulations
b. Source reconstruction by Bayesian approach
The Eulerian point of view isised to obtain a clearer idea of the source localization at one particular

instant. Gathering successive pictures give a movie of the sourcéom&tFigure 8 presents two pictures taken for
sample 100 and sample 900.
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FIGURE 8: comparison of simulated source field and the rettooted source field for two specific time in theke

Taken the Lagrangian point of view we see the amuof the time varying reconstruction of the pascd-igure
9 shows the evolution of the particle velocitytamé sensors stuck to each source during motion.
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FIGURE 9: reconstruction of each source in time
4, Conclusion

Present work gives a framework for the analysis obtating machine with housing as rotating pahtiswill
take advantage of cyclostationary properties ohaliggenerated by rotating machine to localize tbeustical
sources in space and time.

A simulation demonstrates the ability to recondtthe sound field over a cylindrical surface frorpexiodic field
measured in cylindrical surface surrounding thecau

This simulation has to be completed with a testresd source to evaluate the global process: froamrsag
measurement to sound field reconstruction. Paditulthe influence of the phase error due to thgukar
resampling process, see [8]. Reader can see ith§®] measurement done by step and synchronized grgcise
angular event enable to find an accurate sourcatitotin a gear power transmission. Author's woik e to
follow the same way with a “Cylindrical robot” farcylindrical source.
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