
HAL Id: hal-01021412
https://hal.science/hal-01021412

Submitted on 9 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficiently Depth-First Minimal Pattern Mining
Arnaud Soulet, François Rioult

To cite this version:
Arnaud Soulet, François Rioult. Efficiently Depth-First Minimal Pattern Mining. Advances in Knowl-
edge Discovery and Data Mining, 18th Pacific-Asia Conference, PAKDD 2014, 2014, Tainan, Taiwan.
pp 28-39, �10.1007/978-3-319-06608-0_3�. �hal-01021412�

https://hal.science/hal-01021412
https://hal.archives-ouvertes.fr

Efficiently Depth-First Minimal Pattern Mining

Arnaud Soulet1 and François Rioult2

1Université Franois Rabelais Tours, LI
3 place Jean Jaurès
F-41029 Blois France

arnaud.soulet@univ-tours.fr

2Université de Caen, GREYC
Campus Côte de Nacre

F-14032 Caen Cédex France
francois.rioult@unicaen.fr

Abstract. Condensed representations have been studied extensively for
15 years. In particular, the maximal patterns of the equivalence classes
have received much attention with very general proposals. In contrast,
the minimal patterns remained in the shadows in particular because of
their difficult extraction. In this paper, we present a generic framework
for minimal patterns mining by introducing the concept of minimizable
set system. This framework addresses various languages such as itemsets
or strings, and at the same time, different metrics such as frequency. For
instance, the free and the essential patterns are naturally handled by
our approach, just as the minimal strings. Then, for any minimizable set
system, we introduce a fast minimality check that is easy to incorporate
in a depth-first search algorithm for mining the minimal patterns. We
demonstrate that it is polynomial-delay and polynomial-space. Experi-
ments on traditional benchmarks complete our study.

1 Introduction

Minimality is an essential concept of pattern mining. Given a function f and
a language L, a minimal pattern X is one of the smallest pattern with respect
to the set inclusion in L satisfying the property f(X). Interestingly, the whole
set of minimal patterns forms a condensed representation of L adequate to f : it
is possible to retrieve f(Y) for any pattern of Y in L. Typically, the set of free
itemsets [1] (also called generators or key itemsets [2]) is a condensed representa-
tion of all itemsets (here, f and L are respectively the frequency and the itemset
language). Of course, it is often more efficient to extract minimal patterns rather
than all patterns because they are less numerous. In addition, minimal patterns
have a lot of useful applications including higher KDD tasks: producing the
most relevant association rules [3], building classifiers [4] or generating minimal
traversals [5]. Minimality has been studied in the case of different functions (like
frequency [6] and condensable functions [7]) and different languages (e.g., item-
sets [1] and sequences [8]). Although the minimality has obvious advantages [9],
very few studies are related to the minimality while maximality (i.e., closed pat-
terns) has been widely studied. In particular, to the best of our knowledge, there
is no framework as general as those proposed for maximality [10].

We think that a current major drawback of minimal patterns lies in their inef-
ficient extraction. This low efficiency comes mainly from the fact that most exist-
ing algorithms use a levelwise approach [1,7,11] (i.e., breadth-first search/generate

and test method). As they store all candidates in memory during the generation
phase, the extraction may fail due to memory lack. To tackle this memory pit-
fall, it seems preferable to adopt a depth-first traversal which often consumes less
memory and is still very fast. However, check whether the minimality is satisfied
or not is very difficult in a depth-first traversal. In the case of frequency with
itemsets, the best way for evaluating the minimality for a pattern (saying abc) is
to compare its frequency with that of all its direct subsets (here, ab, ac and bc).
But, when the pattern abc is achieved by a depth-first traversal, only frequen-
cies of a and ab have previously been calculated. As the frequency of ac and bc
are unknown, it is impossible to check whether the frequency of abc is strictly
less than that of ac and bc. To cope with this problem, [11,12] have adopted
a different traversal with reordered items. For instance, when the itemset abc
is reached by this new traversal, c, b, bc, a, ac and bc were previously scanned
and their frequency are known for checking whether abc is minimal. Unfortu-
nately, such a method requires to store all the patterns in memory (here, c, b, bc
and so on) using a trie [11] or an hash table [12]. For this reason, existing DFS
proposals [11,12] do not solve the low memory consumption issue as expected.

Contributions. The main goal of this paper is to present a generic and ef-
ficient framework for minimal pattern mining by providing a depth-first search
algorithm. We introduce the notion of minimizable set system which is at the
core of the definition of this framework. This latter covers a broad spectrum of
minimal patterns including all the languages and measures investigated in [7,10].
Fast minimality checking in a depth-first traversal is achieved thanks to the no-
tion of critical objects which depends on the minimizable set system. Based on
this new technique, we propose the DeFMe algorithm. It mines the minimal
patterns for any minimizable set system using a depth-first search algorithm. To
the best of our knowledge, this is the first algorithm that enumerates minimal
patterns in polynomial delay and in linear space with respect to the dataset.

The outline of this paper is as follows. In Section 2, we propose our generic
framework for minimal pattern mining based on set systems. We introduce our
fast minimality checking method in Section 3 and we indicate how to use it
by sketching the DeFMe algorithm. Section 4 provides experimental results. In
Section 5, we discuss some related work in light of our framework.

2 Minimizable Set System Framework

2.1 Basic Definitions

A set system (F , E) is a collection F of subsets of a ground set E (i.e. F is a
subset of the power set of E). A member of F is called a feasible set. A strongly
accessible set system (F , E) is a set system where for every feasible sets X, Y
satisfying X ⊂ Y , there is an element e ∈ Y \X such that Xe ∈ F1. Obviously,
itemsets fits this framework with the set system (2I , I) where I is the set of

1 We use the notation Xe instead of X ∪ {e}.

items. (2I , I) is even strongly accessible. But the notion of set system allows con-
sidering more sophisticated languages. For instance, it is easy to build a family
set FS denoting the collection of substrings of S = abracadabra by encoding each
substring sk+1sk+2 . . . sk+n by a set {(sk+1, 1), (sk+2, 2), . . . , (sk+n, n)}. The set
sytem (FS , ES =

⋃
FS) is also strongly accessible. The set system formalism has

already been used to describe pattern mining problems (see for instance [10]).
Intuitively, a pattern always describes a set of objects. This set of objects is

obtained from the pattern by means of a cover operator formalized as follows:

Definition 1 (Cover operator). Given a set of objects O, a cover operator
cov : 2E → 2O is a function satisfying cov(X ∪ Y) = cov(X) ∩ cov(Y) for every
X ∈ 2E and Y ∈ 2E.

This definition indicates that the coverage of the union of two patterns is
exactly the intersection of their two covers. For itemsets, a natural cover operator
is the extensive function of an itemset X that returns the set of tuple identifiers
supported by X: covI(X) = {o ∈ O | X ⊆ o}. But, in general, the cover is
not the final aim: the cardinality of covI(X) corresponds to the frequency of
X. In the context of strings, the index list of a string X also define a cover
operator: covS(X) = {i | ∀(sj , j) ∈ X, (sj , j + i) ∈ S}. Continuing our example
with the string S = abracadabra, it is not difficult to compute the index lists
covS({(a, 1)}) = {0, 3, 5, 7, 10} and covS({(b, 2)}) = {0, 7} and then, to verify
covS({(a, 1), (b, 2)}) = covS({(a, 1)}) ∩ covS({(b, 2)}) = {0, 7}.

For some languages, the same pattern is described by several distinct sets
and then it is necessary to have a canonical form. For example, consider the
set {(a, 1), (b, 2), (r, 3)} corresponding to the string abr. Its suffix {(b, 2), (r, 3)}
encodes the same string br as {(b, 1), (r, 2)}. The latter is the canonical form
of the string br. To retrieve the canonical form of a pattern, we introduce the
notion of canonical operator:

Definition 2 (Canonical operator). Given two set systems (F , E) and (G, E),
a canonical operator φ : F∪G → F is a function satisfying (i) X ⊂ Y ⇒ φ(X) ⊂
φ(Y) and (ii) X ∈ F ⇒ φ(X) = X for all sets X,Y ∈ G.

In this definition, the property (i) ensures us that the canonical forms of two
comparable sets with respect to the inclusion remain comparable. The property
(ii) means that the set system (F , E) includes all canonical forms. Continuing
our example about strings, it is not difficult to see that φS : {(sk, k), (sk+1, k +
1), . . . , (sk+n, n)} 7→ {(sk, 1), (sk+1, 2), . . . , (sk+n, n−k+1)} satisfies the two de-
sired properties (i) and (ii). For instance, φS({(b, 2), (r, 3)}) returns the canonical
form of the string {(b, 2), (r, 3)} which is {(b, 1), (r, 2)}.

2.2 Minimizable Set System

Rather than considering an entire set system, it is wise to select a smaller part
that provides the same information (w.r.t. a cover operator). For this, it is neces-
sary that this set system plus the cover operator form a minimizable set system:

Definition 3 (Minimizable set system). A minimizable set system is a tuple
〈(F , E),G, cov, φ〉 where:

– (F , E) is a finite, strongly accessible set system. A feasible set in F is called
a pattern.

– (G, E) is a finite, strongly accessible set system satisfying for every feasible
set X,Y ∈ F such that X ⊆ Y and element e ∈ E, X\{e} ∈ G ⇒ Y \{e} ∈ G.
A feasible set in G is called a generalization.

– cov : 2E → 2O is a cover operator.
– φ : F ∪G → F is a canonical operator such that for every feasible set X ∈ G,

it implies cov(φ(X)) = cov(X).

Let us now illustrate the role of G compared to F in the case of strings. In fact,
GS gathers all the suffixes of any pattern of FS . Typically, {(b, 2), (r, 3)} ∈ GS is
a generalization of {(a, 1), (b, 2), (r, 3)} ∈ FS . As said above, {(b, 2), (r, 3)} has
an equivalent form in FS : φS({(b, 2), (r, 3)}) = {(b, 1), (r, 2)}. By convention, we
extend the definition of covS to GS by considering that covS(φS(X)) = covS(X).
In addition, it is not difficult to see that GS satisfies the desired property with
respect to FS : for every feasible set X,Y ∈ FS such that X ⊆ Y and element
e ∈ ES , X \ {e} ∈ GS ⇒ Y \ {e} ∈ GS . Indeed, if X \ {e} is a suffix of X,
it means that e is the first letter. If we consider a specialization of X and we
again remove the first letter, we also obtain a suffix belonging to GS . Therefore,
〈(FS , ES),GS , covS , φS〉 is a minimizable set system.

Obviously, a minimizable set system can be reduced to a system of smaller
cardinality of which the patterns are called the minimal patterns:

Definition 4 (Minimal pattern). A pattern X is minimal for
〈(F , E),G, cov, φ〉 iff X ∈ F and for every generalization Y ∈ G such
that Y ⊂ X, cov(Y) 6= cov(X). M(S) denotes the set of all minimal patterns.

Definition 4 means that a pattern is minimal whenever its cover differs from
that of any generalization. For example, for the cover operator covS , the minimal
patterns have a strictly smaller cover than their generalizations. The string ab is
not minimal due to its suffix b because covS({(b, 2))}) = covS({(a, 1), (b, 2)}) =
{0, 7}. For our running example, the whole collection of minimal strings is
M(SS) = {a, b, r, c, d, ca, ra, da}.

Given a minimizable set system S = 〈(F , E),G, cov, φ〉, the minimal
pattern mining problem consists in enumerating all the minimal pat-
terns for S.

3 Enumerating the Minimal Patterns

This section aims at effectively mining all the minimal patterns in a depth-first
search manner (Section 3.3). To do this, we rely on two key ideas: the pruning
of the search space (Section 3.1) and the fast minimality checking (Section 3.2).

Before, it is important to recall that the minimal patterns are sufficient to
induce the cover of any pattern. From now, we consider a minimizable set system

S = 〈(F , E),G, cov, φ〉. The minimal patterns M(S) is a lossless representation
of all patterns of F in the sense we can find the cover of any pattern.

Theorem 1 (Condensed representation). The set of minimal patterns is a
concise representation of F adequate to cov: for any pattern X ∈ F , there exists
Y ⊆ X such that φ(Y) ∈ M(S) and cov(φ(Y)) = cov(X).

Theorem 1 means that M(S) is really a condensed representation of S be-
cause the minimal pattern mining enables us to infer the cover of any pattern
in S. For instance, the cover of the non-minimal pattern {(a, 1), (b, 2)} equals
to that of the minimal pattern φ({(b, 2)}) = {(b, 1)}: covS({(a, 1), (b, 2)}) =
covS({(b, 1)}) = {0, 7}. It is preferable to extract M(S) instead of S because its
size is lower (and, in general, much lower) than the total number of patterns.

3.1 Search Space Pruning

The first problem we face is fairly classical. Given a minimizable set system S =
〈(F , E),G, cov, φ〉, the number of patterns |F| is huge in general (in the worst
case, it reaches 2|E| patterns). So, it is absolutely necessary not to completely
scan the search space for focusing on the minimal patterns. Effective techniques
can be used to prune the search space due to the downward closure of M(S):

Theorem 2 (Independence system). If a pattern X is minimal for S, then
any pattern Y ∈ F satisfying Y ⊆ X is also minimal for S.

The proof of this theorem strongly relies on a key lemma saying that a non-
minimal pattern has a direct generalization having the same cover (proofs are
omitted due to lack of space):

Lemma 1. If X is not mininal, there exists e ∈ X such that X \ {e} ∈ G and
cov(X) = cov(X \ {e}).

For instance, as the string da is minimal, the substrings d and a are also
minimal. More interestingly, as ab is not minimal, the string abr is not minimal.
It means that the string ab is a cut-off point in the search space. In practice, anti-
monotone pruning is recognized as a very powerful tool whatever the traversal
of the search space (level by level or in depth).

3.2 Fast Minimality Checking

The main difficulty in extracting the minimal patterns is to test whether a
pattern is minimal or not. As we mentioned earlier, this is particularly difficult in
a depth-first traversal because all subsets have not yet been enumerated. Indeed,
depth-first approaches only have access to the first parent branch contrary to
levelwise approaches. To overcome this difficulty, we introduce the concept of
critical objects inspired from critical edges in case of minimal traversals [13].
Intuitively, the critical objects of an element e for a pattern X are objects that
are not covered by X due to the element e. We now give a formal definition of
the critical objects derived from any cover operator:

Definition 5 (Critical objects). For a pattern X, the critical objects of an
element e ∈ X, denoted by ĉov(X, e) is the set of objects that belongs to the cover
of X without e and not to the cover of e: ĉov(X, e) = cov(X \ e) \ cov(e).

Let us illustrate the critical objects with our running example. For
{(a, 1), (b, 2)}, the critical objects ĉov(ab, a) of the element (a, 1) correspond to
∅ (= {0, 7} \ {0, 3, 5, 7, 10}). It means that the addition of a to b has no impact
on the cover of ab. At the opposite, for the same pattern, the critical objects of
(b, 2) are {3, 5, 10} (= {0, 3, 5, 7, 10} \ {0, 7}). It is due to the element b that ab
does not cover the objects {3, 5, 10}.

The critical objects are central in our proposition for the following reasons: 1)
the critical objects easily characterize the minimal patterns; and 2) the critical
objects can efficiently be computed in a depth-first search algorithm.

Minimal pattern characterization The converse of Lemma 1 says that a
pattern is minimal if its cover differs from that of its generalization. We can
reformulate this definition thanks to the notion of critical objects as follows:

Property 1 (Minimality). X ∈ F is minimal if ∀e ∈ X such that X \ e ∈ G,
ĉov(X, e) 6= ∅.

Typically, as b is a generalization of the string ab and at the same time,
ĉov(ab, a) is empty, ab is not minimal. Property 1 means that checking whether
a candidate X is minimal only requires to know the critical objects of all the
elements in X. Unlike the usual definition, no information is required on the
subsets. Therefore, the critical objects allow us to design a depth-first algorithm
if (and only if) computing the critical objects does not also require information
on the subsets.

Efficiently critical object computation In a depth-first traversal, we want
to update the critical objects of an element e for the pattern X when a new
element e′ is added to X. In such case, we now show that the critical objects can
efficiently be computed by intersecting the old set of critical objects ĉov(X, e)
with the cover of the new element e′:

Property 2. The following equality holds for any pattern X ∈ F and any two
elements e, e′ ∈ E: ĉov(Xe′, e) = ĉov(X, e) ∩ cov(e′).

For instance, Definition 5 gives ĉovS(a, a) = {1, 2, 4, 6, 8, 9}. As covS(b) =
{0, 7}, we obtain that ĉovS(ab, a) = ĉovS(a, a) ∩ covS(b) = {1, 2, 4, 6, 8, 9} ∩
{0, 7} = ∅. Interestingly, Property 2 allows us to compute the critical objects
of any element included in a pattern X having information on a single branch.
This is an ideal situation for a depth-first search algorithm.

3.3 Algorithm DeFMe

The algorithm DeFMe takes as inputs the current pattern and the current tail
(the list of the remaining items to be checked) and it returns all the minimal
patterns containing X (based on tail). More precisely, Line 1 checks whether

X is minimal or not. If X is minimal, it is output (Line 2). Lines 3-14 explores
the subtree containing X based on the tail. For each element e where Xe is a
pattern of F (Line 4) (Property 1), the branch is built with all the necessary
information. Line 7 updates the cover and Lines 8-11 updates the critical objects
using Property 2. Finally, the function DeFMe is recursively called at Line 12
with the updated tail (Line 5).

Algorithm 1 DeFMe(X, tail)

Input: X is a pattern, tail is the set of the remaining items to be used in order to
generate the candidates. Initial values: X = ∅, tail = E.

Output: polynomially incrementally outputs the minimal patterns.
1: if ∀e ∈ X, ĉov(X, e) 6= ∅ then

2: print X

3: for all e ∈ tail do

4: if Xe ∈ F then

5: tail := tail \ {e}
6: Y := Xe

7: cov(Y) := cov(X) ∩ cov(e)
8: ĉov(Y, e) := cov(X) \ cov(e)
9: for all e′ ∈ X do

10: ĉov(Y, e′) := ĉov(X, e′) ∩ cov(e)
11: end for

12: DeFMe(Y, tail)
13: end if

14: end for

15: end if

Theorems 3 and 4 demonstrate that the algorithm DeFMe has an efficient
behavior both in space and time. This efficiency mainly stems from the inexpen-
sive handling of covers/critical objects as explained by the following property:

Property 3. The following inequality holds for any pattern X ∈ F :

|cov(X)|+
∑

e∈X

|ĉov(X, e)| ≤ |cov(∅)|

Property 3 means that for a pattern, the storage of its cover plus that of all the
critical objects is upper bounded by the number of objects (i.e., |cov(∅)|). Thus,
it is straightforward to deduce the memory space required by the algorithm:

Theorem 3 (Polynomial-space complexity). M(S) is enumerable in
O(|cov(∅)| ×m) space where m is the maximal size of a feasible set in F .

In practice, the used memory space is very limited because m is small. In
addition, the amount of time between each output pattern is polynomial:

Theorem 4 (Polynomial-delay complexity). M(S) is enumerable in
O(|E|2 × |cov(∅)|) time per minimal pattern.

It is not difficult to see that between two output patterns, DeFMe requires
a polynomial number of operations assuming that the membership oracle is
computable in polytime (Line 4). Indeed, the computation of the cover and that
of the critical objects (Lines 7-11) is linear with the number of objects due to
Property 3; the loop in Line 3 does not exceed |E| iterations and finally, the
number of consecutive backtracks is at most |E|.

4 Experimental Study

The aim of our experiments is to quantify the benefit brought byDeFMe both on
effectiveness and conciseness. We show its effectiveness with the problem of free
itemset mining for which several prototypes already exist in the literature. Then
we instantiate DeFMe to extract the collection of minimal strings and compare
its size with that of closed strings. All tests were performed on a 2.2 GHz Opteron
processor with Linux operating system and 200 GB of RAM memory.

4.1 Free Itemset Mining

We designed a prototype of DeFMe for itemset mining as a proof of concept and
we compared it with two other prototypes: ACminer based on a levelwise algo-
rithm [1] andNDI2 based on a depth-first traversal with reordered items [11]. For
this purpose, we conducted experiments on benchmarks coming from the FIMI
repository and the 2004 PKDD Discovery Challenge3. The first three columns
of Table 1 give the characteristics of these datasets. The fourth column gives
the used minimal support threshold. The next three columns report the running
times and finally, the last three columns indicate the memory consumption.

time (s) memory (kB)
dataset objects items minsup ACminer NDI DeFMe ACminer NDI DeFMe

74x822 74 822 88% fail fail 45 fail fail 3,328

90x27679 90 27,679 91% fail fail 79 fail fail 13,352

chess 3,196 75 22% 6,623 187 192 3,914,588 1,684,540 8,744

connect 67,557 129 7% 34,943 115 4,873 2,087,216 1,181,296 174,680

pumsb 49,046 2,113 51% 70,014 212 548 7,236,812 1,818,500 118,240

pumsb* 49,046 2,088 5% 21,267 202 4,600 5,175,752 2,523,384 170,632

Table 1. Characteristics of benchmarks and results about free itemset mining

The best performances are highlighted in bold in Table 1 for both time and
space. ACminer is by far the slowest prototype. Its levelwise approach is par-
ticularly penalized by the large amount of used memory. Except on the genomic

2 As this prototype mines non-derivable itemsets, it enable us to compute free patterns
when the depth parameter is set to 1.

3 fimi.ua.ac.be/data/ and lisp.vse.cz/challenge/ecmlpkdd2004/

fimi.ua.ac.be/data/
lisp.vse.cz/challenge/ecmlpkdd2004/

datasets 74x822 and 90x27679, the running times of NDI clearly outperform
those of DeFMe. As a piece of information, Figure 1 details, for various minsup
thresholds, the speed of DeFMe. It plots the number of minimal patterns it
extracted for each second of computing time.

Concerning memory consumption,DeFMe is (as expected) the most efficient
algorithm. In certain cases, the increase of the storage memory would not be
sufficient to treat the most difficult datasets. Here, ACminer and NDI are
not suitable to process genomic datasets even with 200GB of RAM memory
and relatively high thresholds. More precisely, Figure 1 plots the ratio between
NDI’s and DeFMe’s memory use for various minsup thresholds. It is easy to
notice that this ratio quickly leads NDI to go out of memory. DeFMe works
with bounded memory and then is not minsup limited.

Fig. 1. Ratio of mining speed (left) and memory use (right) of NDI by DeFMe.

4.2 Minimal String Mining

In this section, we adopt the formalism of strings stemming from our run-
ning example. We compared our algorithm for minimal string mining with the
maxMotif prototype provided by Takeaki Uno that mines closed strings [10].
Our goal is to compare the size of condensed representations based on minimal
strings with those based on all strings and all closed strings. We do not re-
port the execution times because maxMotif developed in Java is much slower
than DeFMe (developed in C++). Experiments are conducted on two datasets:
chromosom

4 and msnbc coming from the UCI ML repository (www.ics.uci.
edu/~mlearn).

Figure 2 and 3 report the number of strings/minimal strings/closed strings
mined in chromosom and msnbc. Of course, whatever the collection of patterns,

4 This dataset is provided with maxMotif: research.nii.ac.jp/~uno/codes.htm

www.ics.uci.edu/~mlearn
www.ics.uci.edu/~mlearn
research.nii.ac.jp/~uno/codes.htm

102

103

104

105

106

107

100 101 102

pa

tte
rn

s

minsup

max
min

all

Fig. 2. Number of patterns in chromosom

101

102

103

104

105

106

107

108

109

100 101 102 103 104 105

pa

tte
rn

s

minsup

max
min

all

Fig. 3. Number of patterns in msnbc

the number of patterns increases with the decrease of the minimal frequency
threshold. Interestingly, the two condensed representations become particularly
useful when the frequency threshold is very small. Clearly the number of mini-
mal strings is greater than the number of closed strings, but the gap is not as
important as it is the case with free and closed itemsets.

5 Related Work

The collection of minimal patterns is a kind of condensed representations. Let
us recall that a condensed representation of the frequent patterns is a set of pat-
terns that can regenerate all the patterns that are frequent with their frequency.
The success of the condensed representations stems from their undeniable bene-
fit to reduce the number of mined patterns by eliminating redundancies. A large
number of condensed representations have been proposed in literature [6,14]:
closed itemsets [2], free itemsets [1], essential itemsets [15], Non-Derivable Item-
sets [11], itemsets with negation [16] and so on. Two ideas are at the core of
the condensed representations: the closure operator [14] that builds equivalence
classes and the principle of inclusion-exclusion. As the inclusion-exclusion prin-
ciple only works for the frequency, this paper exclusively focuses on minimal
patterns considering equivalence classes. In particular, as indicated above the
system SI = 〈(2I , I), 2I , covI , Id〉 is minimizable and M(SI) corresponds ex-
actly to the free itemsets (or generators). The frequency of each itemset is com-
puted using the cardinality of the cover. Replace the cover operator covI by
covI : X 7→ {o ∈ O | X ∩ o = ∅} leads to a new minimizable set system
〈(2I , I), 2I , covI , Id〉 of which minimal patterns are essential itemsets [15]. The
disjunctive frequency of an itemset X is |O| − |covI(X)|.

Minimal pattern mining has a lot of applications and their use is not limited
to obtain frequent patterns more efficiently. Their properties are useful for higher
KDD tasks. For instance, minimal patterns are used in conjunction of closed pat-
terns to produce non-redundant [3] or informative rules [2]. The sequential rules

also benefit from minimality [17]. It is also possible to exploit the minimal pat-
terns for mining the classification rules that are the key elements of associative
classifiers [4]. Our framework is well-adapted for mining all such minimal classi-
fication rules that satisfy interestingness criteria involving frequencies.Assuming
that the set of objects O is divided into two disjoint classes O = O1 ∪ O2, the
confidence of the classification rule X → class1 is |O1 ∩ covI(X)|/|covI(X)|.
More generally, it is easy to show that any frequency-based measure (e.g., lift,
bond) can be derived from the positive and negative covers. In addition, the
essential patterns are useful for deriving minimal traversals that exactly corre-
sponds to the maximal patterns of M(〈(2I , I), 2I , covI , Id〉). Let us recall that
the minimal transversal generation is a very important problem which has many
applications in Logic (e.g., satisfiability checking), Artificial Intelligence (e.g.,
model-based diagnosis) and Machine Learning (e.g., exact learning) [5,13].

The condensed representations of minimal patterns are not limited to
frequency-based measures or itemsets. Indeed, it is also possible to mine the min-
imal patterns adequate to classical aggregate functions like min, max or sum [7].
Minizable set systems are also well-adapted for such measures. For instance, let
us consider the function covmin(X) = {val(i)|∃i ∈ I, val(i) ≤ min(X.val)} that
returns all the possible values of val less than min(X.val). This function is a
cover operator and 〈(2I , I), 2I , covmin, Id〉 is even a minimizable set system. The
minimal patterns adequate to min correspond to the minimal patterns of the
previous set system. Furthermore, the value min(X.val) could be obtained as
follows max(covmin(X)). A similar approach enables us to deal with max and
sum. In parallel, several studies have extended the notion of generators to ad-
dress other languages such as sequences [8,18], negative itemsets [19], graphs [20].
Unfortunately no work proposes a generic framework to extend the condensed
representations based on minimality to a broad spectrum of languages as it was
done with closed patterns [10]. For instance, [1,2,11,12] only address itemsets or
[8,18] focus exclusively on sequences. In this paper, we have made the connec-
tion between the set systems and only two languages: itemsets and strings due
to space limitation. Numerous other languages can be represented using this set
system framework. In particular, all the languages depicted by [10] are suitable.

6 Conclusion

By proposing the new notion of minimizable set system, this paper extended the
paradigm of minimal patterns to a broad spectrum of functions and languages.
This framework encompasses the current methods since the existing condensed
representations (e.g., free or essential itemsets) fit to specific cases of our frame-
work. Besides, DeFMe efficiently mines such minimal patterns even in difficult
datasets, which are intractable by state-of-the-art algorithms. Experiments also
showed on strings that the sizes of the minimal patterns are smaller than the
total number of patterns.

Of course, we think that there is still room to improve our implementation
even if it is difficult to find a compromise between generic method and speed.

We especially want to test the ability of the minimal patterns for generating
minimal classification rules with new types of data, such as strings. Similarly, it
would be interesting to build associative classifiers from minimal patterns.
Acknowledgments. This article has been partially funded by the Hybride project

(ANR-11-BS02-0002).

References

1. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Approximation of frequency queries by
means of free-sets. In: PKDD. Volume 1910 of LNCS., Springer (2000) 75–85

2. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association
rules using closed itemset lattices. Inf. Syst. 24(1) (1999) 25–46

3. Zaki, M.J.: Generating non-redundant association rules. In: KDD. (2000) 34–43
4. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.

In: KDD. (1998) 80–86
5. Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems

in logic and ai. In: JELIA. Volume 2424 of LNCS., Springer (2002) 549–564
6. Calders, T., Rigotti, C., Boulicaut, J.F.: A survey on condensed representations

for frequent sets. In: Constraint-Based Mining and Inductive Databases. Volume
3848 of LNCS., Springer (2004) 64–80

7. Soulet, A., Crémilleux, B.: Adequate condensed representations of patterns. Data
Min. Knowl. Discov. 17(1) (2008) 94–110

8. Lo, D., Khoo, S.C., Li, J.: Mining and ranking generators of sequential patterns.
In: SDM, SIAM (2008) 553–564

9. Li, J., Li, H., Wong, L., Pei, J., Dong, G.: Minimum description length principle:
Generators are preferable to closed patterns. In: AAAI. (2006) 409–414

10. Arimura, H., Uno, T.: Polynomial-delay and polynomial-space algorithms for min-
ing closed sequences, graphs, and pictures in accessible set systems. In: SDM,
SIAM (2009) 1087–1098

11. Calders, T., Goethals, B.: Depth-first non-derivable itemset mining. In: SDM.
(2005) 250–261

12. Liu, G., Li, J., Wong, L.: A new concise representation of frequent itemsets using
generators and a positive border. Knowl. Inf. Syst. 17(1) (October 2008) 35–56

13. Murakami, K., Uno, T.: Efficient algorithms for dualizing large-scale hypergraphs.
In: ALENEX. (2013) 1–13

14. Hamrouni, T.: Key roles of closed sets and minimal generators in concise repre-
sentations of frequent patterns. Intell. Data Anal. 16(4) (2012) 581–631

15. Casali, A., Cicchetti, R., Lakhal, L.: Essential patterns: A perfect cover of frequent
patterns. In: DaWaK. Volume 3589 of LNCS., Springer (2005) 428–437

16. Kryszkiewicz, M.: Generalized disjunction-free representation of frequent patterns
with negation. J. Exp. Theor. Artif. Intell. 17(1-2) (2005) 63–82

17. Lo, D., Khoo, S.C., Wong, L.: Non-redundant sequential rules - theory and algo-
rithm. Inf. Syst. 34(4-5) (2009) 438–453

18. Gao, C., Wang, J., He, Y., Zhou, L.: Efficient mining of frequent sequence gener-
ators. In: WWW, ACM (2008) 1051–1052

19. Gasmi, G., Yahia, S.B., Nguifo, E.M., Bouker, S.: Extraction of association rules
based on literalsets. In: DaWaK. Volume 4654 of LNCS., Springer (2007) 293–302

20. Zeng, Z., Wang, J., Zhang, J., Zhou, L.: FOGGER: an algorithm for graph gener-
ator discovery. In: EDBT. (2009) 517–528

	Efficiently Depth-First Minimal Pattern Mining

