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Résumé

With the internet, a massive amount of information on species abundance can be collected under
citizen science programs. However, these data are often difficult to use directly in statistical infe-
rence, as their collection is generally opportunistic, and the distribution of the sampling effort is
often not known. In this paper, we develop a general statistical framework to combine such “oppor-
tunistic data” with data collected using schemes characterized by a known sampling effort. Under
some structural assumptions regarding the sampling effort and detectability, our approach allows to
estimate the relative abundance of several species in different sites. It can be implemented through
a simple generalized linear model. We illustrate the framework with typical bird datasets from the
Aquitaine region, south-western France. We show that, under some assumptions, our approach pro-
vides estimates that are more precise than the ones obtained from the dataset with a known sampling
effort alone. When the opportunistic data are abundant, the gain in precision may be considerable,
especially for the rare species. We also show that estimates can be obtained even for species recor-
ded only in the opportunistic scheme. Opportunistic data combined with a relatively small amount
of data collected with a known effort may thus provide access to accurate and precise estimates of
quantitative changes in relative abundance over space and/or time.

Keywords : opportunistic data, species distribution map, sampling effort, detection probability



1 Introduction

How species abundance varies in space and time is a major issue both for basic (biogeography,
macroecology) and applied (production of biodiversity state indicators) ecology. Professionals working
on biodiversity thus spend considerable resources collecting data that are suitable for estimating this
variation (Yoccoz et al., 2001). Most of the scientific literature recommends the implementation of both a
statistically valid sampling design and a standardized protocol for collecting such data (e.g. see Williams
et al., 2002, for a review). Many methods have been developed to estimate species abundance in a defined
location, e.g., using mark-recapture methods (Seber, 1982) or distance sampling approaches (Buckland
et al., 1993). However, these approaches require an intense sampling effort and are not always practical.
Many authors have noted that most frequently, interest will not be in abundance itself, but either in the
rate of population change, i.e., the ratio of abundance in the same location at two different time points, or
in the relative abundance, i.e., the ratio of abundance at two separate locations (MacKenzie and Kendall,
2002).

Relative abundance is frequently monitored with the help of simpler schemes. For instance, a set of
sites is randomly sampled in the area of interest, and counts of organisms are organized on these sites using
a given protocol. At a given location, the resulting count can be used as an index of the true abundance.
Indeed, assuming constant detectability over space and time, the average number of animals counted per
sampled site is proportional to the true abundance of the species in the area. Log-linear models can be
used to represent this average number of animals detected per site as a function of space and/or time
(and, possibly, other factors such as the habitat ; see for example van Strien and Pannekoek, 2001), and
thereby, to infer population trends. Thus, such programs have been implemented in many countries to
monitor the changes in the abundance of several groups of species, such as birds (e.g., for the French
Breeding Bird Survey, see Julliard et al., 2004) or butterflies (e.g., for the European Butterfly Monitoring
Scheme, see van Swaay et al., 2008). Estimates of relative abundance have also been commonly used for
mapping the spatial distribution of several species (e.g., Gibbons et al., 2007).

In addition to such data characterized by a known sampling effort, a large amount of data can
also be collected by non-standardized means, with no sampling design and no standardized protocol.
In particular, the distribution of the observers and of their sampling effort is often unknown (Dickinson
et al., 2010). These so-called “opportunistic data” have always existed, and with the recent development of
citizen science programs, we observe a massive increase in the collection of these data on a growing number
of species (e.g., Dickinson et al., 2010; Hochachka et al., 2012; Dickinson et al., 2012). Additionally, as
the use of online databases facilitates the exchange and storage of data, such opportunistic data may now
include millions of new observations per year that are collected in areas covering hundreds of thousands
of square kilometres (e.g., the global biodiversity information facility, including more than 500 million
records at the time of writing, see Yesson et al., 2007).

The temporal and spatial distributions of the observations in such data reflect unknown distri-
butions of both observational efforts and biodiversity. Thus, a report of a high number of individuals
of a given species at a given location compared to other locations could be because the focus species
is abundant at this location or because numerous observers were present at this location. Using such
opportunistic data to estimate changes in the space and time of species abundance is therefore complex,
since any modeling approach should include a submodel of the observation process (Kéry et al., 2009;
Hochachka et al., 2012) or an attempt to manipulate the data to remove the bias caused by unequal effort
(see a discussion in Phillips et al., 2009).

As noted by MacKenzie et al. (2005), “In some situations, it may be appropriate to share or borrow
information about population parameters for rare species from multiple data sources. The general concept
is that by combining the data, where appropriate, more accurate estimates of the parameters may be
obtained.” In this paper, we propose a general framework which enables to combine data with known
observational effort (which we call “standardized” data) with “opportunistic” data with an unknown
sampling effort. We focus on multi-species and multi-site data that correspond to the data typically
collected in this context.

The purpose of this study is to estimate the relative abundance of the species at different sites
(different locations and/or times). We base this estimation on two datasets recording the number of ani-
mals detected by observers for each species of a pool of species of interest and each spatial unit of a study
area of interest : (i) one “standardized” dataset is collected under a program characterized by a known



sampling effort, possibly varying among spatial units, (i) one “opportunistic” dataset is characterized by
a completely unknown sampling effort. We take into account the variation across species of their detecta-
bility, yet, as a first step, we assume that the observational bias towards some species are the same across
the different sites. We show that, under this assumption, the information concerning both the distribu-
tion of the observational effort and the biodiversity can be efficiently retrieved from “opportunistic” data
by combining them with standardized data. Moreover, we prove that such a combination returns more
accurate estimates than when using the standardized data alone. Our statistical framework allowing this
win-win combination can open numerous avenues for application. We used data on French birds, which
are typical of existing data, to illustrate the numerous qualities of this framework. Note however that the
work presented in this paper is a first step, and that further work will be required to fully account for
varying observational bias towards some habitat types across the different sites.

During the reviewing process of this paper, we became aware of an independent and simultaneous
work by Fithian et al. (2014) which develops similar ideas for combining multi-species and multi-sites
data with thinned Poisson models.

2 Statistical modeling

We want to estimate the relative abundance (relative number of individuals) of I species in J sites.
The “sites” j can either refer to different spatial sites, to different times, or to different combinations of
sites and times. We suppose that we have access to K datasets indexed by k which gather counts for
each species ¢ at each site j. We have in mind a case where some datasets have been collected with some
standardized protocol, while some others are of opportunistic nature.

Let X;ji be the count of individuals of the species i by the observers in the site j in the dataset k.
In this paper, we propose to model the counts X, by

Xijk ~ Poisson(N;; PixEj), fori=1,...,I, j=1,...,Jand k=0,...,K —1, (1)

where N;; is the number of individuals (animals, plants, etc) of a species 4 at site j, and Py, F;j are two
parameters accounting for the bias induced by the observational processes. The parameter P reflects
both the detectability of the species i (some species are more conspicuous than others, some are more
easily trapped, etc.) and the detection/reporting rate of this species in the dataset k (the attention of the
observers may systematically vary among species). The parameter E;j, reflects the impact of the varying
observational effort (including number and duration of visits, number of traps, etc.) and the varying
observational conditions met during the counting sessions. In the next two sections, we explain the origin
of our modeling, the hypotheses under which it is valid (see also the discussion Section 5), and we describe
precisely the meaning of the two dimensionless parameters P;, and Ej;. We refer to the Appendix A for a
discussion on the link with models based on thinned Poisson processes. Before moving to these modeling
issues, we point out that estimation can be easily carried out in the model (1), since it can be recast into
a linear generalized model, see Section 2.4.

2.1 Count modeling

The count X;;;, of individuals of the species 7 in the site j for the dataset k is assumed to gather
the counts from all visits in the site j. We assume that an individual is only counted once during a single
visit, yet it can be counted several times in any dataset due to the possible multiple visits to a site j for
a dataset k. In particular, we may have X;;;, larger than the number V;; of individuals of the species ¢
in the site j. In the following, we neglect identification errors and false positives.

For an individual a;; of the species 4 in the site j and a visit v, in the site j for the dataset k, we
define the random variable Zaijvj . which equals 1 if the individual a;; has been seen and recorded during
the visit v;, and 0 otherwise. Assuming that there is no multiple count of an individual during a single
visit, the count Xjj;, is then given by

Nij
Xl]k = § § Zaijvjka

’UjkGij aij:1



where Vj;, is the set of all the visits v;; in the site j for the dataset k. In the following, we denote by
Paiju;, = P (Zaijvjk_ = 1) the probability for the individual a;; to be seen and recorded during the visit
Vjk-

If we assume that the random variables {Z,, v, : a;; = 1,..., Ni; and vj, € Vj3,} are independent
and that
N,;]‘ Nij
Z Z piijvjk is small compared to Z Z Dasjvjes
'Ujlcevjk aijzl Ujkevjk aijzl

(which happens when pq, ., is small), then, according to Le Cam Inequality (Le Cam, 1960), the count
Xiji. follows approximatively the Poisson distribution

Nij Nij
. . _ . _ 1 Z
Xijk ~ POlSSOH( E E Pai]‘v_m) = Poisson (Ni' § : pivjk)’ with Piy,, = N, Paijvs-

vjkE€EVjk aij=1 vk EVjk v aj;=1
(2)

The parameter p;,,, corresponds to the average probability to detect and report during the visit vz an
individual of the species ¢ which has been sampled at random in the site j. We observe that the mean of
the Poisson distribution
Ni; Z Divye = NijOiji
vk E€EVijk

is the product of a first term [V;;, which is the number of individuals of the species i present in the site
J, by a second term O;jj, which is a nuisance term due to the observational process. We underline that
the term O;;i, can be larger than 1 when the number Vj; of visits in the site j for the dataset k is large,
since an individual can be counted several times during the Vj; visits.

2.2 Main modeling assumption

The main hypothesis of our modeling (1) is that the observational parameter O;;; can be decom-
posed as
Oijr = PiEjp,. (3)

Let us give three examples where such a decomposition holds.

Example 1. (single habitat type) Assume that the ratios pi;, /Pirv;, depend only on the species i
and 7' and on the dataset k, so that P, /Pirv;, = ﬁiv;/k/ﬁi’v;,k for all 4,7, j, j', vjk, and vg,k. This means
that the detection/reporting probability p;,;, of an individual of the species ¢ during the visit v;;, can be
decomposed as

Z_)ivjk = ikQUjk.; (4)

with Pj; the mean detection/reporting probability of the species i during a visit for the dataset k and ¢,
depending only on the visit v;;, (not on the species 7). The parameter g,,, represents the influence of the
observational conditions during the visit v;z on the detection/reporting probability. The parameter g,
is then a very complex function of the observational duration, the visibility conditions (weather condi-
tions during the visit, vegetation met, etc.) and many other variables that affect the detection/reporting
probability (number of traps, length of line transects, etc.). When the decomposition (4) holds, we have
the decomposition (3) with Ej, ="

vk E€Vjk Qvjy, -

The decomposition (4) enforces that the detection/reporting probability p;,,, does not depend on
interactions between the species ¢ and the visit v;,. This property is quite restrictive and it is not likely
to be met when several habitat types are present within a site j. Actually, if two visits v;, and v;, i take
place in two different habitat types hj; and h’,, then the ratios piy;, /pir;, and ﬁi’f;/k/ﬁi/”}/k are not
likely to be equal for all i and ¢’ since some species may be specialized to the habitat type hj; and some
others to the habitat type h;/ - We can weaken the assumption (4) by allowing interactions €;,,, between
the species ¢ and the visit v;; as long as they cancel on average on each site j

ﬁi’t)jk = ikQUjk + Eivjka Wlth Z Eivjk = 0 (5)

Vi €Vjk



When (5) holds, we again have the decomposition (3) with Ej, =3, ev;y, Qvy.- Such interactions €,
can take into account heterogeneous observer attention bias toward the species 7, but it does not allow
for some systematic bias induced by heterogeneous habitat types. Actually, assume that the site j has
two habitats h and h’ and the site j has only the habitat h’. Then if the species i (respectively i) is
specialized to habitat type h (respectively h') we will have either Z”m €ivyy, <00 3, €y, < 0. S0
(5) cannot hold. The next two examples focus on the impact of heterogeneous habitat types.

Example 2. (known habitat types) Assume that for each count, we know in which habitat type it
has occurred. Let us introduce the parameter k= (h,k) where h represents the habitat type h and k
the dataset. For each dataset k, we can then pool together the counts occurring in the same site ;7 and
habitat type h. Let us denote by X;;(, ) the counts of the species i in the site j, the habitat type h
for the dataset k. We assume in the following that each visit occurs in a single habitat type : If not, we
can artificially split a single visit in H different habitat types into H different visits, each occurring in a
single habitat type.

Our main modeling assumption in this example is that the ratios pj.,, ,, /Dirw depend only on

(R k)
the species 7 and 4/, the dataset k and the habitat type h. This means that for each 7,7’, 7, 7' and k= (h, k)
we have pwﬂ/ﬁi/vﬂ = ﬁw;,z/@'u;,g for all visits V% v;,~ in the same dataset and the same habitat type.
In this case, the probability piy,, ,, can be decomposed as

ﬁivj(hyk) = }Di(h,k) QUj(h,k)a (6)
with Pj(s 1) the mean detection/reporting probability of a typical individual of the species i during a visit
in the habitat type h for the dataset k and gy, ,, not depending on i. We then have for k= (h, k)

O, = P3Bj, with Egz= Y g, and Pg = Py defined by (6).

%evﬁ
As above,.we can allow some non-systematic heterogeneity by merely assuming that piy,, ., = Pi(h.k) Qv;n.) T
€iv (.1 With E'Uj(h,k)evj(h,k) €iv; i = 0-
Example 3. (homogeneous habitat type proportions) We assume again that each visit v, occurs
in a single habitat type h(v;) (by artificially splitting non-homogeneous visits). Yet, we assume that this
habitat type is not reported in the dataset. As in the second example, we also assume that the ratios

Piv;y, /Dirv;, depend only on the species i and 4', the dataset k and the habitat type h(vjz). Hence, the
probability Py, can be decomposed as

ﬁil}jk = P)ih('ujk)k QUJ-M (7)

with Pjpj the mean detection/reporting probability of a typical individual of the species ¢ during a visit
in the habitat type h for the dataset k¥ and g,;, not depending on i. Writing V;;(h) for the set of the
visits v;; in the habitat type h we have

H H
Oiji = Z Z Divj, = Z—Pz’thjhky with Ejp, = Z Qo -

h=1v;,€V;i(h) h=1 vk €Vjk(h)

The parameters E;p;, are likely to depend on & since there can be some observational bias towards some
habitat types. If we assume that the observational bias is the same for each site j, which means that
Ejnk/Ejni, does not depend on h, we have the decomposition

Ejnk = EjxQnk, (8)
where Qi reflects the observational bias towards the habitat type h in the dataset k. When the decom-
positions (7) and (8) hold, we have

H H
Oijk = > PinkQuiEj = PiEjk,  with Pix = PinkQni,
h=1 h=1
so O;jy, fulfills the decomposition (3). Again, as in the two first examples, we can weaken (7) by merely
assuming that
ﬁiv]‘k = ih(vjk)k q’Ujk + eivjk7 Wlth Z €ivjk = 0

ik EVijk



Let us explore when the decompositions (7) and (8) are likely to hold. We first observe that the decompo-
sition (7) will be met as long as we include in the definition of the ”habitat type” h(v;) all the exogenous
variables which induces an interaction between the species ¢ and the visit v;;. The decomposition (8) is
much more stringent. It requires that, for each dataset k, the observational bias towards some habitat
types is the same across the different site j. It may not hold when the proportions on habitat types differ
among the different sites. For example, if an habitat h is missing in a site j, then E;,, = 0, so (8) cannot
hold if Ejip, # 0 for another site j'. An example where this property is more likely to be met is when
the ”sites” j correspond to the same spatial unit observed at different years j. In such a case, we can
expect that the observational bias towards some habitat types remains stable years after years. When the
observational bias towards some habitat types is not constant across the site, the decomposition (3) is
not met in general. This case requires a substantial additional modeling that will be developed elsewhere.

Interpretation. Let us interpret more precisely the parameters P, and Ejj in the decomposition (3).
Writing Vj;, for the number of visits in the site j for the dataset k, we first observe that

11 1ROy 1K, Ep !
— _ YR ) Ik n : o 7—1 . .
5Zﬁ D P =5 o ijsz—ij = PyEy,  with By =J"Y Eju/Vi.
=1 =1 =1

vk €Vik Jj=1

/ /

We can always replace (P, Eji;) in the decomposition (3) by (P, E;) = (PikEx, Eji/Ey). Applying
this renormalization step and dropping the prime (for notational simplicity), we obtain

11 )
Pik:jZ@ Z Pivjy» (9)

which means that P is the mean detection/reporting probability of a typical individual of the species i
during a typical visit for the dataset k.

As explained in the three above examples, the parameter Ejj in (3) is a complex function of the
conditions met during the visits in the site j for the dataset k, including the observational effort. This
parameter Ej; can be (much) larger than 1 when the number Vj; of visits in the site j for the dataset
k is very large. We point out that we can have Ej;; very large even if O is smaller than 1, when
the probability Pj; of detection/reporting of a typical individual of the species ¢ is very small. In the
remaining of the paper, we call observational intensity at the site j in the dataset k the parameter Ejy.

2.3 Identifiability issues

In the following, we deal with two datasets. A first dataset labeled by & = 0, in which we suppose
that the observational intensities ;o are known up to a constant. Henceforth, we will call this dataset
the standardized dataset. We also consider a second dataset labeled by k = 1, characterized by unknown
observational intensities ;. We will refer to this dataset as the opportunistic dataset.

2.3.1 A single opportunistic dataset is not enough

We consider first the case where we have a single dataset, i.e. K = 1. For notational simplicity,
we drop the index k in this paragraph. Our observations X;; then follows a Poisson distribution with
intensity A;;, where \;; = N;; P,E;. We cannot recover the IJ + I 4+ J parameters N;;, P;, and E; from
the IJ intensities \;;. Yet, if we are only interested by the relative abundances N;;/N;;» with respect to
a reference site, say j' = 1, can we recover the I(J — 1) ratios {N;;/Nj1 : j=2,...,J, i=1,...,I} from
the IJ parameters A;; 7

Let us write /\ij = j\vfijﬁiEj with ]\Nfij = NijPiEl 5 ﬁl =1 and Ej = Ej/El. The parameters Nij
differ from the N;; by a multiplicative constant F;E; depending only on the species i. Therefore, we have
N;j/Nijy = J\N/'Z-j/ﬁij/, which means that the parameters Nij give access to the relative abundances N;;/N;1
of the species i. When the dataset has been collected with a known sampling design, the observational
intensity in a given site E; is known up to an unknown constant, so that the ratios E;/E; are known
and we can recover the ]\~/'ij (and hence the relative abundances) from \;; since the 151 and E‘j are known.
The situation is different with opportunistic datasets characterized by unknown ratios E;/E;/. In this



case, the Ej are also unknown, so we cannot recover the Nij from the parameters \;;. Hence, we do not
have access to the relative abundance N;;/N;1. As explained in the next paragraph, we need to combine
different datasets.

2.3.2 Combining an opportunistic dataset with a standardized one

Let us now investigate the identifiability issues when we combine a standardized dataset (labeled
by k = 0) with an opportunistic one (labeled by k£ = 1). In this case, we have 2IJ parameters \;;5 =
N;j P, Eji, for IJ+2(I1+J) parameters N;;, Py, and Eji. For I.J > 2(I+J), which typically holds for large
J and I > 3, we have more parameters \;;;, than parameters N;;, P, and Ejj. Nevertheless, as explained
in the Appendix B, the model is not identifiable without J+1+1 addltlonal identifiability conditions. As in
Section 2.3.1, we introduce some renormalisation N”7 E . of sz of Nyj, k and Pm, which enables us to

easily express these identifiability conditions while preserving the identity N,] E] szk = Aijk = NijEji Pig.

In the following, we assume that the ratios {Eji/Ej : j # j'} are known for the dataset k = 0
(standardized dataset), but not for the dataset k = 1 (opportun1st1c one). As above, we define EJO =
jO/EIO (which is known) and le =1 for all 7. We could have set on = 1 instead of Pﬂ = 1, but the
latter choice is more suited for handling species ¢ monitored in the dataset k = 1 but not in the dataset
k =0, as we will show later. We must still set one more constraint. We choose P10 = 1 for convenience.
These I 4+ J + 1 constraints combined with the identity Nl] EjkPk = \iji = NijEj1 Py lead to the change
of variables :

~ Pyo
Nij = NijPiEw5—,
J g4414410 P11
= Ej, Py
i Eip  Pio (10)
= Py Py
Pi = X —.
g Py Pu

In terms of these new variables, we have the simple statistical model X, ~ Poisson(ﬁijﬁjkﬁik) with
Ejo = Ejo/Eq for all j, Py =1 for all ¢ and Pyp = 1. These J + I + 1 quantities are known, and the
resulting statistical model is identifiable.

Let us interpret these new quantities. The parameter ]\7” is proportional to the abundance IV;; by
an unknown factor Py Eq19P1o/ P11 depending only on the species i. As in Section 2.3.1, these parameters
give access to the relative abundance N;;/N;1 = N;;/ Nzl of each species 7 in each site j. The parameters
Ejl are equal, up to a constant, to the observational intensity F;; ; therefore, they provide the relative
observational intensities E};/E1; for each site j in the dataset 1. Finally, ]52-0 is proportional to the ratio
Pio/P;1 by an unknown factor Pj1/Pjo, so we can compare the ratios P;g/P;; across the different species.
The ratio P,/ P;; reflects the systematic difference of attention toward some species among the observers

of the two schemes.
In addition, we emphasize that we can consider the case where some species 4 are not monitored in

the dataset 0 but are recorded in the dataset 1. This case can be handled by merely adding the constraints
P,y = Py = 0 for the concerned species i.

2.4 Estimation via a Generalized Linear Model

We can estimate the parameters N”, E; ik and P, >, by the maximum likelihood estimators (va Ejk, P k)
with the constraints EJO = EJO for all 7, le =1 for all 7 and P10 = 1. This estimation can be carried out
with the help of a generalized linear model. Indeed, with the notations n;; = log(Ny;), e, = log(E;) and
pir = log(Pi1,), Model (1) can be recast as a classical generalized linear model from the Poisson family
with a log link :

Xijr ~ Poisson(N;;), with log(Aijx) = nij + €k + Dik- (11)

Indeed, we only have to define e;q = log E'jo as a known offset in the model, p;; = 0 for all 4, and fit the
resulting model with any statistical package (see Supplementary materials).



3 Theoretical gain of combining two datasets

It is important to investigate whether the estimates of the relative abundance obtained by com-
bining the dataset 1 with unknown observational intensity ratios E;i/Ej1 to the dataset 0 with known
observational intensity ratio Ejo/FEjo improves upon the estimates obtained with the single dataset 0.
In this section, we investigate this issue analytically. An improvement is expected simply by looking at
the balance between the number of observations and the number of free parameters. With the dataset 0,
we have I.J observations, and we want to estimate I.J free parameters; whereas with the two datasets 0
and 1, we have 21.J observations for IJ + J + I — 1 free parameters. The balance between the number
of observations and the number of free parameters is better in the second case. Below, we quantify the
theoretical improvement more precisely by comparing the variance of the maximum-likelihood estimators
in the two cases. Then, we show that dataset combination also allows to estimate relative abundance for
species ¢ not monitored in the dataset 0.

3.1 Variance reduction

For mathematical simplicity, we assume in the following that the ratios P;y/P;; are known for all
i. In terms of the normalized variables, this means that the P;y are known.

When we work with the single dataset 0, we can estimate Nij with the maximum likelihood
estimator NZ-Oj = Xijo/(EjoPio). Let us investigate how the maximum likelihood estimator N;; associated

with the model X5, ~ Poisson(]\N/'ij Ejkék) improves upon ]VZOJ We consider the case where the (unknown)
observational intensities F;; in the dataset 1 is much larger than the observational intensities Ejo in the
dataset 0. Hence, we consider the asymptotic setting where E;; goes to infinity. In the Appendix B, we

show that the limit variance of J\Afij when Fj; — oo is given by

Py Ny
> PoNi -

In particular, the variance of the estimate is reduced by a factor

E]’1*>OO

var(N;;) 75 var(N9) x (12)

Var(ﬁ- ) EjI:OO BONij

1) Ty
var(N};) 21 PoNy

when working with the two datasets instead of the sole dataset 0. This factor can be very small for rare
species (N;; small), hardly detectable species (P;o small), or when the number I of monitored species is
large.

Let us explain the origin of this variance reduction in the simple case where the ratios P,o/P;1 are
the same for all the species ¢ (which formally corresponds to Py = 1 for all ¢). In this case, we have a
closed-form formula for N;; (see Formula (21) in the Appendix B)

N Xijo + Xij1 XZlejO
YKo+ X)) By

which reveals the contribution of each dataset to the estimation of the (normalized) relative abundance.
Actually, the estimator ]\Afij is the product of two terms, where the first term mainly depends on the
opportunistic dataset 1 when the observational intensities £;; are large, whereas the second term only
depends on the dataset 0
=~ Ep—ooo X5 Zl Xij0
T x = .
2uXijn o E;

Let us interpret these two terms. The first ratio on the right-hand side provides an estimation of the
proportion Nj;/ ", N;; of individuals in a site j that belong to a species . This proportion is estimated
by the ratio of the number X;;; of individuals of the species i observed at site j in the opportunistic dataset
to the total number ), Xj;; of individuals observed at site j in the same data. When the observational
intensities Fj; in the opportunistic dataset 1 is large, the ratio X;;1/ >, X;;1 provides a very accurate




estimation of the abundance proportion Nj;/ > Ny;, and we have (see Formula (22) in the Appendix B)

~ E; [e’e) Nz Xy
i ~ T % ZQ Yo (13)
>Ny Ejo

The second term in the right-hand side of (13) provides an estimation of the total (normalized) relative
abundance ), Nlj at the site j. This total (normalized) abundance is estimated from the dataset 0 by
dividing the total number ), X;;o of individuals counted at the site j in the dataset 0 by the (norma-
lized) observational intensity Ejo. Let us now explain the reduction of variance observed in (12). The
formula (13) shows that we estimate N;; by first estimating the total (normalized) relative abundance
> Nlj with the dataset 0 and then renormalize this estimation with the ratio J\N/'ij /> Nlj which has
been accurately estimated with the dataset 1. The reduction of variance observed in (12) then results

from the use of the whole counts ), Xj;o at site j in the dataset 0 for estimating INV;; instead of the sole
counts X;jo of the species 7 at site j.

3.2 Species not monitored in the scheme characterized by a known sampling ob-
servational intensity

As already mentioned, combining the two datasets also allows to estimate Nij for some species i
that are not monitored in the dataset 0, but are monitored in the opportunistic dataset 1. This situation
formally corresponds to the case where Pjg = 0. For Ej; — oo, the limit variance of the estimator V;; is
(see Formula (25) in the Appendix B)

2
Var(]/\\fij) Ejlfjoo #
221 PuolNij Ejo
Because the species 4 is not monitored in dataset 0, the (normalized) relative abundance ﬁij cannot
be estimated with the sole dataset 0. Thus, there is an obvious improvement to be made by using our
estimation scheme that combines the two datasets. To reveal the power of our approach, let us compare
the variance var(N;;) of our relative abundance estimator with the variance of the imaginary estimator

G iarins o o . .
N8 based on an imaginary dataset 0 where the species i would have been monitored with some

(imaginary) detection /reporting probability Piién 8INay The variance of the maximum likelihood estimator
N?j’lmagmary of N;; with this imaginary dataset 0 would be N;;/(E 0P **""Y) so that
Pil(r)nagmaryNij

2.1 PNy

EjIA)OO

V&I‘(Nij) " Var(ﬁ?j,imaginary) %

In particular, the estimation provided by ]vij can significantly outperform the imaginary estimation we
would have obtained with the sole imaginary dataset 0 (where the species ¢ would have been monitored).
Moreover, if we compare the estimator ]Vij with the imaginary estimator N;;nagmary based on both the
imaginary dataset kK = 0 and the dataset k = 1, we observe that the ratio of their variance

-~

Var(Ni ) _ PiigaginaryNij + Zl PlONlj
var (N8 > PN

remains close to one when Piién agmaryNij < >0, PoNyj. This means that with our estimation scheme,
there is not much difference between the estimation based on a dataset collected with known observa-
tional intensities where a species 7 is rare and the estimation based on a dataset collected with known
observational intensities where a species ¢ is not monitored. In other words, there is no instability on
the estimation of the relative abundance of a species when it is not present in the dataset collected with
known observational intensities.
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FIGURE 1 — The datasets used to illustrate our statistical framework. The location of the Aquitaine
region in France is displayed in the insert. (A) distribution of the ACT listening points in the region;
(B) distribution of the LPO records (opportunistic dataset) in the region; (C) distribution of the STOC
listening points in the region. The grey quadrat cells are used as the “sites” in our analysis (they measure
~ 30 x 20 km). Note that the quadrat cell containing the Bordeaux metropolitan area (indicated by an
asterisk in (A)) has been removed from the dataset.

4 |llustration

4.1 Datasets

In this section, we investigate on some datasets the predictive power of our modeling approach. We
estimated the relative abundance of 34 bird species in the non-urban habitat of 63 sites in the Aquitaine
region (South West of France). We fitted our model with an opportunistic dataset and a dataset collected
with known observational intensity. We then assessed the predictive power of our approach with the help
of an independent dataset collected with known observational intensity in the same area, hereafter referred
as “validation dataset”. We therefore illustrate the ability of our approach to provide better predictions
of species relative abundance than other approaches based on either of the two datasets alone.

We first describe the opportunistic dataset. We used the recent online database developed by the
Ligue de Protection des Oiseaux (LPO, Bird Life representative in France, largest French bird watcher
NGO, with regional delegations). This online system was launched successively by the different regional
LPO groups, and we acquired data from one of the first groups to start, Aquitaine, South-Western France,
with data collection starting in 2007 (www.fauneaquitaine.org). Any citizen who can identify bird species
can register on this website and record any bird observation s/he wishes, noting the species, date, and
location (to the nearest 500 m). Hundreds of observers thus record hundreds of thousands observations.
We typically ignore why these observations were made, e.g., the motivation of the observer, the reason
for choosing to report these observations over others, whether they report all the species they have seen
at a given place and time, the underlying observational intensity, etc. We selected all such opportunistic
records between April and mid-June 2008-2011. For each record, we considered the number of animals
detected by the observer. Data were pooled over years, because we will focus here only on spatial variation
in relative abundance. Over 115 000 species records detected in a non-urban habitat were considered in
this study (see Fig. 1B).

We then describe the dataset collected with known observational intensity, used for the fit of the
model. We used the data from the ACT monitoring plan jointly carried out by the French National
Game and Wildlife Agency (ONCFS, Office National de la Chasse et de la Faune Sauvage), the national
hunter association (FNC, Fédération Nationale des Chasseurs) and the French departemental hunters
associations (FDC, Fédérations Départementales des Chasseurs). The main objective of the ACT survey
was to monitor the breeding populations of several migratory bird species in France (Boutin et al., 2003) ;
ACT stands for Alaudidae, Columbidae, Turdidae, which were the main bird clades of interest for this
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monitoring, though this program also monitors several Corvidae species (see table 1 for the list of species
of interest for our study). Thus, only a fraction of the species recorded by the LPO program was also
studied by the ACT survey. The Aquitaine region was discretized into 64 quadrat cells, and in each cell,
a 4km long route was randomly sampled in the non-urban habitat of the cell (see Fig. 1(A)). Each route
included 5 points separated by exactly 1 km. Each route was traveled twice between April and mid-June,
and every point was visited for exactly 10 minutes within 4 hours after sunrise in appropriate weather
conditions. Every bird heard or seen was recorded, and for each point and each species, the maximum
count among the two visits was retained. The observers were professionals from the technical staff of
either the ONCFS or the hunters associations. Note that due to organization constraints, some listening
points in a site were not necessarily counted every year. Between 2008 and 2011, over 9 500 birds were
counted.

Finally, we describe the validation dataset, used to assess the predictive power of our model.
We used the data from the STOC program (Suivi temporel des oiseaux communs), a French breeding
bird survey carried out by the French museum of natural history (MNHN, Museum National d’Histoire
Naturelle) for the same region and the same years. The STOC survey (Jiguet et al., 2012) is based on
a stratified random sampling, with each volunteer observer being assigned a 2 x 2 km square randomly
chosen within 10 km of his house. The observer then homogeneously distributed 10 points within the
square. Each point was visited twice between April and mid-June (before and after May 8th, with at
least 4 weeks between visits) for exactly 5 minutes within 4 hours after sunrise in appropriate weather
conditions (no rain or strong winds). Every bird heard or seen was recorded, and for each point and each
species, the maximum count among the two visits was retained. These counts were then summed for a
given square, year and species. Between 2008 and 2011, 251 listening points belonging to 29 such squares
have been surveyed in non-urban habitat (to allow the comparison with the other datasets, we removed
the listening points located in urban habitat), most of them for several years, and over 15241 birds were
detected by the observers.

Our aim was to test our model ability to provide a better prediction of the spatial variation in
species relative abundance than any model based on either of the two datasets alone. The “sites” of our
model were the 63 quadrat cells defined for the ACT survey ; we removed the quadrat cell containing the
metropolitan area of Bordeaux (a large town with a population of > 1 million inhabitants), where the
sampling process in the opportunistic dataset could not be supposed to be the same as in the other areas
(see Fig. 1(A)). We focused on I = 34 bird species (see Table 1). Note that the smaller number of species
monitored in the ACT survey allowed to demonstrate the ability of our approach to estimate the relative
abundance of species monitored only in opportunistic dataset. For both the ACT survey and the STOC
survey, the observational intensity in the site j was measured as the number of points-years sampled
in the quadrat cell j during the period 2008-2011. We used the validation STOC dataset to assess the
predictive power of our modeling approach. Only 24 sites contained at least one STOC listening point
(Fig. 1(C)), so that this assessment was restricted to these sites.

4.2 Comparison of the predictive power

Let X;;i be the number of animals of the species ¢ detected in the site j in the dataset k. Let k = a
denote the dataset with known observational intensity collected by the ACT survey ; let k = £ denote the
opportunistic dataset collected by the LPO; finally, let £ = s denote the validation dataset collected by
the STOC survey. We compared different statistical approaches to estimate the relative abundances of
the species in the sites.

Let ]VZL be the relative abundance estimated for the species i in the site j with the statistical
approach m. We estimated the relative abundance of each species ¢ in each site j with the following
approaches :

NG = Xjjo/ml (14)
]\Affj = Xijs/T; (15)
N = Xie/S; (16)
N§ = X )X (17)
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TABLE 1 — List of the 34 bird species under study. The 13 species monitored only by the ACT survey are
indicated by an asterisk. All species were surveyed by the STOC and the LPO program.

Latin name

species

Aegithalos caudatus
Alauda arvensis™®
Alectoris rufa*
Carduelis carduelis
Carduelis chloris
Certhia brachydactyla
Columba palumbus*
Coturniz coturniz™
Cuculus canorus
Dendrocopos major
Erithacus rubecula
Fringilla coelebs
Garrulus glandarius™
Hippolais polyglotta
Lullula arborea™
Luscinia megarhynchos
Milvus migrans
Cyanistes caeruleus
Parus major

Passer domesticus
Phasianus colchicus™
Phoenicurus ochruros
Phylloscopus collybita
Pica pica*

Pica viridis

Sitta europaca
Streptopelia decaocto™
Streptopelia turtur*
Sylvia atricapilla
Troglodytes troglodytes
Turdus merula™
Turdus philomelos*
Turdus viscivorus™
Upupa epops

Long-Tailed Tit
Eurasian Skylark
Red-Legged Partridge
European Goldfinch
European Greenfinch
Short-Toed Treecreeper
Common Wood Pigeon
Common Quail
Common Cuckoo
Great Spotted Woodpecker
European Robin
Common Chaffinch
Eurasian Jay
Melodious Warbler
Woodlark

Common Nightingale
Black Kite

Eurasian Blue Tit
Great Tit

House Sparrow
Common Pheasant
Black Redstar
Common Chiffchaff
Eurasian Magpie
Eurasian Green Woodpecker
Eurasian Nuthatch
Eurasian Collared Dove
European Turtle Dove
FEurasian Blackcap
Eurasian Wren
common Blackbird
Song Thrush

Mistle Thrush
FEurasian Hoopoe
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where 7T;-€ denotes the number of listening points of the site j sampled in the dataset k, and S; denotes
the area of the site j (determined by intersecting each ACT quadrat with the Aquitaine region). For the
LPO dataset k = ¢, we had to account for the site-specific unknown intensity. We estimated this intensity
with two proxies that are commonly used in such cases. First, we assumed that observational intensity
was spatially uniform so that it varied only with quadrat cell area S; (the resulting approach is labeled
£1). Another proxy considered that the observational intensity within a site was proportional to the total
number of records across the sites (pooled over all species; the resulting approach is labeled ¢2).

Finally, we fitted the model described in the previous sections, using the ACT dataset a as the
dataset collected with known observational intensity (k = 0), and the LPO dataset ¢ as the opportu-
nistic dataset (k = 1). Note that we supposed a quasi-Poisson distribution, to account for moderate
overdispersion in our dataset. Thus, we could estimate the value of ]ij‘“ with our approach.

The relative abundance is the absolute abundance multiplied by an unknown constant, and this
constant may vary among approaches. Therefore, to allow the comparison between the various approaches,
we standardized the relative abundance estimates in the following way :

=
m o _ g
v N
ngij

We want to investigate whether the estimates obtained by our model are closer or not to the true
densities than any of the estimates that could be obtained from the individual datasets. We used the
value N}, estimated with the validation STOC dataset as the value of reference. We assessed the predictive
power of each approach m by calculating, for each species, the Pearson correlation coefficient between
the standardized relative abundance N;7 estimated with the method m and the standardized relative

abundance J\~ff] estimated with the validation dataset. We summarized this power by calculating the
median and interquartile range (IQR) of these coefficients over the different species of interest. Although
the relative abundance estimates were calculated on the complete dataset, these results were presented
by separating the species monitored in the ACT survey, and the species not monitored in this survey.
This allowed to evaluate the ability of our approach to estimate the relative abundance of species not
monitored in the standardized dataset.

We also investigated the stability of our statistical approach when the standardized dataset is small.
We therefore assessed this stability by replacing our big standardized ACT dataset a by a much smaller
dataset a’. We subsampled the dataset a : for each site, we randomly sampled only one listening point in
every site, and we considered the bird counts of only one randomly sampled year for every point. Thus, we
artificially divided the observational intensity by 18 in average in this dataset : the complete ACT dataset
a stored the bird counts carried out in 1107 listening points-years, whereas the reduced dataset a’ stored
the bird counts carried out in only 63 listening-points-years (one in every site). We also estimated the
standardized relative abundance ]V{‘j/ =X iaj, / Zj X fjl with this reduced dataset. Finally, we estimated the

relative abundance Z\fo;*“/ by combining this reduced standardized dataset with the opportunistic dataset
according to our model. We also assessed the predictive power of these two approaches by comparing the
estimates with the reference values obtained with the STOC dataset.

The online supplementary material contains the data and the code for the R software (R Core
Team, 2013) that will allow the reader to reproduce our calculations.

4.3 Results

We fitted our model on the LPO and ACT datasets. There was only a small amount of overdis-
persion in our data (the coefficient of overdispersion was equal to 1.22) ; the examination of the residuals
did not reveal any problematic pattern and the quality of the fit was satisfying. We observe in table 2
that the predictive power was larger for our statistical approach than for all other approaches, whether
based on the dataset a or ¢ alone.

The predictive power of our statistical approach did not decrease much when model was fit on
the smaller standardized dataset a’, despite the fact that the observational intensity in this dataset was
divided by about 20. In particular, the predictive power of our approach with a reduced dataset remained
larger than the predictive power of the other approaches. We observe a strong positive correlation bet-
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TABLE 2 — Predictive capabilities of the various possible approaches to estimate the relative abundance
of 34 bird species in 63 sites in the Aquitaine region. For each possible estimation approach m, we
present the median (calculated over the species) of the Pearson’s correlation coefficient between the
relative abundance J\Nfz’? estimated by the approach m and the relative abundance ij estimated by the
“reference” STOC approach. In parentheses, we present the interquartile range of this coefficient. These
quantities are calculated for the set of species only monitored in the ACT survey and for the set of species
not monitored in this survey.
Ratio  Species only in ACT  Species not monitored in ACT

Nt 0.55 (0.38 — 0.68) 0.35 (0.19 — 0.47)
zif;;’“ 0.54 (0.25 - 0.61) 0.28 (0.08 — 0.40)
NG 0.27 (0.13 — 0.49) —
N, 0.06 (-0.07 — 0.23) —
N{} 0.29 (0.24 — 0.55) 0.11 (0.06 — 0.22)
N7 0.44 (0.35 — 0.51) 0.38 (0.13 — 0.46)

ween the estimates N’f}*a obtained with the full standardized dataset and the estimates N,?“/ obtained
with the reduced standardized dataset (median Pearson’s R = 0.84, IQR = 0.81 — 0.90). This illustrates
clearly the gain of precision obtained by combining the small standardized dataset with a large amount of
opportunistic data, which we demonstrated in section 3.1. The very fine-grained distribution of observa-
tions contained in the opportunistic dataset can more efficiently predict site-specific variation in relative
abundance than can the standardized dataset.

We investigated the ability of our method to estimate the relative abundance of species not mo-
nitored in the ACT survey. Note that the between-site variance of the log relative abundance estimated
with our method Ni“jH was larger in average for the species monitored in the ACT survey (median = 2.41,
IQR = 1.1 — 104) than for the species not monitored in this survey (median = 1.15, IQR = 1.04 — 1.34),
which resulted in smaller Pearson’s coefficient for the latter species (Tab. 2). Our approach performed
better than the approaches based on the dataset a or £1 alone. The predictive power of our approach and
the approach £2 were similar. Actually, the log observational intensity estimated in a site by our approach
for the LPO dataset was strongly correlated with the logarithm of the total number of birds detected in
this site (Pearson’s R = 0.85), which supports to some extent the common practice of biologists to use
the total number of birds detected in a place as a measure of the observational intensity.

5 Discussion

5.1 Overview

We propose a general approach to estimate relative abundances of multiple species on multiple
”sites” (corresponding to different times and/or locations) by combining one or several datasets collected
according to some standardized protocol with one or several datasets of opportunistic nature. The esti-
mation is performed with the generalized linear model (11). This modeling relies on several assumptions,
including : (i) the datasets have the same spatiotemporal extent, (i) the individuals of the monitored
species do not cluster into large groups, (iii) either the habitat types are known or the observational bias
towards some habitat types are the same across the different sites. In particular, the third hypothesis is
quite restrictive and handling cases where it is not met requires significant additional modeling.

We have demonstrated both theoretically (under the assumption that the model is well-specified)
and numerically on some datasets, that combining opportunistic data with standardized surveys produces
more reliable estimates of the relative abundances than either dataset alone. In particular, we observe
an improvement in our example Section 4 even if the above hypothesis (iii) is probably violated. We
have also shown that combining opportunistic data with standardized data allows for estimating relative
abundance for species which are not monitored in the standardized dataset.

Our approach for combining opportunistic data with survey data is quite general : It requires to be
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extended in order to overcome the current limitations (see the discussion in the next section) and to be
adapted to the specifics of each case study. Yet, we highlight two already promising applications of our
framework. First, we emphasize that our framework can be readily used to estimate temporal changes. In
such cases, the "sites” j correspond to different times j and E;; represent the parameters describing the
unknown observational intensity at time j for the opportunistic dataset. For temporal variation, biased
attention for some habitats in the opportunistic dataset will meet the hypothesis (iii) as long as this
biased attention is constant over time. As explained in Section 2.2, such biases will be entirely captured
in the estimation of the Pj. For example, the accuracy of bird population trends for France will be
considerably improved by the addition of opportunistic data to the current Breeding Bird Surveys.

Another very interesting feature of our framework is its ability to estimate the relative abundance
of very rare species, even if these species are not monitored with a scheme with known sampling effort.
This has important practical implications. For example, Guisan et al. (2006) noted “in a sample of
550 plots surveyed in a random-stratified way based on the elevation, slope, and aspect of the plot
during two consecutive summers in the Swiss Alps (704.2 km?), not one occurrence of the rare and
endangered plant species Eryngium alpinum L. was recorded. This was despite the species being easily
detectable if present and independent records of the species existing in the area within similar vegetation
types.” Our framework would be very useful in this context. In particular, if a citizen science program
collects opportunistic data on this species along with some other more common species, then the relative
abundance of the rare species can be estimated by combining these opportunistic data with standardized
surveys monitoring the same common species.

5.2 Limitations and extensions

We derived from our analysis Section 2.1 a model based on the Poisson distribution. In practice, we
may observe some overdispersion in the data. Causes of overdispersion include clustering of individuals,
spatial auto-correlation, identification errors, etc. It is then wise to account for overdispersion in the
modeling (see Section 4).

The main assumption in our modeling (1) is that the observational bias O, can be decomposed
into Oy = P Eji. As explained in Section 2.2, this mainly amounts to assume that the habitat types
are known or the observational bias towards some habitat types are the same across the different sites.
This assumption will not be met in many cases and we can expect a significant improvement by taking
habitat types heterogeneity into account. This issue requires a significant additional modeling and it will
be developed elsewhere.

In our estimation framework, we did not take into account any variable affecting the distribution of
the relative abundance in the different sites. However, it is well-known that there might be a spatial (if the
“sites” are spatial units) or temporal (if the “sites” are time units) autocorrelation in the densities. For
example, it is frequent that if the abundance of a given species is high in a given spatial unit, it will also
be high in neighboring units. Moreover, spatial units with a similar environmental composition will often
be characterized by similar abundances. Explicitly accounting for these patterns in the estimation process
could lead to an increased accuracy of the estimation (by reducing the effective number of parameters).
This could be done by modeling the relative abundances Z\~7ij as a function of environmental variables,
or as a function of spatial effects (e.g. using conditional autoregression effects in a hierarchical model,
see Banerjee et al., 2004). Alternatively, it is possible to maximize a regularized log-likelihood, i.e. to

maximize for example :
I J J
IOg,C — Z Z Z l/’lij(j\\}ij — Nlm)z

i=1 j=1m=1

where £ is the likelihood of the model, 7, is a measure of “environmental and spatial proximities”
between the unit j and the unit m, and v is a positive parameter that determines the strength of the
penalty. The proximities could be of any sort (e.g. taking the value 1 if the two spatial units are neighbours,
and 0 otherwise ; inverse Euclidean distances between the units in the space defined by the environmental
variables, etc.). This kind of regularization would reduce the number of effective parameters in the model
and thereby increase the accuracy of the estimation (for example, see Malbasa and Vucetic, 2011).

Our statistical approach relies on the assumption that the measurement errors (identification errors,
false positive) were negligible. This is a common assumption in this type of study, although recent studies
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seem to indicate that (i) even a small number of false positives can lead to biases in estimates (Royle
and Link, 2006), and (ii) even highly trained professionals may be subject to such errors (e.g. McClintock
et al., 2010). As a solution to this problem, Miller et al. (2011) proposed to combine data collected
using different approaches characterized by different probabilities of identification errors (e.g. hear counts
vs. visual counts). This approach has not yet been thoroughly tested though, especially in the context
of (relative) abundance estimation. Taking into account measurement errors in our framework, e.g. by
integrating the approach of Miller et al. (2011), still requires further study.

The detectability of a given species is not necessarily constant across sites j in the standardized
dataset, as documented in the literature (Link and Sauer, 1997; MacKenzie and Kendall, 2002). This
unaccounted variation of detection probability will result into an unaccounted variation of the observa-
tional intensity. Because the knowledge of this intensity plays a crucial role in the fit of the model, such
errors may bias the estimates if this variation of detection probability is structured according to some
exogenous variables (e.g. habitat types). Many statistical frameworks based on a particular sampling
design have been suggested to estimate detectability, such as using mixture models based on repeated
counts (Royle, 2004). Further work is required to adapt such methods to our proposed framework.
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A Link with thinned-Poisson processes

In Section 2.1, we described a first modeling of the count data X, leading to our model (1). In
this appendix, we explain how the model (1) can also be motivated by another point of view relying
on the inhomogeneous point process (IPP, see Cressie, 1993). Indeed, IPPs have recently been shown to
be a central approach to model species distribution in ecology. Aarts et al. (2012) have shown the close
connections existing between IPPs and resource selection functions, a commonly used approach to model
habitat selection by the wildlife (Boyce and McDonald, 1999). Moreover, IPPs have also been shown to
generalize other statistical approaches commonly used to model species distribution, such as the MaxEnt
approach (Renner and Warton, 2013) or the classical logistic regression (Fithian and Hastie, 2013). We
compare the IPP with our approach in this section.

The framework of IPPs suppose that the individuals of the species i are distributed on a domain
D according to a Poisson point process with intensity A;(s). If we assume that the individual at location
s is detected and recorded in the dataset k with probability b, (s), then the individuals of the species i
recorded in the dataset k are distributed according to a Poisson point process with intensity A;(s)bi(s).
The multiplication of \;(s) with b;;(s) results in a “thinning” of the IPP; for this reason, the resulting
point process is sometimes called thinned-Poisson process (e.g. Fithian et al., 2014). Note that in the
context of IPPs, each individual is supposed to be counted at most once in each dataset (undercounting).
On the contrary, in Section 2.1, we allowed multiple counts of a single individual during the multiple visits
in a site, which makes our development more sensible for studies characterized by a strong observational
intensity (which is generally the case of citizen science data).

However, even with this difference, our model (1) can be motivated in the context of IPPs. We can
adopt different points of view for estimating relative abundances with this modeling based on IPPs. A
first point of view is to introduce a model for the abundance intensities A;(s) and the probabilities b;x(s)
and then estimate these quantities accordingly. Such a point of view has been successfully developed in
a simultaneous and independent work by Fithian et al. (2014) : They model the abundances intensities
by Ai(s) = e*+B =) with x(s) some observed environmental variables, the probabilities by by (s) =
i+ 2(9) with z(s) some other observed environmental variable and b;o(s) = 1 at locations where survey
data are available and b;o(s) = 0, else. The abundance intensities are then estimated by Xz(s) = eaﬁ@%(s),
with @; and @ some penalized maximum likelihood estimators of «; and ;.

An alternative point of view, which corresponds to the point of view developed in this paper, is

not to try to infer the intensities A;(s) for each s, but instead, to work at the scale of a whole site S; C D

and infer the mean abundance A;; = [4 Ai(s)ds of the species i on Sj. An important feature is that
J

we do not model the abundance intensities A;(s) and the probabilities b;i(s) in terms of some observed
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environmental variables, but rather simply assume some structural properties on these functions. In
particular, the mean abundance A;; in the site j is not assumed to be completely driven by some observed
environmental variables.

Let us explain how the model (1) can arise in such a context. Let us denote by d;;(s) = A;(s)/Ay;
the probability density distribution describing the probability for a given individual of the species i in
the site j to be located in s € S;. The number Xj;;, of individuals of the species ¢ counted in the site j
in the dataset k is then distributed according to

Xijk ~ Poisson (AijOijk) with Oz]k- = / dz‘j (s)bzk(s) ds.
Let us describe some scenarii, where the observational bias O;;, can be decomposed as Oy, = P Eji,
leading to the model (1).

In the three examples below, we will assume that the detection/reporting probability b;;(s) can

be decomposed in
bir(s) = pikdr(s) (18)
with ¢x(s) not depending on i. This means that the detection/reporting bias b;x(s)/b1k(s) = pir/D1k
towards the species i in the dataset k is independent of the location s (in other words the functions
b1x(8),...,brx(s) are proportional one to the others). When this property is met we have the decompo-
sition
Oijk :pik/ dij(s)or(s) ds.
S

The decomposition does not give a decomposition O;j, = P Ej in general. Yet, such a decomposition
arises in the three scenarii described below (which are the counterparts of the three examples described
in Section 2.2).

Example 1 : sites with homogeneous habitat type. Assume that the species intensity ratios
Ai(8)/Air(s) depend on the species 4, ¢ and the site j, but not on the location s € S;. Such a property is li-
kely to be met if the site j has an homogeneous habitat type. In this case, we have A;(s)/Ai(s) = Asj/Ai;
and hence \;(s) = A;;g(s) for all i and s € S;. Then, we have

Oijr = Py oy, with Py, = ps, and Ejk:/ 9(8)r(s) ds.

J

Example 2 : observations with known habitat type. In this example, we assume that for each
observation we know in which habitat type h(s) it has occurred (in particular, it will be the case if we
know the location s of each observation). Exactly as in the Example 2 in Section 2.2, we define k as
the couple k= (h, k). Assume that the density distribution d,;(s) depends on the species ¢ only through
the habitat h(s) of s : For any ¢,7" and s,s' € S; such that h(s) = h(s") we have d;;(s)/dirj(s) =
dij(s")/dirj(s"). In this case, we have a decomposition d;;(s) = an(s)g(s) for all s € S;. Let us denote by
Sin ={s €8S, : h(s) = h} the portion of the site S; with habitat type h. For any 4, j and k= (h, k), the
counts X, xy of individuals of the species i in the habitat h in the site j for the dataset k is distributed
according to

Xij(nwy ~ Poisson (Ay; Pyn iy Ejnky)  With Pip ) = ainPinry and Ej ) = / 9(8)D(hk) (8) ds.

th

We then have the decomposition OUE = Pi?éEjE with k = (h, k). We emphasize that in this case the
probability p;(, ) appearing in the decomposition (18) is allowed to depend on the habitat type h (the
bias towards some species may differ depending on the habitat type).

Example 3 : homogeneous distribution of habitat types. We do not assume anymore that the

habitat type h(s) for each observation is known. We assume again that we have the decomposition
dij(5) = an(s)g(s) for all s € Sj, hence

Oijk = Dir y aih/ 9(s)or(s) ds.
h th
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If we assume in addition that

/ 9(5)n(s) ds = Qun / 9(5)n(s) ds, (19)
Sin ;

S;
then
Oijk = PirEj with Py =px Yy inQue and Ej = / 9(s)¢r(s) ds.
h 3;
Let us investigate when the decomposition (19) can be met. Assume first that ¢z (s) = Brn(s)Vr(s) where

k() reflects local fluctuations independent of the habitat type. The function g(s)vyx(s) then represents
small scale fluctuations and we can expect to have

/ 9()(5) ds ~ g/,
S

for S large enough. It would be the case for example if g(s)7yx(s) was the outcome of a stationary process.
We then have
Js,, 9(s)ox(s) ds . DBrkar|Sjnl

s, 9(s)¢x(s) ds T3 BukanlSinl
When the ratios |Sj;|/|S;| do not depend on j, the above ratio depends on h and k only, so (19) holds.

This case corresponds to sites S; all having a similar distribution of habitat types. This property will be
met if the sites S; correspond to the same location at different times j.

B Mathematical proofs

B.1 Identifiability conditions

With the notations n;; = log(N;;), e;x = log(E;x) and p;r = log(P;), the model (1) described in
our paper can be recast as a classical generalized linear model

Xijk ~ POiSSOn()\ijk), with 10g()\ijk) = Ny; + €k + Dik-

The kernel of the design matrix associated with this linear regression has a dimension equal to I + J + 1.
Therefore, we need I + J + 1 constraints to ensure the identifiability of the model.

B.2 Properties of the estimators

The negative log-likelihood of the parameters (N;;, Ejk7 JSZ;C) is

L= ZZ Z (NijEjkék — Xijk 10g(N¢jEjk}~7ik) + IOg(Xijk!))
i€l j€J ke{0,1}
where the parameters {Ejo, j€J}and {]51-0, i € I} are known, Pio=1and P;; =1 forallic I.

To keep the mathematical analysis of the maximum likelihood estimators comprehensible, we focus
below on the case where the P;y are known. The maximum likelihood estimators of N;; and F;; are then
the solutions of

- X+ Xy S Xy
Nij = M and Ejl = ,\#]1 5 (20)
PyEjo+ Ej Ny

where Xy, = 3, Xijr and Ngj = 3, Nij.

We first treat the simplest case where the ]52-0 are all equal.
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B.2.1 Case of constant ratios P;y/P;;

We consider in this paragraph the case where ﬁio = ﬁm for all ¢ € I. This corresponds to the case
where for all the species i, the detection/reporting probability ratios P;o/P;; are the same and equal to
Pyo/Py1. We derive from (20)

Ny = Xpjo + Xy
;=
EJO + Ejl
and inserting this expression in the formula for Ejl we obtain Ejl = EjoX#jl /Xuj0. As a consequence,
we obtain the closed-form expression for N;;

V.o g0+ X Xajo

N X#jo+X#j1 Ejo

(21)

According to the strong law of large numbers for Poisson processes, we have

S T o
Nij Ejl—_; —_— J X 7~#J0 (22)

Ny;  Ejo

and

- 2 _ _
var(Ni ) e Ny ) Nag _ N Niho
Ny Ejo  Ejo > Nij P

If we estimate Nl] with the sole “known-effort” data X”O, the maximum likelihood estimator is given by

N% = sz/E o and its variance equals Var(Ng) = N;j /EJO We can then compare the variance of Nw
and Nioj
£ Ej1—o - Nz ’PiO
var(N;;) '~ var(N%) x —L 2 23
( 2]) ( zg) Zl NleZO ( )

B.2.2 Case of arbitrary ratios P;y/P;;
We no longer assume that the on are all equal. In this case, we have no closed-form formula for
N;; but we can compute a first-order expansion of NU in terms of the inverse of X4 ;.

The first step is to check that N#j is upper-bounded independently of the X;;1. When P;y > 0 for
all 4 (which means that the same species are monitored in the datasets 0 and 1), we have from (20)

= Xijo + Xij
i S == = .
min; (PoEio) + Xyj1/ Ny
Summing these inequalities we obtain the upper-bound

Na; < Xgjo/ min( P Ejo)

which does not depend on Xj;;i. The case where P,y = 0 for some ¢ can be treated similarly : splitting
apart the indices in Iy = {i € I : P,y = 0} and those out of Iy, we get from (20)

>ier, (Xijo + Xij1) N > i1, (Xijo + Xij1)
Xyj1/Ny; min¢ 1, (PioEio) + Xyj1/Ny;

Nyj <

This inequality is equivalent to

¥y, (1  2iesy (Xijo + Xij)
X1

) < X#Jo/mm( E 0)-
In the asymptotic F/;; — oo we obtain the asymptotic upper-bound

< — X0 ZierNiy
ming r, (PioEjo) > sen 1, Nij
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Now that we have checked that [\\f#j is (asymptotically) upper-bounded independently of the X1,
we can write a first-order expansion of the formula (20)

N Xiio+ X;i1)Nw;  (Xijo+ Xij1)N2 . PoE, X;
N, = (Xijo 7;( ‘J1) #i (Xijo )212) #5* 10-50 +0 <X3J1 > ' (24)
#3j1 #i1 #3j1

Summing these expansions over i € I and simplifying the expression gives

Ny = XyjoXuin (1 Lo ( 1 ))
== = )
Ej0 Y, Po(Xijo + Xij1) Xaj

Plugging this formula in (24) gives

N _ Xijo + Xij1 » Xujo o <1+O< 1 )>
ij = = =
> Pio(Xij0 + Xij1) E; Xaji1
Ejl_—>>:>o Nij X#]O

Zl PN lj EJO
where the last limit follows again from the law of large numbers for Poisson processes. Computing the
asymptotic variance when F;; — oo, we find after simplification

-, _
Var(ﬁij) Ejl—_;oo ~Nli = = ~NZE X PiONij . (25)
Y1 PioNijEjo PoEjo > 1 PNy

As in the previous case, we can compare this variance to the variance of the maximum hkehhood
estimator N = ngo/( zOE]O) obtained by estimating Nl] with the sole values X;jo. The variance of N,

being var(Ng) N”/( ’LOEjO) we obtain the reduction of variance

PioNi;
22 PNy

Ej1—o0

var(Nij) ~ Var(]v?j)x (26)
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