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Résumé15

With the internet, a massive amount of information on species abundance can be collected under16

citizen science programs. However, these data are often difficult to use directly in statistical infe-17

rence, as their collection is generally opportunistic, and the distribution of the sampling effort is18

often not known. In this paper, we develop a general statistical framework to combine such “oppor-19

tunistic data” with data collected using schemes characterized by a known sampling effort. Under20

some structural assumptions regarding the sampling effort and detectability, our approach allows to21

estimate the relative abundance of several species in different sites. It can be implemented through22

a simple generalized linear model. We illustrate the framework with typical bird datasets from the23

Aquitaine region, south-western France. We show that, under some assumptions, our approach pro-24

vides estimates that are more precise than the ones obtained from the dataset with a known sampling25

effort alone. When the opportunistic data are abundant, the gain in precision may be considerable,26

especially for the rare species. We also show that estimates can be obtained even for species recor-27

ded only in the opportunistic scheme. Opportunistic data combined with a relatively small amount28

of data collected with a known effort may thus provide access to accurate and precise estimates of29

quantitative changes in relative abundance over space and/or time.30

Keywords : opportunistic data, species distribution map, sampling effort, detection probability31
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1 Introduction32

How species abundance varies in space and time is a major issue both for basic (biogeography,33

macroecology) and applied (production of biodiversity state indicators) ecology. Professionals working34

on biodiversity thus spend considerable resources collecting data that are suitable for estimating this35

variation (Yoccoz et al., 2001). Most of the scientific literature recommends the implementation of both a36

statistically valid sampling design and a standardized protocol for collecting such data (e.g. see Williams37

et al., 2002, for a review). Many methods have been developed to estimate species abundance in a defined38

location, e.g., using mark-recapture methods (Seber, 1982) or distance sampling approaches (Buckland39

et al., 1993). However, these approaches require an intense sampling effort and are not always practical.40

Many authors have noted that most frequently, interest will not be in abundance itself, but either in the41

rate of population change, i.e., the ratio of abundance in the same location at two different time points, or42

in the relative abundance, i.e., the ratio of abundance at two separate locations (MacKenzie and Kendall,43

2002).44

Relative abundance is frequently monitored with the help of simpler schemes. For instance, a set of45

sites is randomly sampled in the area of interest, and counts of organisms are organized on these sites using46

a given protocol. At a given location, the resulting count can be used as an index of the true abundance.47

Indeed, assuming constant detectability over space and time, the average number of animals counted per48

sampled site is proportional to the true abundance of the species in the area. Log-linear models can be49

used to represent this average number of animals detected per site as a function of space and/or time50

(and, possibly, other factors such as the habitat ; see for example van Strien and Pannekoek, 2001), and51

thereby, to infer population trends. Thus, such programs have been implemented in many countries to52

monitor the changes in the abundance of several groups of species, such as birds (e.g., for the French53

Breeding Bird Survey, see Julliard et al., 2004) or butterflies (e.g., for the European Butterfly Monitoring54

Scheme, see van Swaay et al., 2008). Estimates of relative abundance have also been commonly used for55

mapping the spatial distribution of several species (e.g., Gibbons et al., 2007).56

In addition to such data characterized by a known sampling effort, a large amount of data can57

also be collected by non-standardized means, with no sampling design and no standardized protocol.58

In particular, the distribution of the observers and of their sampling effort is often unknown (Dickinson59

et al., 2010). These so-called “opportunistic data” have always existed, and with the recent development of60

citizen science programs, we observe a massive increase in the collection of these data on a growing number61

of species (e.g., Dickinson et al., 2010; Hochachka et al., 2012; Dickinson et al., 2012). Additionally, as62

the use of online databases facilitates the exchange and storage of data, such opportunistic data may now63

include millions of new observations per year that are collected in areas covering hundreds of thousands64

of square kilometres (e.g., the global biodiversity information facility, including more than 500 million65

records at the time of writing, see Yesson et al., 2007).66

The temporal and spatial distributions of the observations in such data reflect unknown distri-67

butions of both observational efforts and biodiversity. Thus, a report of a high number of individuals68

of a given species at a given location compared to other locations could be because the focus species69

is abundant at this location or because numerous observers were present at this location. Using such70

opportunistic data to estimate changes in the space and time of species abundance is therefore complex,71

since any modeling approach should include a submodel of the observation process (Kéry et al., 2009;72

Hochachka et al., 2012) or an attempt to manipulate the data to remove the bias caused by unequal effort73

(see a discussion in Phillips et al., 2009).74

As noted by MacKenzie et al. (2005), “In some situations, it may be appropriate to share or borrow75

information about population parameters for rare species from multiple data sources. The general concept76

is that by combining the data, where appropriate, more accurate estimates of the parameters may be77

obtained.” In this paper, we propose a general framework which enables to combine data with known78

observational effort (which we call “standardized” data) with “opportunistic” data with an unknown79

sampling effort. We focus on multi-species and multi-site data that correspond to the data typically80

collected in this context.81

The purpose of this study is to estimate the relative abundance of the species at different sites82

(different locations and/or times). We base this estimation on two datasets recording the number of ani-83

mals detected by observers for each species of a pool of species of interest and each spatial unit of a study84

area of interest : (i) one “standardized” dataset is collected under a program characterized by a known85
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sampling effort, possibly varying among spatial units, (ii) one “opportunistic” dataset is characterized by86

a completely unknown sampling effort. We take into account the variation across species of their detecta-87

bility, yet, as a first step, we assume that the observational bias towards some species are the same across88

the different sites. We show that, under this assumption, the information concerning both the distribu-89

tion of the observational effort and the biodiversity can be efficiently retrieved from “opportunistic” data90

by combining them with standardized data. Moreover, we prove that such a combination returns more91

accurate estimates than when using the standardized data alone. Our statistical framework allowing this92

win-win combination can open numerous avenues for application. We used data on French birds, which93

are typical of existing data, to illustrate the numerous qualities of this framework. Note however that the94

work presented in this paper is a first step, and that further work will be required to fully account for95

varying observational bias towards some habitat types across the different sites.96

During the reviewing process of this paper, we became aware of an independent and simultaneous97

work by Fithian et al. (2014) which develops similar ideas for combining multi-species and multi-sites98

data with thinned Poisson models.99

2 Statistical modeling100

We want to estimate the relative abundance (relative number of individuals) of I species in J sites.101

The “sites” j can either refer to different spatial sites, to different times, or to different combinations of102

sites and times. We suppose that we have access to K datasets indexed by k which gather counts for103

each species i at each site j. We have in mind a case where some datasets have been collected with some104

standardized protocol, while some others are of opportunistic nature.105

Let Xijk be the count of individuals of the species i by the observers in the site j in the dataset k.106

In this paper, we propose to model the counts Xijk by107

Xijk ∼ Poisson(NijPikEjk), for i = 1, . . . , I, j = 1, . . . , J and k = 0, . . . ,K − 1, (1)

where Nij is the number of individuals (animals, plants, etc) of a species i at site j, and Pik, Ejk are two108

parameters accounting for the bias induced by the observational processes. The parameter Pik reflects109

both the detectability of the species i (some species are more conspicuous than others, some are more110

easily trapped, etc.) and the detection/reporting rate of this species in the dataset k (the attention of the111

observers may systematically vary among species). The parameter Ejk reflects the impact of the varying112

observational effort (including number and duration of visits, number of traps, etc.) and the varying113

observational conditions met during the counting sessions. In the next two sections, we explain the origin114

of our modeling, the hypotheses under which it is valid (see also the discussion Section 5), and we describe115

precisely the meaning of the two dimensionless parameters Pik and Ejk. We refer to the Appendix A for a116

discussion on the link with models based on thinned Poisson processes. Before moving to these modeling117

issues, we point out that estimation can be easily carried out in the model (1), since it can be recast into118

a linear generalized model, see Section 2.4.119

2.1 Count modeling120

The count Xijk of individuals of the species i in the site j for the dataset k is assumed to gather121

the counts from all visits in the site j. We assume that an individual is only counted once during a single122

visit, yet it can be counted several times in any dataset due to the possible multiple visits to a site j for123

a dataset k. In particular, we may have Xijk larger than the number Nij of individuals of the species i124

in the site j. In the following, we neglect identification errors and false positives.125

For an individual aij of the species i in the site j and a visit vjk in the site j for the dataset k, we
define the random variable Zaijvjk

which equals 1 if the individual aij has been seen and recorded during
the visit vjk, and 0 otherwise. Assuming that there is no multiple count of an individual during a single
visit, the count Xijk is then given by

Xijk =
∑

vjk∈Vjk

Nij∑

aij=1

Zaijvjk
,
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where Vjk is the set of all the visits vjk in the site j for the dataset k. In the following, we denote by126

paijvjk = P
(
Zaijvjk

= 1
)
the probability for the individual aij to be seen and recorded during the visit127

vjk.128

If we assume that the random variables {Zaijvjk
: aij = 1, . . . , Nij and vjk ∈ Vjk} are independent129

and that130

∑

vjk∈Vjk

Nij∑

aij=1

p2aijvjk
is small compared to

∑

vjk∈Vjk

Nij∑

aij=1

paijvjk
,

(which happens when paijvjk
is small), then, according to Le Cam Inequality (Le Cam, 1960), the count131

Xijk follows approximatively the Poisson distribution132

Xijk ∼ Poisson

( ∑

vjk∈Vjk

Nij∑

aij=1

paijvjk

)
= Poisson

(
Nij

∑

vjk∈Vjk

p̄ivjk

)
, with p̄ivjk

=
1

Nij

Nij∑

aij=1

paijvjk .

(2)
The parameter p̄ivjk corresponds to the average probability to detect and report during the visit vjk an133

individual of the species i which has been sampled at random in the site j. We observe that the mean of134

the Poisson distribution135

Nij

∑

vjk∈Vjk

p̄ivjk
= NijOijk

is the product of a first term Nij , which is the number of individuals of the species i present in the site136

j, by a second term Oijk, which is a nuisance term due to the observational process. We underline that137

the term Oijk can be larger than 1 when the number Vjk of visits in the site j for the dataset k is large,138

since an individual can be counted several times during the Vjk visits.139

2.2 Main modeling assumption140

The main hypothesis of our modeling (1) is that the observational parameter Oijk can be decom-141

posed as142

Oijk = PikEjk. (3)

Let us give three examples where such a decomposition holds.143

Example 1. (single habitat type) Assume that the ratios p̄ivjk
/p̄i′vjk

depend only on the species i144

and i′ and on the dataset k, so that p̄ivjk
/p̄i′vjk

= p̄iv′

j′k
/p̄i′v′

j′k
for all i, i′, j, j′, vjk, and v′j′k. This means145

that the detection/reporting probability p̄ivjk of an individual of the species i during the visit vjk can be146

decomposed as147

p̄ivjk = Pikqvjk
, (4)

with Pik the mean detection/reporting probability of the species i during a visit for the dataset k and qvjk148

depending only on the visit vjk (not on the species i). The parameter qvjk
represents the influence of the149

observational conditions during the visit vjk on the detection/reporting probability. The parameter qvjk
150

is then a very complex function of the observational duration, the visibility conditions (weather condi-151

tions during the visit, vegetation met, etc.) and many other variables that affect the detection/reporting152

probability (number of traps, length of line transects, etc.). When the decomposition (4) holds, we have153

the decomposition (3) with Ejk =
∑

vjk∈Vjk
qvjk

.154

The decomposition (4) enforces that the detection/reporting probability p̄ivjk
does not depend on155

interactions between the species i and the visit vjk. This property is quite restrictive and it is not likely156

to be met when several habitat types are present within a site j. Actually, if two visits vjk and v′j′k take157

place in two different habitat types hjk and h′
j′k then the ratios p̄ivjk

/p̄i′vjk
and p̄iv′

j′k
/p̄i′v′

j′k
are not158

likely to be equal for all i and i′ since some species may be specialized to the habitat type hjk and some159

others to the habitat type h′
j′k. We can weaken the assumption (4) by allowing interactions ǫivjk

between160

the species i and the visit vjk as long as they cancel on average on each site j161

p̄ivjk
= Pikqvjk

+ ǫivjk
, with

∑

vjk∈Vjk

ǫivjk
≃ 0. (5)
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When (5) holds, we again have the decomposition (3) with Ejk =
∑

vjk∈Vjk
qvjk . Such interactions ǫivjk

162

can take into account heterogeneous observer attention bias toward the species i, but it does not allow163

for some systematic bias induced by heterogeneous habitat types. Actually, assume that the site j has164

two habitats h and h′ and the site j′ has only the habitat h′. Then if the species i (respectively i′) is165

specialized to habitat type h (respectively h′) we will have either
∑

vj′k
ǫivj′k

< 0 or
∑

vjk
ǫi′vjk

< 0. So166

(5) cannot hold. The next two examples focus on the impact of heterogeneous habitat types.167

Example 2. (known habitat types) Assume that for each count, we know in which habitat type it168

has occurred. Let us introduce the parameter k̃ = (h, k) where h represents the habitat type h and k169

the dataset. For each dataset k, we can then pool together the counts occurring in the same site j and170

habitat type h. Let us denote by Xij(h,k) the counts of the species i in the site j, the habitat type h171

for the dataset k. We assume in the following that each visit occurs in a single habitat type : If not, we172

can artificially split a single visit in H different habitat types into H different visits, each occurring in a173

single habitat type.174

Our main modeling assumption in this example is that the ratios p̄ivj(h,k)
/p̄i′vj(h,k)

depend only on175

the species i and i′, the dataset k and the habitat type h. This means that for each i, i′, j, j′ and k̃ = (h, k)176

we have p̄iv
jk̃
/p̄i′v

jk̃
= p̄iv′

j′k̃

/p̄i′v′

j′k̃

for all visits vjk̃, v
′
j′k̃

in the same dataset and the same habitat type.177

In this case, the probability p̄ivj(h,k)
can be decomposed as178

p̄ivj(h,k)
= Pi(h,k) qvj(h,k)

, (6)

with Pi(h,k) the mean detection/reporting probability of a typical individual of the species i during a visit179

in the habitat type h for the dataset k and qvj(h,k)
not depending on i. We then have for k̃ = (h, k)180

Oijk̃ = Pik̃Ejk̃, with Ejk̃ =
∑

v
jk̃

∈V
jk̃

qv
jk̃

and Pik̃ = Pi(h,k) defined by (6).

As above, we can allow some non-systematic heterogeneity by merely assuming that p̄ivj(h,k)
= Pi(h,k) qvj(h,k)

+181

ǫivj(h,k)
with

∑
vj(h,k)∈Vj(h,k)

ǫivj(h,k)
≃ 0.182

Example 3. (homogeneous habitat type proportions) We assume again that each visit vjk occurs183

in a single habitat type h(vjk) (by artificially splitting non-homogeneous visits). Yet, we assume that this184

habitat type is not reported in the dataset. As in the second example, we also assume that the ratios185

p̄ivjk
/p̄i′vjk depend only on the species i and i′, the dataset k and the habitat type h(vjk). Hence, the186

probability p̄ivjk
can be decomposed as187

p̄ivjk = Pih(vjk)k qvjk , (7)

with Pihk the mean detection/reporting probability of a typical individual of the species i during a visit188

in the habitat type h for the dataset k and qvjk
not depending on i. Writing Vjk(h) for the set of the189

visits vjk in the habitat type h we have190

Oijk =

H∑

h=1

∑

vjk∈Vjk(h)

p̄ivjk =

H∑

h=1

PihkEjhk, with Ejhk =
∑

vjk∈Vjk(h)

qvjk .

The parameters Ejhk are likely to depend on h since there can be some observational bias towards some191

habitat types. If we assume that the observational bias is the same for each site j, which means that192

Ejhk/Ej′hk does not depend on h, we have the decomposition193

Ejhk = EjkQhk, (8)

where Qhk reflects the observational bias towards the habitat type h in the dataset k. When the decom-194

positions (7) and (8) hold, we have195

Oijk =

H∑

h=1

PihkQhkEjk = PikEjk, with Pik =

H∑

h=1

PihkQhk,

so Oijk fulfills the decomposition (3). Again, as in the two first examples, we can weaken (7) by merely196

assuming that197

p̄ivjk
= Pih(vjk)k qvjk + ǫivjk

, with
∑

vjk∈Vjk

ǫivjk ≃ 0.
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Let us explore when the decompositions (7) and (8) are likely to hold. We first observe that the decompo-198

sition (7) will be met as long as we include in the definition of the ”habitat type” h(vjk) all the exogenous199

variables which induces an interaction between the species i and the visit vjk. The decomposition (8) is200

much more stringent. It requires that, for each dataset k, the observational bias towards some habitat201

types is the same across the different site j. It may not hold when the proportions on habitat types differ202

among the different sites. For example, if an habitat h is missing in a site j, then Ejhk = 0, so (8) cannot203

hold if Ej′hk 6= 0 for another site j′. An example where this property is more likely to be met is when204

the ”sites” j correspond to the same spatial unit observed at different years j. In such a case, we can205

expect that the observational bias towards some habitat types remains stable years after years. When the206

observational bias towards some habitat types is not constant across the site, the decomposition (3) is207

not met in general. This case requires a substantial additional modeling that will be developed elsewhere.208

Interpretation. Let us interpret more precisely the parameters Pik and Ejk in the decomposition (3).209

Writing Vjk for the number of visits in the site j for the dataset k, we first observe that210

1

J

J∑

j=1

1

Vjk

∑

vjk∈Vjk

p̄ivjk =
1

J

J∑

j=1

Oijk

Vjk
=

1

J

J∑

j=1

Pik
Ejk

Vjk
= PikĒk, with Ēk = J−1

J∑

j=1

Ejk/Vjk.

We can always replace (Pik, Ejk) in the decomposition (3) by (P ′
ik, E

′
jk) = (PikĒk, Ejk/Ēk). Applying211

this renormalization step and dropping the prime (for notational simplicity), we obtain212

Pik =
1

J

J∑

j=1

1

Vjk

∑

vjk∈Vjk

p̄ivjk
, (9)

which means that Pik is the mean detection/reporting probability of a typical individual of the species i213

during a typical visit for the dataset k.214

As explained in the three above examples, the parameter Ejk in (3) is a complex function of the215

conditions met during the visits in the site j for the dataset k, including the observational effort. This216

parameter Ejk can be (much) larger than 1 when the number Vjk of visits in the site j for the dataset217

k is very large. We point out that we can have Ejk very large even if Oijk is smaller than 1, when218

the probability Pik of detection/reporting of a typical individual of the species i is very small. In the219

remaining of the paper, we call observational intensity at the site j in the dataset k the parameter Ejk.220

2.3 Identifiability issues221

In the following, we deal with two datasets. A first dataset labeled by k = 0, in which we suppose222

that the observational intensities Ej0 are known up to a constant. Henceforth, we will call this dataset223

the standardized dataset. We also consider a second dataset labeled by k = 1, characterized by unknown224

observational intensities Ej1. We will refer to this dataset as the opportunistic dataset.225

2.3.1 A single opportunistic dataset is not enough226

We consider first the case where we have a single dataset, i.e. K = 1. For notational simplicity,227

we drop the index k in this paragraph. Our observations Xij then follows a Poisson distribution with228

intensity λij , where λij = NijPiEj . We cannot recover the IJ + I + J parameters Nij , Pi, and Ej from229

the IJ intensities λij . Yet, if we are only interested by the relative abundances Nij/Nij′ with respect to230

a reference site, say j′ = 1, can we recover the I(J − 1) ratios {Nij/Ni1 : j = 2, . . . , J, i = 1, . . . , I} from231

the IJ parameters λij ?232

Let us write λij = ÑijP̃iẼj with Ñij = NijPiE1 , P̃i = 1 and Ẽj = Ej/E1. The parameters Ñij233

differ from the Nij by a multiplicative constant PiE1 depending only on the species i. Therefore, we have234

Nij/Nij′ = Ñij/Ñij′ , which means that the parameters Ñij give access to the relative abundances Nij/Ni1235

of the species i. When the dataset has been collected with a known sampling design, the observational236

intensity in a given site Ej is known up to an unknown constant, so that the ratios Ej/Ej′ are known237

and we can recover the Ñij (and hence the relative abundances) from λij since the P̃i and Ẽj are known.238

The situation is different with opportunistic datasets characterized by unknown ratios Ej/Ej′ . In this239
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case, the Ẽj are also unknown, so we cannot recover the Ñij from the parameters λij . Hence, we do not240

have access to the relative abundance Nij/Ni1. As explained in the next paragraph, we need to combine241

different datasets.242

2.3.2 Combining an opportunistic dataset with a standardized one243

Let us now investigate the identifiability issues when we combine a standardized dataset (labeled244

by k = 0) with an opportunistic one (labeled by k = 1). In this case, we have 2IJ parameters λijk =245

NijPikEjk for IJ+2(I+J) parameters Nij , Pik and Ejk. For IJ > 2(I+J), which typically holds for large246

J and I ≥ 3, we have more parameters λijk than parameters Nij , Pik and Ejk. Nevertheless, as explained247

in the Appendix B, the model is not identifiable without J+I+1 additional identifiability conditions. As in248

Section 2.3.1, we introduce some renormalisation Ñij , Ẽjk of P̃ik of Nij , Ejk and Pik, which enables us to249

easily express these identifiability conditions while preserving the identity ÑijẼjkP̃ik = λijk = NijEjkPik.250

In the following, we assume that the ratios {Ejk/Ej′k : j 6= j′} are known for the dataset k = 0251

(standardized dataset), but not for the dataset k = 1 (opportunistic one). As above, we define Ẽj0 =252

Ej0/E10 (which is known) and P̃i1 = 1 for all i. We could have set P̃i0 = 1 instead of P̃i1 = 1, but the253

latter choice is more suited for handling species i monitored in the dataset k = 1 but not in the dataset254

k = 0, as we will show later. We must still set one more constraint. We choose P̃10 = 1 for convenience.255

These I+J+1 constraints combined with the identity ÑijẼjkP̃ik = λijk = NijEjkPik lead to the change256

of variables :257

Ñij = NijPi1E10
P10

P11
,

Ẽjk =
Ejk

E10
×

P1k

P10
(10)

P̃ik =
Pik

Pi1
×

P11

P1k
.

In terms of these new variables, we have the simple statistical model Xijk ∼ Poisson(ÑijẼjkP̃ik) with258

Ẽj0 = Ej0/E10 for all j, P̃i1 = 1 for all i and P̃10 = 1. These J + I + 1 quantities are known, and the259

resulting statistical model is identifiable.260

Let us interpret these new quantities. The parameter Ñij is proportional to the abundance Nij by261

an unknown factor Pi1E10P10/P11 depending only on the species i. As in Section 2.3.1, these parameters262

give access to the relative abundance Nij/Ni1 = Ñij/Ñi1 of each species i in each site j. The parameters263

Ẽj1 are equal, up to a constant, to the observational intensity Ej1 ; therefore, they provide the relative264

observational intensities Ej1/E11 for each site j in the dataset 1. Finally, P̃i0 is proportional to the ratio265

Pi0/Pi1 by an unknown factor P11/P10, so we can compare the ratios Pi0/Pi1 across the different species.266

The ratio Pi0/Pi1 reflects the systematic difference of attention toward some species among the observers267

of the two schemes.268

In addition, we emphasize that we can consider the case where some species i are not monitored in269

the dataset 0 but are recorded in the dataset 1. This case can be handled by merely adding the constraints270

P̃i0 = Pi0 = 0 for the concerned species i.271

2.4 Estimation via a Generalized Linear Model272

We can estimate the parameters Ñij , Ẽjk and P̃ik by the maximum likelihood estimators (N̂ij , Êjk, P̂ik)273

with the constraints Êj0 = Ẽj0 for all j, P̂i1 = 1 for all i and P̂10 = 1. This estimation can be carried out274

with the help of a generalized linear model. Indeed, with the notations nij = log(Ñij), ejk = log(Ẽjk) and275

pik = log(P̃ik), Model (1) can be recast as a classical generalized linear model from the Poisson family276

with a log link :277

Xijk ∼ Poisson(λijk), with log(λijk) = nij + ejk + pik. (11)

Indeed, we only have to define ej0 = log Ẽj0 as a known offset in the model, pi1 = 0 for all i, and fit the278

resulting model with any statistical package (see Supplementary materials).279
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3 Theoretical gain of combining two datasets280

It is important to investigate whether the estimates of the relative abundance obtained by com-281

bining the dataset 1 with unknown observational intensity ratios Ej1/Ej′1 to the dataset 0 with known282

observational intensity ratio Ej0/Ej′0 improves upon the estimates obtained with the single dataset 0.283

In this section, we investigate this issue analytically. An improvement is expected simply by looking at284

the balance between the number of observations and the number of free parameters. With the dataset 0,285

we have IJ observations, and we want to estimate IJ free parameters ; whereas with the two datasets 0286

and 1, we have 2IJ observations for IJ + J + I − 1 free parameters. The balance between the number287

of observations and the number of free parameters is better in the second case. Below, we quantify the288

theoretical improvement more precisely by comparing the variance of the maximum-likelihood estimators289

in the two cases. Then, we show that dataset combination also allows to estimate relative abundance for290

species i not monitored in the dataset 0.291

3.1 Variance reduction292

For mathematical simplicity, we assume in the following that the ratios Pi0/Pi1 are known for all293

i. In terms of the normalized variables, this means that the P̃i0 are known.294

When we work with the single dataset 0, we can estimate Ñij with the maximum likelihood295

estimator N̂0
ij = Xij0/(Ẽj0P̃i0). Let us investigate how the maximum likelihood estimator N̂ij associated296

with the modelXijk ∼ Poisson(ÑijẼjkP̃ik) improves upon N̂0
ij . We consider the case where the (unknown)297

observational intensities Ej1 in the dataset 1 is much larger than the observational intensities Ej0 in the298

dataset 0. Hence, we consider the asymptotic setting where Ej1 goes to infinity. In the Appendix B, we299

show that the limit variance of N̂ij when Ej1 → ∞ is given by300

var(N̂ij)
Ej1→∞
→ var(N̂0

ij)×
Pi0Nij∑
l Pl0Nlj

. (12)

In particular, the variance of the estimate is reduced by a factor301

var(N̂ij)

var(N̂0
ij)

Ej1→∞
≈

Pi0Nij∑
l Pl0Nlj

,

when working with the two datasets instead of the sole dataset 0. This factor can be very small for rare302

species (Nij small), hardly detectable species (Pi0 small), or when the number I of monitored species is303

large.304

Let us explain the origin of this variance reduction in the simple case where the ratios Pi0/Pi1 are305

the same for all the species i (which formally corresponds to P̃i0 = 1 for all i). In this case, we have a306

closed-form formula for N̂ij (see Formula (21) in the Appendix B)307

N̂ij =
Xij0 +Xij1∑
l(Xij0 +Xlj1)

×

∑
l Xlj0

Ẽj0

,

which reveals the contribution of each dataset to the estimation of the (normalized) relative abundance.308

Actually, the estimator N̂ij is the product of two terms, where the first term mainly depends on the309

opportunistic dataset 1 when the observational intensities Ej1 are large, whereas the second term only310

depends on the dataset 0311

N̂ij

Ej1→∞
≈

Xij1∑
l Xlj1

×

∑
l Xlj0

Ẽj0

.

Let us interpret these two terms. The first ratio on the right-hand side provides an estimation of the312

proportion Ñij/
∑

l Ñlj of individuals in a site j that belong to a species i. This proportion is estimated313

by the ratio of the numberXij1 of individuals of the species i observed at site j in the opportunistic dataset314

to the total number
∑

l Xlj1 of individuals observed at site j in the same data. When the observational315

intensities Ej1 in the opportunistic dataset 1 is large, the ratio Xij1/
∑

l Xlj1 provides a very accurate316
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estimation of the abundance proportion Ñij/
∑

l Ñlj , and we have (see Formula (22) in the Appendix B)317

318

N̂ij

Ej1→∞
≈

Ñij∑
l Ñlj

×

∑
l Xlj0

Ẽj0

. (13)

The second term in the right-hand side of (13) provides an estimation of the total (normalized) relative319

abundance
∑

l Ñlj at the site j. This total (normalized) abundance is estimated from the dataset 0 by320

dividing the total number
∑

l Xlj0 of individuals counted at the site j in the dataset 0 by the (norma-321

lized) observational intensity Ẽj0. Let us now explain the reduction of variance observed in (12). The322

formula (13) shows that we estimate Ñij by first estimating the total (normalized) relative abundance323 ∑
l Ñlj with the dataset 0 and then renormalize this estimation with the ratio Ñij/

∑
l Ñlj which has324

been accurately estimated with the dataset 1. The reduction of variance observed in (12) then results325

from the use of the whole counts
∑

l Xlj0 at site j in the dataset 0 for estimating Ñij instead of the sole326

counts Xij0 of the species i at site j.327

3.2 Species not monitored in the scheme characterized by a known sampling ob-328

servational intensity329

As already mentioned, combining the two datasets also allows to estimate Ñij for some species i330

that are not monitored in the dataset 0, but are monitored in the opportunistic dataset 1. This situation331

formally corresponds to the case where Pi0 = 0. For Ej1 → ∞, the limit variance of the estimator N̂ij is332

(see Formula (25) in the Appendix B)333

var(N̂ij)
Ej1→∞

∼
Ñ2

ij∑
l P̃l0ÑljẼj0

.

Because the species i is not monitored in dataset 0, the (normalized) relative abundance Ñij cannot334

be estimated with the sole dataset 0. Thus, there is an obvious improvement to be made by using our335

estimation scheme that combines the two datasets. To reveal the power of our approach, let us compare336

the variance var(N̂ij) of our relative abundance estimator with the variance of the imaginary estimator337

N̂0,imaginary
ij based on an imaginary dataset 0 where the species i would have been monitored with some338

(imaginary) detection/reporting probability P imaginary
i0 . The variance of the maximum likelihood estimator339

N̂0,imaginary
ij of Ñij with this imaginary dataset 0 would be Ñij/(Ẽj0P̃

imaginary
i0 ) so that340

var(N̂ij)
Ej1→∞

∼ var(N̂0,imaginary
ij )×

P imaginary
i0 Nij∑

l Pl0Nlj
.

In particular, the estimation provided by N̂ij can significantly outperform the imaginary estimation we341

would have obtained with the sole imaginary dataset 0 (where the species i would have been monitored).342

Moreover, if we compare the estimator N̂ij with the imaginary estimator N̂ imaginary
ij based on both the343

imaginary dataset k = 0 and the dataset k = 1, we observe that the ratio of their variance344

var(N̂ij)

var(N̂ imaginary
ij )

=
P imaginary
i0 Nij +

∑
l Pl0Nlj∑

l Pl0Nlj

remains close to one when P imaginary
i0 Nij ≪

∑
l Pl0Nlj . This means that with our estimation scheme,345

there is not much difference between the estimation based on a dataset collected with known observa-346

tional intensities where a species i is rare and the estimation based on a dataset collected with known347

observational intensities where a species i is not monitored. In other words, there is no instability on348

the estimation of the relative abundance of a species when it is not present in the dataset collected with349

known observational intensities.350
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Figure 1 – The datasets used to illustrate our statistical framework. The location of the Aquitaine
region in France is displayed in the insert. (A) distribution of the ACT listening points in the region ;
(B) distribution of the LPO records (opportunistic dataset) in the region ; (C) distribution of the STOC
listening points in the region. The grey quadrat cells are used as the “sites” in our analysis (they measure
≈ 30 × 20 km). Note that the quadrat cell containing the Bordeaux metropolitan area (indicated by an
asterisk in (A)) has been removed from the dataset.

4 Illustration351

4.1 Datasets352

In this section, we investigate on some datasets the predictive power of our modeling approach. We353

estimated the relative abundance of 34 bird species in the non-urban habitat of 63 sites in the Aquitaine354

region (South West of France). We fitted our model with an opportunistic dataset and a dataset collected355

with known observational intensity. We then assessed the predictive power of our approach with the help356

of an independent dataset collected with known observational intensity in the same area, hereafter referred357

as “validation dataset”. We therefore illustrate the ability of our approach to provide better predictions358

of species relative abundance than other approaches based on either of the two datasets alone.359

We first describe the opportunistic dataset. We used the recent online database developed by the360

Ligue de Protection des Oiseaux (LPO, Bird Life representative in France, largest French bird watcher361

NGO, with regional delegations). This online system was launched successively by the different regional362

LPO groups, and we acquired data from one of the first groups to start, Aquitaine, South-Western France,363

with data collection starting in 2007 (www.fauneaquitaine.org). Any citizen who can identify bird species364

can register on this website and record any bird observation s/he wishes, noting the species, date, and365

location (to the nearest 500 m). Hundreds of observers thus record hundreds of thousands observations.366

We typically ignore why these observations were made, e.g., the motivation of the observer, the reason367

for choosing to report these observations over others, whether they report all the species they have seen368

at a given place and time, the underlying observational intensity, etc. We selected all such opportunistic369

records between April and mid-June 2008–2011. For each record, we considered the number of animals370

detected by the observer. Data were pooled over years, because we will focus here only on spatial variation371

in relative abundance. Over 115 000 species records detected in a non-urban habitat were considered in372

this study (see Fig. 1B).373

We then describe the dataset collected with known observational intensity, used for the fit of the374

model. We used the data from the ACT monitoring plan jointly carried out by the French National375

Game and Wildlife Agency (ONCFS, Office National de la Chasse et de la Faune Sauvage), the national376

hunter association (FNC, Fédération Nationale des Chasseurs) and the French departemental hunters377

associations (FDC, Fédérations Départementales des Chasseurs). The main objective of the ACT survey378

was to monitor the breeding populations of several migratory bird species in France (Boutin et al., 2003) ;379

ACT stands for Alaudidae, Columbidae, Turdidae, which were the main bird clades of interest for this380
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monitoring, though this program also monitors several Corvidae species (see table 1 for the list of species381

of interest for our study). Thus, only a fraction of the species recorded by the LPO program was also382

studied by the ACT survey. The Aquitaine region was discretized into 64 quadrat cells, and in each cell,383

a 4km long route was randomly sampled in the non-urban habitat of the cell (see Fig. 1(A)). Each route384

included 5 points separated by exactly 1 km. Each route was traveled twice between April and mid-June,385

and every point was visited for exactly 10 minutes within 4 hours after sunrise in appropriate weather386

conditions. Every bird heard or seen was recorded, and for each point and each species, the maximum387

count among the two visits was retained. The observers were professionals from the technical staff of388

either the ONCFS or the hunters associations. Note that due to organization constraints, some listening389

points in a site were not necessarily counted every year. Between 2008 and 2011, over 9 500 birds were390

counted.391

Finally, we describe the validation dataset, used to assess the predictive power of our model.392

We used the data from the STOC program (Suivi temporel des oiseaux communs), a French breeding393

bird survey carried out by the French museum of natural history (MNHN, Museum National d’Histoire394

Naturelle) for the same region and the same years. The STOC survey (Jiguet et al., 2012) is based on395

a stratified random sampling, with each volunteer observer being assigned a 2 × 2 km square randomly396

chosen within 10 km of his house. The observer then homogeneously distributed 10 points within the397

square. Each point was visited twice between April and mid-June (before and after May 8th, with at398

least 4 weeks between visits) for exactly 5 minutes within 4 hours after sunrise in appropriate weather399

conditions (no rain or strong winds). Every bird heard or seen was recorded, and for each point and each400

species, the maximum count among the two visits was retained. These counts were then summed for a401

given square, year and species. Between 2008 and 2011, 251 listening points belonging to 29 such squares402

have been surveyed in non-urban habitat (to allow the comparison with the other datasets, we removed403

the listening points located in urban habitat), most of them for several years, and over 15241 birds were404

detected by the observers.405

Our aim was to test our model ability to provide a better prediction of the spatial variation in406

species relative abundance than any model based on either of the two datasets alone. The “sites” of our407

model were the 63 quadrat cells defined for the ACT survey ; we removed the quadrat cell containing the408

metropolitan area of Bordeaux (a large town with a population of > 1 million inhabitants), where the409

sampling process in the opportunistic dataset could not be supposed to be the same as in the other areas410

(see Fig. 1(A)). We focused on I = 34 bird species (see Table 1). Note that the smaller number of species411

monitored in the ACT survey allowed to demonstrate the ability of our approach to estimate the relative412

abundance of species monitored only in opportunistic dataset. For both the ACT survey and the STOC413

survey, the observational intensity in the site j was measured as the number of points-years sampled414

in the quadrat cell j during the period 2008–2011. We used the validation STOC dataset to assess the415

predictive power of our modeling approach. Only 24 sites contained at least one STOC listening point416

(Fig. 1(C)), so that this assessment was restricted to these sites.417

4.2 Comparison of the predictive power418

Let Xijk be the number of animals of the species i detected in the site j in the dataset k. Let k = a419

denote the dataset with known observational intensity collected by the ACT survey ; let k = ℓ denote the420

opportunistic dataset collected by the LPO ; finally, let k = s denote the validation dataset collected by421

the STOC survey. We compared different statistical approaches to estimate the relative abundances of422

the species in the sites.423

Let N̂m
ij be the relative abundance estimated for the species i in the site j with the statistical424

approach m. We estimated the relative abundance of each species i in each site j with the following425

approaches :426

N̂a
ij = Xija/π

a
j (14)

N̂s
ij = Xijs/π

s
j (15)

N̂ ℓ1
ij = Xijℓ/Sj (16)

N̂ ℓ2
ij = Xijℓ/

∑

i

Xℓ
ij (17)
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Table 1 – List of the 34 bird species under study. The 13 species monitored only by the ACT survey are
indicated by an asterisk. All species were surveyed by the STOC and the LPO program.
Latin name species
Aegithalos caudatus Long-Tailed Tit
Alauda arvensis∗ Eurasian Skylark
Alectoris rufa∗ Red-Legged Partridge
Carduelis carduelis European Goldfinch
Carduelis chloris European Greenfinch
Certhia brachydactyla Short-Toed Treecreeper
Columba palumbus∗ Common Wood Pigeon
Coturnix coturnix∗ Common Quail
Cuculus canorus Common Cuckoo
Dendrocopos major Great Spotted Woodpecker
Erithacus rubecula European Robin
Fringilla coelebs Common Chaffinch
Garrulus glandarius∗ Eurasian Jay
Hippolais polyglotta Melodious Warbler
Lullula arborea∗ Woodlark
Luscinia megarhynchos Common Nightingale
Milvus migrans Black Kite
Cyanistes caeruleus Eurasian Blue Tit
Parus major Great Tit
Passer domesticus House Sparrow
Phasianus colchicus∗ Common Pheasant
Phoenicurus ochruros Black Redstar
Phylloscopus collybita Common Chiffchaff
Pica pica∗ Eurasian Magpie
Pica viridis Eurasian Green Woodpecker
Sitta europaea Eurasian Nuthatch
Streptopelia decaocto∗ Eurasian Collared Dove
Streptopelia turtur∗ European Turtle Dove
Sylvia atricapilla Eurasian Blackcap
Troglodytes troglodytes Eurasian Wren
Turdus merula∗ common Blackbird
Turdus philomelos∗ Song Thrush
Turdus viscivorus∗ Mistle Thrush
Upupa epops Eurasian Hoopoe
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where πk
j denotes the number of listening points of the site j sampled in the dataset k, and Sj denotes427

the area of the site j (determined by intersecting each ACT quadrat with the Aquitaine region). For the428

LPO dataset k = ℓ, we had to account for the site-specific unknown intensity. We estimated this intensity429

with two proxies that are commonly used in such cases. First, we assumed that observational intensity430

was spatially uniform so that it varied only with quadrat cell area Sj (the resulting approach is labeled431

ℓ1). Another proxy considered that the observational intensity within a site was proportional to the total432

number of records across the sites (pooled over all species ; the resulting approach is labeled ℓ2).433

Finally, we fitted the model described in the previous sections, using the ACT dataset a as the434

dataset collected with known observational intensity (k = 0), and the LPO dataset ℓ as the opportu-435

nistic dataset (k = 1). Note that we supposed a quasi-Poisson distribution, to account for moderate436

overdispersion in our dataset. Thus, we could estimate the value of N̂ ℓ+a
ij with our approach.437

The relative abundance is the absolute abundance multiplied by an unknown constant, and this438

constant may vary among approaches. Therefore, to allow the comparison between the various approaches,439

we standardized the relative abundance estimates in the following way :440

Ñm
ij =

N̂m
ij∑

j N̂
m
ij

We want to investigate whether the estimates obtained by our model are closer or not to the true441

densities than any of the estimates that could be obtained from the individual datasets. We used the442

value Ñs
ij estimated with the validation STOC dataset as the value of reference. We assessed the predictive443

power of each approach m by calculating, for each species, the Pearson correlation coefficient between444

the standardized relative abundance Ñm
ij estimated with the method m and the standardized relative445

abundance Ñs
ij estimated with the validation dataset. We summarized this power by calculating the446

median and interquartile range (IQR) of these coefficients over the different species of interest. Although447

the relative abundance estimates were calculated on the complete dataset, these results were presented448

by separating the species monitored in the ACT survey, and the species not monitored in this survey.449

This allowed to evaluate the ability of our approach to estimate the relative abundance of species not450

monitored in the standardized dataset.451

We also investigated the stability of our statistical approach when the standardized dataset is small.452

We therefore assessed this stability by replacing our big standardized ACT dataset a by a much smaller453

dataset a′. We subsampled the dataset a : for each site, we randomly sampled only one listening point in454

every site, and we considered the bird counts of only one randomly sampled year for every point. Thus, we455

artificially divided the observational intensity by 18 in average in this dataset : the complete ACT dataset456

a stored the bird counts carried out in 1107 listening points-years, whereas the reduced dataset a′ stored457

the bird counts carried out in only 63 listening-points-years (one in every site). We also estimated the458

standardized relative abundance Ña′

ij = Xa′

ij /
∑

j X
a′

ij with this reduced dataset. Finally, we estimated the459

relative abundance Ñ ℓ+a′

ij by combining this reduced standardized dataset with the opportunistic dataset460

according to our model. We also assessed the predictive power of these two approaches by comparing the461

estimates with the reference values obtained with the STOC dataset.462

The online supplementary material contains the data and the code for the R software (R Core463

Team, 2013) that will allow the reader to reproduce our calculations.464

4.3 Results465

We fitted our model on the LPO and ACT datasets. There was only a small amount of overdis-466

persion in our data (the coefficient of overdispersion was equal to 1.22) ; the examination of the residuals467

did not reveal any problematic pattern and the quality of the fit was satisfying. We observe in table 2468

that the predictive power was larger for our statistical approach than for all other approaches, whether469

based on the dataset a or ℓ alone.470

The predictive power of our statistical approach did not decrease much when model was fit on471

the smaller standardized dataset a′, despite the fact that the observational intensity in this dataset was472

divided by about 20. In particular, the predictive power of our approach with a reduced dataset remained473

larger than the predictive power of the other approaches. We observe a strong positive correlation bet-474
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Table 2 – Predictive capabilities of the various possible approaches to estimate the relative abundance
of 34 bird species in 63 sites in the Aquitaine region. For each possible estimation approach m, we
present the median (calculated over the species) of the Pearson’s correlation coefficient between the

relative abundance Ñm
ij estimated by the approach m and the relative abundance Ñs

ij estimated by the
“reference” STOC approach. In parentheses, we present the interquartile range of this coefficient. These
quantities are calculated for the set of species only monitored in the ACT survey and for the set of species
not monitored in this survey.
Ratio Species only in ACT Species not monitored in ACT

Ña+ℓ
ij 0.55 (0.38 – 0.68) 0.35 (0.19 – 0.47)

Ña′+ℓ
ij 0.54 (0.25 – 0.61) 0.28 (0.08 – 0.40)

Ña
ij 0.27 (0.13 – 0.49) —

Ña′

ij 0.06 (-0.07 – 0.23) —

Ñ ℓ1
ij 0.29 (0.24 – 0.55) 0.11 (0.06 – 0.22)

Ñ ℓ2
ij 0.44 (0.35 – 0.51) 0.38 (0.13 – 0.46)

ween the estimates Ñ ℓ+a
ij obtained with the full standardized dataset and the estimates Ñ ℓ+a′

ij obtained475

with the reduced standardized dataset (median Pearson’s R = 0.84, IQR = 0.81 – 0.90). This illustrates476

clearly the gain of precision obtained by combining the small standardized dataset with a large amount of477

opportunistic data, which we demonstrated in section 3.1. The very fine-grained distribution of observa-478

tions contained in the opportunistic dataset can more efficiently predict site-specific variation in relative479

abundance than can the standardized dataset.480

We investigated the ability of our method to estimate the relative abundance of species not mo-481

nitored in the ACT survey. Note that the between-site variance of the log relative abundance estimated482

with our method Ña+ℓ
ij was larger in average for the species monitored in the ACT survey (median = 2.41,483

IQR = 1.1 – 104) than for the species not monitored in this survey (median = 1.15, IQR = 1.04 – 1.34),484

which resulted in smaller Pearson’s coefficient for the latter species (Tab. 2). Our approach performed485

better than the approaches based on the dataset a or ℓ1 alone. The predictive power of our approach and486

the approach ℓ2 were similar. Actually, the log observational intensity estimated in a site by our approach487

for the LPO dataset was strongly correlated with the logarithm of the total number of birds detected in488

this site (Pearson’s R = 0.85), which supports to some extent the common practice of biologists to use489

the total number of birds detected in a place as a measure of the observational intensity.490

5 Discussion491

5.1 Overview492

We propose a general approach to estimate relative abundances of multiple species on multiple493

”sites” (corresponding to different times and/or locations) by combining one or several datasets collected494

according to some standardized protocol with one or several datasets of opportunistic nature. The esti-495

mation is performed with the generalized linear model (11). This modeling relies on several assumptions,496

including : (i) the datasets have the same spatiotemporal extent, (ii) the individuals of the monitored497

species do not cluster into large groups, (iii) either the habitat types are known or the observational bias498

towards some habitat types are the same across the different sites. In particular, the third hypothesis is499

quite restrictive and handling cases where it is not met requires significant additional modeling.500

We have demonstrated both theoretically (under the assumption that the model is well-specified)501

and numerically on some datasets, that combining opportunistic data with standardized surveys produces502

more reliable estimates of the relative abundances than either dataset alone. In particular, we observe503

an improvement in our example Section 4 even if the above hypothesis (iii) is probably violated. We504

have also shown that combining opportunistic data with standardized data allows for estimating relative505

abundance for species which are not monitored in the standardized dataset.506

Our approach for combining opportunistic data with survey data is quite general : It requires to be507
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extended in order to overcome the current limitations (see the discussion in the next section) and to be508

adapted to the specifics of each case study. Yet, we highlight two already promising applications of our509

framework. First, we emphasize that our framework can be readily used to estimate temporal changes. In510

such cases, the ”sites” j correspond to different times j and Ej1 represent the parameters describing the511

unknown observational intensity at time j for the opportunistic dataset. For temporal variation, biased512

attention for some habitats in the opportunistic dataset will meet the hypothesis (iii) as long as this513

biased attention is constant over time. As explained in Section 2.2, such biases will be entirely captured514

in the estimation of the Pik. For example, the accuracy of bird population trends for France will be515

considerably improved by the addition of opportunistic data to the current Breeding Bird Surveys.516

Another very interesting feature of our framework is its ability to estimate the relative abundance517

of very rare species, even if these species are not monitored with a scheme with known sampling effort.518

This has important practical implications. For example, Guisan et al. (2006) noted “in a sample of519

550 plots surveyed in a random-stratified way based on the elevation, slope, and aspect of the plot520

during two consecutive summers in the Swiss Alps (704.2 km2), not one occurrence of the rare and521

endangered plant species Eryngium alpinum L. was recorded. This was despite the species being easily522

detectable if present and independent records of the species existing in the area within similar vegetation523

types.” Our framework would be very useful in this context. In particular, if a citizen science program524

collects opportunistic data on this species along with some other more common species, then the relative525

abundance of the rare species can be estimated by combining these opportunistic data with standardized526

surveys monitoring the same common species.527

5.2 Limitations and extensions528

We derived from our analysis Section 2.1 a model based on the Poisson distribution. In practice, we529

may observe some overdispersion in the data. Causes of overdispersion include clustering of individuals,530

spatial auto-correlation, identification errors, etc. It is then wise to account for overdispersion in the531

modeling (see Section 4).532

The main assumption in our modeling (1) is that the observational bias Oijk can be decomposed533

into Oijk = PikEjk. As explained in Section 2.2, this mainly amounts to assume that the habitat types534

are known or the observational bias towards some habitat types are the same across the different sites.535

This assumption will not be met in many cases and we can expect a significant improvement by taking536

habitat types heterogeneity into account. This issue requires a significant additional modeling and it will537

be developed elsewhere.538

In our estimation framework, we did not take into account any variable affecting the distribution of539

the relative abundance in the different sites. However, it is well-known that there might be a spatial (if the540

“sites” are spatial units) or temporal (if the “sites” are time units) autocorrelation in the densities. For541

example, it is frequent that if the abundance of a given species is high in a given spatial unit, it will also542

be high in neighboring units. Moreover, spatial units with a similar environmental composition will often543

be characterized by similar abundances. Explicitly accounting for these patterns in the estimation process544

could lead to an increased accuracy of the estimation (by reducing the effective number of parameters).545

This could be done by modeling the relative abundances Ñij as a function of environmental variables,546

or as a function of spatial effects (e.g. using conditional autoregression effects in a hierarchical model,547

see Banerjee et al., 2004). Alternatively, it is possible to maximize a regularized log-likelihood, i.e. to548

maximize for example :549

logL −
I∑

i=1

J∑

j=1

J∑

m=1

νπjm(Ñij − Ñim)2

where L is the likelihood of the model, πjm is a measure of “environmental and spatial proximities”550

between the unit j and the unit m, and ν is a positive parameter that determines the strength of the551

penalty. The proximities could be of any sort (e.g. taking the value 1 if the two spatial units are neighbours,552

and 0 otherwise ; inverse Euclidean distances between the units in the space defined by the environmental553

variables, etc.). This kind of regularization would reduce the number of effective parameters in the model554

and thereby increase the accuracy of the estimation (for example, see Malbasa and Vucetic, 2011).555

Our statistical approach relies on the assumption that the measurement errors (identification errors,556

false positive) were negligible. This is a common assumption in this type of study, although recent studies557
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seem to indicate that (i) even a small number of false positives can lead to biases in estimates (Royle558

and Link, 2006), and (ii) even highly trained professionals may be subject to such errors (e.g. McClintock559

et al., 2010). As a solution to this problem, Miller et al. (2011) proposed to combine data collected560

using different approaches characterized by different probabilities of identification errors (e.g. hear counts561

vs. visual counts). This approach has not yet been thoroughly tested though, especially in the context562

of (relative) abundance estimation. Taking into account measurement errors in our framework, e.g. by563

integrating the approach of Miller et al. (2011), still requires further study.564

The detectability of a given species is not necessarily constant across sites j in the standardized565

dataset, as documented in the literature (Link and Sauer, 1997; MacKenzie and Kendall, 2002). This566

unaccounted variation of detection probability will result into an unaccounted variation of the observa-567

tional intensity. Because the knowledge of this intensity plays a crucial role in the fit of the model, such568

errors may bias the estimates if this variation of detection probability is structured according to some569

exogenous variables (e.g. habitat types). Many statistical frameworks based on a particular sampling570

design have been suggested to estimate detectability, such as using mixture models based on repeated571

counts (Royle, 2004). Further work is required to adapt such methods to our proposed framework.572
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A Link with thinned-Poisson processes662

In Section 2.1, we described a first modeling of the count data Xijk leading to our model (1). In663

this appendix, we explain how the model (1) can also be motivated by another point of view relying664

on the inhomogeneous point process (IPP, see Cressie, 1993). Indeed, IPPs have recently been shown to665

be a central approach to model species distribution in ecology. Aarts et al. (2012) have shown the close666

connections existing between IPPs and resource selection functions, a commonly used approach to model667

habitat selection by the wildlife (Boyce and McDonald, 1999). Moreover, IPPs have also been shown to668

generalize other statistical approaches commonly used to model species distribution, such as the MaxEnt669

approach (Renner and Warton, 2013) or the classical logistic regression (Fithian and Hastie, 2013). We670

compare the IPP with our approach in this section.671

The framework of IPPs suppose that the individuals of the species i are distributed on a domain672

D according to a Poisson point process with intensity λi(s). If we assume that the individual at location673

s is detected and recorded in the dataset k with probability bik(s), then the individuals of the species i674

recorded in the dataset k are distributed according to a Poisson point process with intensity λi(s)bik(s).675

The multiplication of λi(s) with bik(s) results in a “thinning” of the IPP ; for this reason, the resulting676

point process is sometimes called thinned-Poisson process (e.g. Fithian et al., 2014). Note that in the677

context of IPPs, each individual is supposed to be counted at most once in each dataset (undercounting).678

On the contrary, in Section 2.1, we allowed multiple counts of a single individual during the multiple visits679

in a site, which makes our development more sensible for studies characterized by a strong observational680

intensity (which is generally the case of citizen science data).681

However, even with this difference, our model (1) can be motivated in the context of IPPs. We can682

adopt different points of view for estimating relative abundances with this modeling based on IPPs. A683

first point of view is to introduce a model for the abundance intensities λi(s) and the probabilities bik(s)684

and then estimate these quantities accordingly. Such a point of view has been successfully developed in685

a simultaneous and independent work by Fithian et al. (2014) : They model the abundances intensities686

by λi(s) = eαi+βT
i x(s) with x(s) some observed environmental variables, the probabilities by bi1(s) =687

eγi+δT z(s) with z(s) some other observed environmental variable and bi0(s) = 1 at locations where survey688

data are available and bi0(s) = 0, else. The abundance intensities are then estimated by λ̂i(s) = eα̂i+β̂T
i x(s),689

with α̂i and β̂i some penalized maximum likelihood estimators of αi and βi.690

An alternative point of view, which corresponds to the point of view developed in this paper, is691

not to try to infer the intensities λi(s) for each s, but instead, to work at the scale of a whole site Sj ⊂ D692

and infer the mean abundance Λij =
∫
Sj

λi(s) ds of the species i on Sj . An important feature is that693

we do not model the abundance intensities λi(s) and the probabilities bik(s) in terms of some observed694
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environmental variables, but rather simply assume some structural properties on these functions. In695

particular, the mean abundance Λij in the site j is not assumed to be completely driven by some observed696

environmental variables.697

Let us explain how the model (1) can arise in such a context. Let us denote by dij(s) = λi(s)/Λij698

the probability density distribution describing the probability for a given individual of the species i in699

the site j to be located in s ∈ Sj . The number Xijk of individuals of the species i counted in the site j700

in the dataset k is then distributed according to701

Xijk ∼ Poisson (ΛijOijk) with Oijk =

∫

Sj

dij(s)bik(s) ds .

Let us describe some scenarii, where the observational bias Oijk can be decomposed as Oijk = PikEjk,702

leading to the model (1).703

In the three examples below, we will assume that the detection/reporting probability bik(s) can704

be decomposed in705

bik(s) = pikφk(s) (18)

with φk(s) not depending on i. This means that the detection/reporting bias bik(s)/b1k(s) = pik/p1k706

towards the species i in the dataset k is independent of the location s (in other words the functions707

b1k(s), . . . , bIk(s) are proportional one to the others). When this property is met we have the decompo-708

sition709

Oijk = pik

∫

Sj

dij(s)φk(s) ds.

The decomposition does not give a decomposition Oijk = PikEjk in general. Yet, such a decomposition710

arises in the three scenarii described below (which are the counterparts of the three examples described711

in Section 2.2).712

Example 1 : sites with homogeneous habitat type. Assume that the species intensity ratios713

λi(s)/λi′(s) depend on the species i, i′ and the site j, but not on the location s ∈ Sj . Such a property is li-714

kely to be met if the site j has an homogeneous habitat type. In this case, we have λi(s)/λi′(s) = Λij/Λi′j715

and hence λi(s) = Λijg(s) for all i and s ∈ Sj . Then, we have716

Oijk = PikEjk with Pik = pik and Ejk =

∫

Sj

g(s)φk(s) ds.

Example 2 : observations with known habitat type. In this example, we assume that for each717

observation we know in which habitat type h(s) it has occurred (in particular, it will be the case if we718

know the location s of each observation). Exactly as in the Example 2 in Section 2.2, we define k̃ as719

the couple k̃ = (h, k). Assume that the density distribution dij(s) depends on the species i only through720

the habitat h(s) of s : For any i, i′ and s, s′ ∈ Sj such that h(s) = h(s′) we have dij(s)/di′j(s) =721

dij(s
′)/di′j(s

′). In this case, we have a decomposition dij(s) = αih(s)g(s) for all s ∈ Sj . Let us denote by722

Sjh = {s ∈ Sj : h(s) = h} the portion of the site Sj with habitat type h. For any i, j and k̃ = (h, k), the723

counts Xij(h,k) of individuals of the species i in the habitat h in the site j for the dataset k is distributed724

according to725

Xij(h,k) ∼ Poisson
(
ΛijPi(h,k)Ej(h,k)

)
with Pi(h,k) = αihpi(h,k) and Ej(h,k) =

∫

Sjh

g(s)φ(h,k)(s) ds.

We then have the decomposition Oijk̃ = Pik̃Ejk̃ with k̃ = (h, k). We emphasize that in this case the726

probability pi(h,k) appearing in the decomposition (18) is allowed to depend on the habitat type h (the727

bias towards some species may differ depending on the habitat type).728

Example 3 : homogeneous distribution of habitat types. We do not assume anymore that the729

habitat type h(s) for each observation is known. We assume again that we have the decomposition730

dij(s) = αih(s)g(s) for all s ∈ Sj , hence731

Oijk = pik
∑

h

αih

∫

Sjh

g(s)φk(s) ds.
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If we assume in addition that732

∫

Sjh

g(s)φk(s) ds = Qhk

∫

Sj

g(s)φk(s) ds, (19)

then733

Oijk = PikEjk with Pik = pik
∑

h

αihQhk and Ejk =

∫

Sj

g(s)φk(s) ds.

Let us investigate when the decomposition (19) can be met. Assume first that φk(s) = βkh(s)γk(s) where734

γk(s) reflects local fluctuations independent of the habitat type. The function g(s)γk(s) then represents735

small scale fluctuations and we can expect to have736

∫

S

g(s)γk(s) ds ≈ qk|S|,

for S large enough. It would be the case for example if g(s)γk(s) was the outcome of a stationary process.737

We then have738 ∫
Sjh

g(s)φk(s) ds∫
Sj

g(s)φk(s) ds
≈

βhkqk|Sjh|∑
h βhkqk|Sjh|

.

When the ratios |Sjh|/|Sj | do not depend on j, the above ratio depends on h and k only, so (19) holds.739

This case corresponds to sites Sj all having a similar distribution of habitat types. This property will be740

met if the sites Sj correspond to the same location at different times j.741

B Mathematical proofs742

B.1 Identifiability conditions743

With the notations nij = log(Nij), ejk = log(Ejk) and pik = log(Pik), the model (1) described in744

our paper can be recast as a classical generalized linear model745

Xijk ∼ Poisson(λijk), with log(λijk) = nij + ejk + pik.

The kernel of the design matrix associated with this linear regression has a dimension equal to I + J +1.746

Therefore, we need I + J + 1 constraints to ensure the identifiability of the model.747

B.2 Properties of the estimators748

The negative log-likelihood of the parameters (Ñij , Ẽjk, P̃ik) is749

L =
∑

i∈I

∑

j∈J

∑

k∈{0,1}

(
ÑijẼjkP̃ik −Xijk log(ÑijẼjkP̃ik) + log(Xijk!)

)

where the parameters {Ẽj0, j ∈ J} and {P̃i0, i ∈ I} are known, P̃10 = 1 and P̃i1 = 1 for all i ∈ I.750

To keep the mathematical analysis of the maximum likelihood estimators comprehensible, we focus751

below on the case where the P̃i0 are known. The maximum likelihood estimators of Ñij and Ẽj1 are then752

the solutions of753

N̂ij =
Xij0 +Xij1

P̃i0Ẽj0 + Êj1

and Êj1 =
X#j1

N̂#j

, (20)

where X#jk =
∑

i Xijk and N̂#j =
∑

i N̂ij .754

We first treat the simplest case where the P̃i0 are all equal.755
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B.2.1 Case of constant ratios Pi0/Pi1756

We consider in this paragraph the case where P̃i0 = P̃10 for all i ∈ I. This corresponds to the case757

where for all the species i, the detection/reporting probability ratios Pi0/Pi1 are the same and equal to758

P10/P11. We derive from (20)759

N̂#j =
X#j0 +X#j1

Ẽj0 + Êj1

and inserting this expression in the formula for Êj1 we obtain Êj1 = Ẽj0X#j1/X#j0. As a consequence,760

we obtain the closed-form expression for N̂ij761

N̂ij =
Xij0 +Xij1

X#j0 +X#j1
×

X#j0

Ẽj0

. (21)

According to the strong law of large numbers for Poisson processes, we have762

N̂ij
Ej1→∞
→

Ñij

Ñ#j

×
X#j0

Ẽj0

(22)

and763

var(N̂ij)
Ej1→∞
→

(
Ñij

Ñ#j

)2

×
Ñ#j

Ẽj0

=
Ñij

Ẽj0

×
NijPi0∑
l NljPl0

.

If we estimate Ñij with the sole “known-effort” data Xij0, the maximum likelihood estimator is given by764

N̂0
ij = Xij0/Ẽj0 and its variance equals var(N̂0

ij) = Ñij/Ẽj0. We can then compare the variance of N̂ij765

and N̂0
ij766

var(N̂ij)
Ej1→∞

∼ var(N̂0
ij)×

NijPi0∑
l NljPl0

. (23)

B.2.2 Case of arbitrary ratios Pi0/Pi1767

We no longer assume that the P̃i0 are all equal. In this case, we have no closed-form formula for768

N̂ij but we can compute a first-order expansion of N̂ij in terms of the inverse of X#j1.769

The first step is to check that N̂#j is upper-bounded independently of the Xij1. When Pi0 > 0 for770

all i (which means that the same species are monitored in the datasets 0 and 1), we have from (20)771

N̂ij ≤
Xij0 +Xij1

mini(P̃i0Ẽi0) +X#j1/N̂#j

.

Summing these inequalities we obtain the upper-bound772

N̂#j ≤ X#j0/min
i
(P̃i0Ẽj0)

which does not depend on Xij1. The case where Pi0 = 0 for some i can be treated similarly : splitting773

apart the indices in I0 = {i ∈ I : Pi0 = 0} and those out of I0, we get from (20)774

N̂#j ≤

∑
i∈I0

(Xij0 +Xij1)

X#j1/N̂#j

+

∑
i/∈I0

(Xij0 +Xij1)

mini/∈I0(P̃i0Ẽi0) +X#j1/N̂#j

.

This inequality is equivalent to775

N̂#j

(
1−

∑
i∈I0

(Xij0 +Xij1)

X#j1

)
≤ X#j0/min

i/∈I0
(P̃i0Ẽj0).

In the asymptotic Ej1 → ∞ we obtain the asymptotic upper-bound776

N̂#j ≤
X#j0

mini/∈I0(P̃i0Ẽj0)
×

∑
i∈I Ñij∑

i∈I\I0
Ñij

.
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Now that we have checked that N̂#j is (asymptotically) upper-bounded independently of the Xij1,777

we can write a first-order expansion of the formula (20)778

N̂ij =
(Xij0 +Xij1)N̂#j

X#j1
−

(Xij0 +Xij1)N̂
2
#jP̃i0Ẽj0

X2
#j1

+O

(
Xij1

X3
#j1

)
. (24)

Summing these expansions over i ∈ I and simplifying the expression gives779

N̂#j =
X#j0X#j1

Ẽj0

∑
l P̃l0(Xlj0 +Xlj1)

(
1 +O

(
1

X#j1

))
.

Plugging this formula in (24) gives780

N̂ij =
Xij0 +Xij1∑

l P̃l0(Xlj0 +Xlj1)
×

X#j0

Ẽj0

×

(
1 +O

(
1

X#j1

))

Ej1→∞
→

Ñij∑
l P̃l0Ñlj

×
X#j0

Ẽj0

,

where the last limit follows again from the law of large numbers for Poisson processes. Computing the781

asymptotic variance when Ej1 → ∞, we find after simplification782

var(N̂ij)
Ej1→∞
→

Ñ2
ij∑

l P̃l0ÑljẼj0

=
Ñij

P̃i0Ẽj0

×
Pi0Nij∑
l Pl0Nlj

. (25)

As in the previous case, we can compare this variance to the variance of the maximum likelihood783

estimator N̂0
ij = Xij0/(P̃i0Ẽj0) obtained by estimating Ñij with the sole values Xij0. The variance of N̂

0
ij784

being var(N̂0
ij) = Ñij/(P̃i0Ẽj0), we obtain the reduction of variance785

var(N̂ij)
Ej1→∞

∼ var(N̂0
ij)×

Pi0Nij∑
l Pl0Nlj

. (26)
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