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Abstract

With the internet, a massive amount of information on species abundance can be collected under
citizen science programs. However, these data are often difficult to use directly in statistical inference,
as the data collection is generally opportunistic under such programs, and the distribution of the
sampling effort is often not known. In this paper, we developed a statistical framework to combine
such “opportunistic data” with data collected using schemes characterized by a known sampling
effort. We illustrated the framework with typical bird datasets from the Aquitaine region, south-
western France. We demonstrated that such a framework can provide estimates that are always more
precise than the ones obtained from the dataset with a known sampling effort alone. The gain in
precision may be considerable if the opportunistic data are abundant. We also show that estimates
could be obtained even for species recorded only in the opportunistic scheme. Opportunistic data
combined with a relatively small amount of data collected with a known effort may thus provide
access to precise estimations of quantitative changes in abundance. This should significantly change
the organisation of large scale monitoring schemes, particularly for the rarer species. The framework
can be readily used to monitor temporal changes but with more restrictive conditions for monitoring
spatial changes. The framework presented in this paper will be improved in the future to allow a
more easy application to the estimation of the spatial distribution of a species.

Keywords: carnivorous species, opportunistic data, species distribution map, sampling effort, detection
probability
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1 Introduction

How species abundance varies in space and time is a major issue both for basic (biogeography, macroe-
cology) and applied (production of biodiversity state indicators) ecology. Professionals working on bio-
diversity thus spend considerable resources collecting data that are suitable for estimating this variation
(Yoccoz et al., 2001). Most of the scientific literature recommends the implementation of both a sta-
tistically valid sampling design and a standardised protocol for collecting such data (Williams et al.,
2002). Many methods have been developed to estimate species abundance in a defined location, e.g.,
using mark-recapture methods (Seber, 1982) or distance sampling approaches (Buckland et al., 1993).
However, these approaches require an intense sampling effort and are not always practical. Many au-
thors have noted that most frequently, interest will not be in abundance itself, but either in the rate of
population change, i.e., the ratio of abundance in the same location at two different time points, or in
the relative abundance, i.e., the ratio of abundance at two separate locations (MacKenzie and Kendall,
2002).

Relative abundance is frequently monitored with the help of simpler schemes. For instance, a set
of sites is randomly sampled in the area of interest, and counts of organisms are organised on these sites
using a given protocole. At a given location, the resulting count can be used as an index of the true
abundance. Indeed, assuming constant detectability over space and time, the average number of animals
counted per sampled site is proportional to the true abundance of the species in the area (MacKenzie
and Kendall, 2002). Log-linear models can be used to represent this average number of animals detected
per site as a function of space and/or time (and, possibly, other factors such as the habitat; see for
example van Strien and Pannekoek, 2001), and thereby, to infer population trends. Thus, such programs
have been implemented in many countries to monitor the changes in the abundance of several groups of
species, such as birds (e.g., Breeding Bird Survey, see Julliard et al., 2004) or butterflies (e.g., Butterfly
Monitoring Scheme van Swaay et al., 2008). Estimates of relative abundance have also been commonly
used for mapping the spatial distribution of several species (Gibbons et al., 2007).

Note that in many cases, it is practically impossible to control the effort put into taking the
sample (called “sampling effort” or “observational effort” in this paper). This generally occurs when the
spatial scale of interest is large and when volunteers collect the data (e.g. the Breeding Bird Survey,
see below). In such cases, the effort is generally important in places where the volunteers are more
numerous. However, it is possible to account for an unequal sampling effort in the estimation of the
relative abundance of the species of interest under the assumption that the size of a sample caught from
a population is proportional to this effort, all other things being equal. An unbiased estimation of the
relative abundance can be obtained by including the logarithm of this known effort as an offset in the
log-linear model used for estimation. Such “catch-effort” approaches are often used to estimate fish stock
in fisheries (e.g. see Bishop et al., 2004; Maunder and Punt, 2004).

In addition to such data characterized by a known sampling effort, a large amount of data can
also be collected by non-standardised means, with no sampling design and no standardised protocol.
In particular, the distribution of the observers and of their sampling effort is often unknown (Dickinson
et al., 2010). These so-called “opportunistic data” have always existed, and with the recent development of
citizen science programs, we observe a massive increase in the collection of these data on a growing number
of species (e.g., Dickinson et al., 2010; Hochachka et al., 2012; Dickinson et al., 2012). Additionally, as
the use of online databases facilitates the exchange and storage of data, such opportunistic data may now
include millions of new observations per year that are collected in areas covering hundreds of thousands
of square kilometres (e.g., the global biodiversity information facility, including more than 400 million
records at the time of writing, see Yesson et al., 2007).

The temporal and spatial distributions of the observations in such data reflect unknown distri-
butions of both observational efforts and biodiversity. Thus, a report of a high number of individuals
of a given species at a given location compared to other locations could be because the focus species
is abundant at this location or because numerous observers were present at this location. Using such
opportunistic data to estimate variation in the space and time of species abundance is therefore complex,
since any modelling approach should include a submodel of the observation process (Kéry et al., 2009;
Hochachka et al., 2012) or an attempt to manipulate the data to remove the bias caused by unequal effort
(down-weighting the records in oversampled regions, manipulating background data, etc.; see a discussion
in Phillips et al., 2009).
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MacKenzie et al. (2005) noted that “In some situations, it may be appropriate to share or borrow
information about population parameters for rare species from multiple data sources. The general con-
cept is that by combining the data, where appropriate, more precise estimates of the parameters may be
obtained.” In this paper, we adopt this strategy and develop a general framework for using data char-
acterized with a known sampling effort and data collected with an unknown effort simultaneously. We
focus on multi-species and multi-site data that correspond to the data typically collected in this context.

The purpose of this study is to estimate the relative densities of the species at different sites.
We base this estimation on two datasets containing the number of animals detected by observers for
each species of a pool of species of interest and each spatial unit of a study area of interest: (i) one
dataset is collected under a program characterized by a known sampling effort, possibly variable among
spatial units, (ii) one “opportunistic” dataset characterized by a completely unknown sampling effort.
For simplicity, we assume as a first step that the detectability of any given species is constant (i.e.,
no observer effects, no habitat-related detectability, etc., but see the discussion). However, we suppose
that this detectability is varying across species. We show that, under this assumption, the information
concerning both the distribution of the observational effort and the biodiversity can be efficiently retrieved
from “opportunistic” data by combining them with “known-effort” data. Moreover, we prove that such
a combination returns more precise estimates than when using the “known-effort” data alone. Our
statistical framework allowing this win-win combination can open numerous avenues for application. We
utilized data on French birds, which are typical of existing data, to illustrate the numerous qualities of
this framework. Note however that the work presented in this paper is preliminary, and that further work
will be required to account for a detectability depending on the habitat or on the observers.

2 Single scheme statistical modelling

2.1 Statistical framework

We want to estimate the density (number of individuals per unit of surface area) of I species in J sites.
We emphasise that the “sites” j can either refer to different spatial sites, to different times, or to different
combinations of sites and times. Let Aij be the true density of individuals of a species i at site j. We
suppose that a study has been conducted and that each species has been counted at each site. Let Xij

be the resulting count of individuals of the species i by the observers in the site j. We further assume
that there is no identification error in these data.

As noted in the introduction section, we allow the observational effort to vary among sites. Indeed,
depending on the type of study carried out, the sites may be characterised by a variable number of
observers, a variable number of traps, different transect lengths, different observational durations, etc.
The observational effort may be a (possibly complex) function of all these elements. We note Ej , the
observational effort in site j (assumed identical for all species).

Moreover, we allow for a variable detectability among species. Indeed, depending on the type of
study, some species may be more conspicuous than others, some more easily trapped, etc. It is therefore
important to take this point into account by including a species detection probability Pi in our model.
In the particular case of opportunistic data, this probability also includes the reporting rate, which is
the probability that a detected species will be reported by the observer. The reporting rate reflects the
fact that the attention of the observer may systematically vary among species. We suppose that the
detectability of a given species is the same in all sites.

Our statistical framework supposes that the observed number Xij is the outcome of a sampling
process of intensity AijEjPi. For example, Xij can be modelled by a Poisson distribution of intensity
AijEjPi, but other distributions are possible, such as quasi-Poisson or negative binomial distributions.

2.2 Identifiability

The individual estimation of the IJ + I + J parameters Aij , Ej and Pi is impossible with the sole IJ
values of Xij . Additional information is therefore required to enable this estimation.

First, we consider the case of schemes where the effort Ej is known up to a (possibly unknown)
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multiplicative constant c. In such studies, one can estimate the IJ parameters Ãij = AijPi/c by the

ratio Xij/(cEj). The quantity Ãij is equal to the density Aij times a (unknown) constant depending

only on the species i. Therefore, the parameters Ãij give access to the ratio of densities between two

sites Aij/Aij′ = Ãij/Ãij′ for all species i and all pairs of sites j, j′. In general, we choose a reference site,

say j′ = 1, and we focus on the ratios Aij/Ai1 = Ãij/Ãi1 which are called the relative densities. Such
schemes then enable us to estimate the relative density of the monitored species. As noted previously,
accounting for unequal observational effort using such multiplicative models is very common to estimate
the fish stock in fisheries research (Maunder and Punt, 2004). Note that formally, we can write the

intensity AijEjPi in the form ÃijẼjP̃i where Ẽj = cEj and P̃i = 1. The parameters Ẽj and P̃i are

known, we then only have to estimate the IJ parameters Ãij from the IJ observations Xij .

However, in the case of schemes characterized by an unknown effort Ej , the same reasoning as

above would lead to estimating the IJ +J parameters Ãij = AijPi and Ej with the sole IJ observations
Xij , which is impossible. To overcome this issue, we propose in the next section to combine the “unknown
effort” data with the “known effort” monitoring data.

3 Double scheme statistical modelling

3.1 Statistical framework

Suppose we have two datasets collected via two schemes that both aim to estimate the same density Aij .
These two datasets are labelled by k ∈ {0, 1}. The efforts and the detection probabilities are usually
not the same in the two datasets, so we write Ejk (respectively Pik) for the effort for the site j (resp.
probability detection of the species i) in the dataset k. Therefore, under the same assumptions as above,
the count Xijk for the species i at site j in the dataset k can be viewed as the outcome of a sampling
process of intensity AijEjkPik. For simplicity, we will assume in this paper that

Xijk ∼ Poisson(AijEjkPik),

for i = 1, . . . , I, j = 1, . . . , J and k = 0, 1.
(1)

However, we stress that if overdispersion is present in the data, this Poisson distribution could be replaced
by a quasi-Poisson process or by a negative binomial process. We consider below that the dataset k = 0
is collected by a monitoring scheme with a known sampling effort while the dataset k = 1 corresponds to
a scheme characterized by an unknown sampling effort. We then investigate how one can estimate each
parameter involved in the model (1) and to what extent adding the dataset k = 1 would enhance the
precision of the density estimation.

3.2 Identifiability

In the above setting, there are 2IJ observations for IJ + 2(I + J) parameters. For IJ > 2(I + J), which
typically holds for large J and I ≥ 3, we have more observations than parameters. Nevertheless, as
explained in the web appendix A, the model is not identifiable without J + I+ 1 additional identifiability
conditions. As in Section 2.2, we introduce some renormalisation Ãij , Ẽjk of P̃ik of Aij , Ejk and Pik, which

enables us to easily express these identifiability conditions while preserving the identity ÃijẼjkP̃ik =
AijEjkPik.

We assume henceforth that the effort Ej0 is known up to a multiplicative constant c for the dataset

k = 0 and that the effort Ej1 is unknown for k = 1. As in Section 2.2, we define Ẽj0 = cEj0 (which is

known) and P̃i1 = 1 for all i. We could have set P̃i0 = 1 instead of P̃i1 = 1, but the latter choice is more
suited for handling species i monitored in the dataset k = 1 but not in the dataset k = 0, as we will
show later. We must still set one more constraint. We choose P̃10 = 1 for convenience. These I + J + 1
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constraints combined with the identity ÃijẼjkP̃ik = AijEjkPik lead to the change of variables:

Ãij = AijPi1P10/(cP11),

Ẽjk = cEjkP1k/P10

P̃ik = PikP11/(Pi1P1k).

(2)

In terms of these new variables, we have the simple statistical model Xijk ∼ Poisson(ÃijẼjkP̃ik) with

Ẽj0 = cEj0 for all j, P̃i1 = 1 for all i and P̃10 = 1. These J+I+1 quantities are known, and the resulting
statistical model is identifiable.

Let us interpret these new quantities. The parameter Ãij is proportional to the density Aij by an
unknown factor Pi1P10/(cP11) depending only on the species i. As in Section 2.2, this parameter gives

access to the relative density of each species i in each site j. The parameter Ẽj1 is equal, up to a constant,

to the effort Ej1; therefore, it provides the relative effort for each site j in the dataset 1. Finally, P̃i0 is
proportional to the ratio Pi0/Pi1 by an unknown factor P11/P10, so we can compare the ratios Pi0/Pi1

across the different species. The ratio Pi0/Pi1 reflects the systematic difference of attention toward some
species among the observers of the two schemes.

In addition, we emphasise that we can consider the case where some species i are not monitored
in the dataset 0 but are recorded in the dataset 1. This case can be handled by merely adding the
constraints P̃i0 = Pi0 = 0 for the concerned species i.

3.3 Estimation

We can estimate the parameters Ãij , Ẽjk and P̃ik by the maximum likelihood estimators (Âij , Êjk, P̂ik)

with the constraints Êj0 = Ẽj0 for all j, P̂i1 = 1 for all i and P̂10 = 1. This estimation can be carried out

with the help of a generalised linear model. Indeed, with the notations aij = log(Ãij), ejk = log(Ẽjk)

and pik = log(P̃ik), the model (1) can be recast as a classical generalised linear model from the Poisson
family with a log link:

Xijk ∼ Poisson(λijk), with log(λijk) = aij + ejk + pik.

Indeed, we only have to define ej0 = log Ẽj0 as an offset in the model, pi1 = 0 for all i, and fit the
resulting model with any statistical package.

3.4 Improvement resulting of the combination of the two datasets

It is now important to determine whether combining the dataset 1 with unknown effort Ej1 to the
dataset 0 with known effort improves the estimation of the relative densities, when compared to the
estimations obtained with the single dataset 0. An improvement is expected simply by looking at the
balance between the number of observations and the number of free parameters. With the dataset 0,
we have IJ observations, and we want to estimate IJ free parameters; whereas with the two datasets 0
and 1, we have 2IJ observations for IJ + J + I − 1 free parameters. The balance between the number
of observations and the number of free parameters is better in the second case. Below, we quantify the
improvement more precisely.

For simplicity, we assume in the following that the ratios Pi0/Pi1 are known for all i. In terms of

the normalised variables, this means that the P̃i0 are known. When we work with the single dataset 0,
we estimate Ãij by the maximum likelihood estimator Â0

ij = Xij0/(Ẽj0P̃i0) whose variance is var(Â0
ij) =

Ãij/(Ẽj0P̃i0).

We now investigate how the maximum likelihood estimator Âij associated with the model Xijk ∼
Poisson(ÃijẼjkP̃ik) improves upon Â0

ij . We consider the case where the (unknown) effort Ej1 in the
dataset 1 is much larger than the effort Ej0 in the dataset 0. In the web appendix A, we show that the

limit variance of Âij when Ej1 � 1 is given by

var(Âij)
Ej1�1→ var(Â0

ij)×
Pi0Aij∑
l Pl0Alj

. (3)
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In particular, the variance of the estimation is reduced by a factor

var(Âij)

var(Â0
ij)

Ej1�1∼ Pi0Aij∑
l Pl0Alj

,

when working with the two datasets instead of the sole dataset 0.

In the simple casewhere the ratios Pi0/Pi1 are the same for all the species i (which formally

corresponds to P̃i0 = 1 for all i), we have a closed-form formula for Âij (see Formula (2) in the web
appendix A)

Âij =
Xij0 +Xij1∑
l(Xij0 +Xlj1)

×
∑

lXlj0

Ẽj0

.

This formula reveals the contribution of each dataset to the estimation of the (normalised) density.

Actually, the estimator Âij is the product of two terms, where the first term mainly depends on the
opportunistic dataset 1 when the observational effort Ej1 is large, whereas the second term only depends
on the dataset 0

Âij

Ej1�1
≈ Xij1∑

lXlj1
×
∑

lXlj0

Ẽj0

.

Let us interpret these two terms. The ratio on the left-hand side provides an estimation of the proportion
Ãij/

∑
l Ãlj of individuals in a site j that belong to a species i. This proportion is estimated by the ratio

of the number Xij1 of individuals of the species i observed at site j in the opportunistic dataset to the
total number

∑
lXlj1 of individuals observed at site j in the same data. When the observational effort

Ej1 in the opportunistic dataset 1 is large, the ratio Xij1/
∑

lXlj1 provides a very accurate estimation

of the density proportion Ãij/
∑

l Ãlj , and we have (see Formula (3) in the web appendix A)

Âij
Ej1�1∼ Ãij∑

l Ãlj

×
∑

lXlj0

Ẽj0

. (4)

The term on the right-hand side provides an estimation of the total (normalised) density
∑

l Ãlj at the
site j. This total (normalised) density is estimated from the dataset 0 by dividing the total number∑

lXlj0 of individuals counted at the site j in the dataset 0 by the (normalised) observational effort Ẽj0.
Let us now explain the reduction of variance observed in (3). The formula (4) shows that we estimate

Ãij by first estimating the total (normalised) density
∑

l Ãlj with the dataset 0 and then renormalise

this estimation with the ratio Ãij/
∑

l Ãlj which has been accurately estimated with the dataset 1. The
reduction of variance observed in (3) then results from the use of the whole counts

∑
lXlj0 at site j in

the dataset 0 for estimating Ãij instead of the sole counts Xij0 of the species i at site j.

3.5 Species not monitored in the scheme characterized by a known sampling effort

As already mentioned, combining the two datasets also allows to estimate Ãij for some species i that
are not monitored in the dataset 0, but are monitored in the opportunistic dataset 1. This situation
formally corresponds to the case where Pi0 = 0. For Ej1 � 1, the limit variance of the estimator Âij is
(see Formula (6) in the web appendix A)

var(Âij)
Ej�1∼

Ã2
ij∑

l P̃l0ÃljẼj0

.

Because the species i is not monitored in dataset 0, the density Ãij cannot be estimated with the sole
dataset 0. Thus, there is an obvious improvement to be made by using our estimation scheme that
combines the two datasets. To reveal the power of our approach, let us compare the variance var(Âij)

of our density estimator with the variance of the virtual estimator Â0,virtual
ij based on a virtual dataset 0

where the species i would have been monitored with some (virtual) probability detection P virtual
i0 . The

variance of the maximum likelihood estimation Â0,virtual
ij of Ãij with this virtual dataset 0 would be

Ãij/(Ẽj0P̃
virtual
i0 ) so that

var(Âij)
Ej1�1∼ var(Â0,virtual

ij )× P virtual
i0 Aij∑
l Pl0Alj

.
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Figure 1: The datasets used to illustrate our statistical framework. The location of the Aquitaine region
in France is displayed in the insert. (A) distribution of the FBBS (French Bird Breeding Survey) squares
in the region. Triangle-shaped points define the reference dataset, and cross-shaped points define the
dataset used for the model fit. (B) distribution of the LPO records (opportunistic dataset) in the region.
Grey squares are 100× 100 km.

In particular, the estimation provided by Âij can significantly outperform the virtual estimation we would
have obtained with the sole virtual dataset 0 (where the species i would have been monitored). Moreover,

if we compare the estimator Âij with the virtual estimator Âvirtual
ij based on both the virtual dataset

k = 0 and the dataset k = 1, we observe that the ratio of their variance

var(Âij)

var(Âvirtual
ij )

=
P virtual
i0 Aij +

∑
l Pl0Alj∑

l Pl0Alj

remains close to one when P virtual
i0 Aij �

∑
l Pl0Alj . This means that with our estimation scheme, there

is not much difference between the estimation based on a dataset collected with known effort where a
species i is rare and the estimation based on a dataset collected with known effort where a species i is
not monitored. In other words, there is no instability on the estimation of the density of a species when
it is not present in the dataset collected with known effort.

4 Illustration

4.1 Datasets

Our aim in this section is to test whether combining an opportunistic dataset collected with unknown
effort, with a dataset collected by a monitoring scheme with known effort significantly improves accuracy
in the prediction of relative density variations. We explore this issue with two typical datasets having the
same spatial and temporal coverage. We demonstrate the ability of our statistical approach to provide
better predictions of spatial variation of species density than either of the two datasets alone.

We first describe the opportunistic dataset. We used the recent online database developed by the
Ligue de Protection des Oiseaux (LPO, Bird Life representative in France, largest French bird watcher
NGO, with regional delegations). This online system was launched successively by the different regional
LPO groups, and we acquired data from one of the first groups to start, Aquitaine, South-Western France,
with data collection starting in 2007 (www.fauneaquitaine.org). Any citizen who can identify bird species
can register on this website and record any bird observation s/he wishes, noting the species, date, and
location (to the nearest 500 m). Hundreds of observers thus record hundreds of thousands observations.
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We typically ignore why these observations were made, e.g., the motivation of the observer, the reasoning
for choosing to report these observations over others, whether they report all the species they have seen at
a given place and time, the underlying observation effort, etc. We selected all such opportunistic records
between April and mid-June 2007-2011. For each record, we only considered the occurrence of a species,
and not the number of animals detected by the observer. Data were pooled over a year, because we will
focus here only on spatial variation in density. Over 153 000 species records were considered in this study
(see Fig. 1B).

We now describe the dataset collected with known effort. We used the data from the French
Breeding Bird Survey (FBBS) for the same region and the same years. The FBBS (Jiguet et al., 2012)
is based on a stratified random sampling, with each volunteer observer being assigned a 2 × 2 km square
randomly chosen within 10 km of his house. The observer then homogeneously distributed 10 points
within the square. Each point was visited twice between April and mid-June (before and after May 8th,
with at least 4 weeks between visits) for exactly 5 minutes within 4 hours after sunrise in appropriate
weather conditions (no rain or strong winds). Every bird heard or seen was recorded, and for each point
and each species, the maximum count among the two visits was retained. These counts were then summed
for a given square, year and species. Fifty-one such squares have been surveyed, most of them for several
years. For the purpose of analysis, we used one year of record per square, randomly sampled among those
available.

Our aim was to test our model’s ability to provide a better estimation of the spatial variation in
species’ density than either of the two datasets alone. The “sites” of our model were defined as cells
(much larger than a FBBS square) from a regular grid superimposed onto the Aquitaine region. We
chose a grid size and position to maximise the number of cells that contained at least 6 FBBS squares.
The best compromise for a regular square grid was a 100×100 km grid with 6 cells containing 6 to 11
FBBS squares (see Fig. 1A); 3 out of 51 squares were located outside the grid and were thus excluded
from this analysis. Therefore, our study focused on J = 6 sites. In each site, the known observational
effort corresponded to the number of FBBS squares. We stress that our aim here is only to illustrate
our main point, i.e. that combining the two datasets lead to more precise estimates than the analysis of
the datasets considered separately. If our aim was only to estimate the relative density of bird species
to achieve a biological conservation purpose, we would define much smaller sites (presently, such sites
are too large for our inference to be practically useful). However, the definition of such large sites was
required to allow the definition of a “reference dataset” used to evaluate the predictive capacity of our
model.

Thus, we split the FBBS dataset into two parts: one dataset M was used for the model fit (jointly
with the LPO dataset), and one dataset R was used as a reference to evaluate the predictive capabilities
of our model. The dataset R was built by randomly sampling 3 FBBS squares in each site. Therefore, the
observational effort was constant across sites in the dataset R. The dataset M consisted of the remaining
FBBS squares. Finally, we note L denote the LPO dataset. We modelled the relative density of the
species that were present in all the sites, in all the datasets. We focused on I = 22 bird species (see Table
1 for a list of the species considered).

4.2 Comparison of the predictive efficiency

We first estimated the spatial variation of the density of each species among sites for each dataset
separately. For each species i, and each pair of sites j, j′ (with j 6= j′), we calculated the following ratios:
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Table 1: Estimates and standard errors of the relative detection probability P̃i0 for all species i, relative
to the European greenfinch Carduelis chloris: The larger the estimate, the smaller the attention of the
observers in the opportunistic dataset. The species are ordered by decreasing relative attention in the
opportunistic dataset. The more abundant and widespread species tend to be relatively less reported
than the more localised, solitary and territorial ones.

Latin name Species Estimate Standard Error
Phoenicurus ochruros black redstar -0.50 0.38
Hippolais polyglotta melodious warbler -0.32 0.42
Sitta europaea Eurasian nuthatch -0.29 0.44
Garrulus glandarius Eurasian jay -0.29 0.39
Dendrocopos major great spotted woodpecker -0.25 0.41
Certhia brachydactyla short-toed treecreeper -0.12 0.40
Phylloscopus collybita common chiffchaff -0.05 0.33
Carduelis chloris European greenfinch 0 —–
Cianistes caeruleus blue tit 0.00 0.34
Erithacus rubecula European robin 0.07 0.34
Hirundo rustica barn swallow 0.10 0.31
Parus major great tit 0.10 0.31
Turdus philomelos song thrush 0.12 0.35
Columba palumbus common wood pigeon 0.12 0.34
Turdus merula common blackbird 0.23 0.29
Corvus corone carrion crow 0.23 0.30
Fringilla coelebs common chaffinch 0.24 0.30
Sylvia atricapilla Eurasian blackcap 0.27 0.30
Troglodytes troglodytes Eurasian wren 0.40 0.31
Streptopelia decaocto Eurasian collared dove 0.53 0.30
Sturnus vulgaris common starling 1.02 0.28
Passer domesticus house sparrow 1.19 0.27
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RR(i, j, j′) =
XR

ij

XR
ij′

RM (i, j, j′) =
XM

ij /Ej

XM
ij′/Ej′

RL1(i, j, j′) =
XL

ij/aj

XL
ij′/aj′

RL2(i, j, j′) =
XL

ij/
∑

iX
L
ij

XL
ij′/

∑
iX

L
ij′

where Ej is the number of FBBS squares present in the site j in dataset M , aj is the area of the
site (determined by intersecting each cell of the grid with the Aquitaine region), and XD

ij represents the
number of individuals of the species i in the site j, in the dataset D. For the LPO dataset, we had to
account for the site-specific unknown effort. We estimated this effort with two proxies that are commonly
used in such cases. First, we assumed that effort was spatially uniform so that it varied only with cell
area aj (the resulting ratio is labelled L1). Another proxy considered that the effort within a site was
proportional to the total number of records across the sites (pooled over all species; the resulting ratio is
labelled L2).

Finally, we fitted the model described in the previous sections, using the dataset M as the dataset
collected with known effort (k = 0), and the dataset L as the opportunistic dataset (k = 1). Note that we
supposed a quasi-Poisson distribution, to account for moderate overdispersion in our dataset. We were
therefore able to estimate the ratio between the estimated densities:

RS(i, j, j′) =
Âij

Âij′

We hypothesised that the estimates obtained by our model would be closer to the true densities
than any of the estimates that could be obtained from the individual datasets. In other words, the ratio
RS should be closer to the reference ratio RR than to any other ratio. To verify this hypothesis, we
calculated the correlation coefficient between the logarithm of each ratio {RM , RL1, RL2, RS} and the
logarithm of the ratio RR, for all species i and all pairs j, j′. We also calculated the variance, over all
species i and all pairs j, j′ of the quantities:

DD(i, j, j′) = logRD(i, j, j′)− logRR(i, j, j′)

When the relative densities estimated with a given dataset D are identical to the relative densities
estimated with the reference dataset R, the variance of DD is equal to zero. The online supplementary
material contains the code for the R software (R Core Team, 2013) that will allow the reader to reproduce
our calculations.

4.3 Results

Our statistical framework was more efficient than any other dataset (either the “known-effort” or the
“unknown-effort” scheme alone) in estimating the relative density of the 22 bird species in the 6 sites of
interest, as indicated by both the correlation coefficients and the variance of DD (Table 2). This finding
confirms that our statistical framework provided a better estimation of the spatial variation of species
density than either of the two datasets alone. It is noteworthy that the hypothesis that the unknown effort
for the opportunistic dataset L would be constant was clearly not verified: the correlation between RL1

and the reference ratio was essentially zero. The common strategy consisting to standardise the number
of detections of a given species by the total number of detections (all species pooled, i.e., dataset L2)
provided slightly closer estimates of the true values than the estimates that relied on the “known-effort”
dataset M , but still more different from the true values than our approach combining the two types of
data.
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Table 2: Predictive capabilities of the various possible approaches to estimate the relative densities of 22
bird species in 6 sites in the Aquitaine region. For each possible dataset D, we present the correlation
coefficient (r) between the ratio RD and the “reference” ratio RR, as well as the variance of the quantity
DD

Ratio r Var(DD)
RS 0.52 0.67
RM 0.29 1.45
RL1 -0.09 1.59
RL2 0.30 0.83

We noted in Section 3.5 that our framework enabled the estimation of the relative density of a
species monitored in the opportunistic scheme with unknown effort but not in the scheme with known
effort. We verified this point using the following procedure: for each species i in turn, we built a dataset
M2 by removing the counts of individuals of that species from the “known effort” dataset M . We then
fitted our model combining the complete LPO dataset (opportunistic dataset, including records of the
species i) and the dataset M2 (“known effort” dataset, excluding records of the species i). This model

provided estimates of the relative densities Âij of the species i in all sites j. We were thus able to
calculate the ratio RS′ for the species i removed from M and all pairs of sites j, j′. This ratio was
calculated for each species. The correlation between the ratio RS′ and the ratio RR was almost identical
to the correlation between the ratio RS and the reference RR (r = 0.51). Similarly, the variance of DS′

was almost identical to the variance of DS (Var(DS′) = 0.67). These results illustrate that our approach
can be used to estimate the spatial variation of species not monitored in the scheme characterized by an
unknown effort.

4.4 Discussion of the results

The opportunistic dataset alone was a rather poor predictor of the reference dataset. In particular, this
was the case when the total number of records per site was used as a proxy for site-specific effort. This
suggests that there was a large variation in both the species-specific detectability (as is indeed suggested
by the Table 1) and the species- and site-specific density. According to local bird-watchers, the estimates
we obtained with our model are credible, indicating that the opportunistic dataset, even considering the
plethora of data, should not be used for monitoring purposes without attempts to correct for variations
in the detection process. In addition, we found the dataset collected with a known effort to be a poor
predictor of the variation in density within the reference dataset. This may be due to the small number
of sampled data points (3 to 5 2×2 km for each 100×100 km sites). Although these data points were
drawn randomly, such a low number was unlikely to efficiently capture the density variation on the larger
scale.

One of the most striking results from our model is that the combination of the two datasets was
much better at predicting the variation of the reference dataset than expected from the predictive power of
each dataset alone. This suggests that our model enables one to capitalise on the complementary strengths
of each dataset. The very fine-grained distribution of observations contained in the opportunistic dataset
can more efficiently predict site-specific variation in density than can the “known-effort” dataset. On
the other hand, the opportunistic dataset only provides acceptable estimates when the variation in effort
and species detectability is estimated with the help of the “known-effort” dataset. The last series of
models confirmed this interpretation. Specifically, when one species was removed from the “known-
effort” dataset, the model was equally good at predicting that species’ relative density, suggesting that
the information for estimating species density had entirely come from the opportunistic dataset.
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5 Discussion

5.1 Discussion of the model

We have modelled the number of detections Xijk as a result of a sampling process of intensity AijEjkPik.
This consisted of a generalised linear model fit involving only first-order interactions and assuming no
second-order interaction between variable species i, sites j and schemes k. Let us observe the implications
of this fundamental assumption. For this, we note that the above is a combination of a biological
component Aij and a component describing the observation process Oijk = EjkPik. We consider the two
components in turn.

Recall that Aij is the true density of species i in site j. The model only gives access to the relative

density Ãij , that is, Aij multiplied by an unknown constant depending only on species i. The first
important implication of our fundamental assumption is that the two schemes aim to measure the same
quantity proportional to Aij . This will be met if we can assume that the two schemes have the same
spatial coverage (and temporal coverage when density also varies in time). Within a site j, a species
may not be distributed homogeneously in the landscape depending on habitat preference. To estimate
Ãij without bias, it is thus necessary that the dataset with known effort samples habitats proportional
to their availability. We will see below that the constraint on habitat sampling is less stringent for the
opportunistic data.

The second significant implication of our fundamental assumption is that for each scheme, the
intensity of the observation process Oijk can be broken down into two components: a site-dependent
effort Ejk and a species-dependent detection probability Pik. In practice, the observation process Oijk

is influenced for a given site j and scheme k by the following: the total observational effort; how such
effort is distributed among habitats; the species detectability per se (detection probability given the joint
presence of an individual member of the species and the observer); and the reporting rate of the detected
species. What then are the critical assumptions for these influences to fit in the model components?
Basically, none of these elements should vary simultaneously across the site, species and scheme. For the
dataset collected with a known effort, we already noted that habitats need to be sampled proportionally
to their availability. Yet, observers from the opportunistic scheme are unlikely to sample habitats in
available proportion (e.g., farmland habitats are generally undersampled). In such cases, this biased
attention will affect the Pik (farmland birds detectability will appear systematically lower for scheme
k = 1). However, such corrections will be efficient only if land use does not vary significantly across sites
j or if the attention of the observers is not too biased toward certain habitats. Otherwise, the estimation
of Aij will be biased toward the density in the oversampled habitats in the opportunistic dataset. This
is a clear limitation of our current model, and we plan to explore how within-site stratification (e.g.,
habitats) could be incorporated.

Regarding the species detectability and reporting rate, we know that observers vary considerably in
their species-specific attention relative to the scheme characterized by a known effort in the opportunistic
dataset, and this is shown by the estimation of the relative detection probability (Table 1). However, as
long as these species detectabilities and reporting rates do not vary across sites, these discrepancies will
be taken into account in the Pik. This will arise if all observers behave similarly or if the sites are large
enough to include many observers (ensuring an averaging effect in the observing behaviour).

The hypothesis of constant detectability across sites j for a given species i for a given scheme may
not be met, as the heterogeneity of probability detection is documented in the literature (Link and Sauer,
1997; MacKenzie and Kendall, 2002). Many statistical frameworks based on a particular sampling design
have been suggested to estimate detectability, such as using mixture models based on repeated counts
(Royle, 2004). Further work is required to adapt such methods to our proposed framework. Meanwhile,
our method should only be used if the hypothesis of constant species detectability across sites j for the
scheme with known effort is reasonable.

In our estimation framework, we did not take into account any variable affecting the distribution
of the relative densities in the different sites. However, it is well-known that there might be a spatial (if
the “sites” are spatial units) or temporal (if the “sites” are time units) autocorrelation in the densities.
For example, it is frequent that if the density of a given species is high in a given spatial unit, it will also
be high in neighboring units. Moreover, spatial units with a similar environmental composition will often
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be characterized by similar densities. Explicitly accounting for these patterns in the estimation process
could lead to an increased precision of the estimation (by reducing the effective number of parameters).

This could be done by modelling the relative densities Ãij as a function of environmental variables,
or as a function of spatial effects (e.g. using conditional autoregression effects in a hierarchical model,
see Banerjee et al., 2004). Alternatively, it is possible to maximize a regularized log-likelihood, i.e. to
maximize for example:

logL −
I∑

i=1

J∑
j=1

J∑
m=1

νπjm(aij − aim)2

where L is the likelihood of the model, πjm is a measure of “environmental and spatial proximities”
between the unit j and the unit m, and ν is a positive parameter that determines the strength of the
penalty. The proximities could be of any sort (e.g. taking the value 1 if the two spatial units are
neighbours, and 0 otherwise; inverse Euclidean distances between the units in the space defined by
the environmental variables, etc.). This kind of regularization would reduce the number of effective
parameters in the model and thereby increase the precision of the estimation (for example, see Malbasa
and Vucetic, 2011). We stress that the model described here is a very general approach that will need to
be precised and adapted, depending on the specifics of each case study.

We end this discussion of the model by highlighting two promising applications of our framework.
Although we illustrated our framework while focusing on the estimation of spatial variation in density,
recall that it can be readily used to estimate temporal variation. In such cases, Ej1 would represent
the parameters describing the unknown effort at time j for the opportunistic dataset. We stress that
for temporal variation, biased attention for some habitats in the opportunistic dataset will not bias the
estimation of Aij as long as this biased attention is constant over time. Such biases will be entirely
captured in the estimation of the Pik. For example, the precision of bird population trends for France
will be considerably improved by the addition of opportunistic data to the current Breeding Bird Survey.

Another very interesting feature of our framework is its ability to estimate the relative abundance
of very rare species, even if this species is not part of a scheme with known sampling effort. This has
important practical implications. For example, Guisan et al. (2006) noted “in a sample of 550 plots
surveyed in a random-stratified way based on the elevation, slope, and aspect of the plot during two
consecutive summers in the Swiss Alps (704.2 km2), not one occurrence of the rare and endangered
plant species Eryngium alpinum L. was recorded. This was despite the species being easily detectable if
present and independent records of the species existing in the area within similar vegetation types”. Our
framework would be very useful in this context. In particular, if a citizen science program allowed the
collection of opportunistic data on this species along with other more common species, then the relative
abundance of the rare species could be estimated by combining these data with a standardised scheme
with these same common species.

5.2 Recommendations for opportunistic schemes

We stress again that the proposed method does not require the assumption of equal detectability among
species or equal species-detectability among schemes. What matters is some spatial homogeneity in
observer behaviour. This can be achieved through large numbers of observers or through appropriate
animation of the opportunistic scheme. Given the internet’s ability to foster strong social interaction
among observers, there could be some calls for attention (or avoidance) for some species (e.g., ”we need
to pay attention to ...”, ”we now have enough data for...”). If such calls are spatially biased, this would
impair the quality of the database for monitoring purposes. Coordinators of such databases should
discourage such variation in attention. In fact, in the proposed statistical framework, the dataset has
its maximal value if one can assume observers belong to the same statistical population with respect to
species-specific attention with homogenous mean and variance. Paradoxically, any recommendations for
more standardisation may harm more than help. A better message to deliver may be ”Keep on recording
what you want, where you want, when you want; the accumulation of data will be useful”.
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Appendix: Introduction

In this web appendix, we provide:

• several additional mathematical proofs used in the paper to develop our modeling framework;

• The R code used for the calculations illustrating the modeling framework.

We have written this appendix with the R package knitr (Xie, 2013), which allows to combine
LATEX and R code, ensuring the reproducibility of the calculations.

A Mathematical proofs

A.1 From count to binary data

We have developed a framework to model a sample of counts, but the proposed method can also be used
with other distributions. For example, it can be used to model relative abundance based on detection /
non-detection data (also called use/availability data, corresponding to design I data according to Thomas
and Taylor, 1993). In this situation, one simply changes the family distribution from Poisson to Binomial.
In this case, the outcome of the observation is a Bernoulli random variable with probability equal to
AijEjPi. Our framework developed in Section 3 of the paper can then be applied in a similar way, using
a logarithm as the link between the response and the linear predictor.
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A.2 Identifiability conditions

With the notations aij = log(Aij), ejk = log(Ejk) and pik = log(Pik), the model (1) described in our
paper can be recast as a classical generalised linear model

Xijk ∼ Poisson(λijk), with log(λijk) = aij + ejk + pik.

The kernel of the design matrix associated with this linear regression has a dimension equal to I + J + 1.
Therefore, we need I + J + 1 constraints to ensure the identifiability of the model.

A.3 Properties of the estimators

The negative log-likelihood of the parameters (Ãij , Ẽjk, P̃ik) is

L =
∑
i∈I

∑
j∈J

∑
k∈{0,1}

(
ÃijẼjkP̃ik −Xijk log(ÃijẼjkP̃ik) + log(Xijk!)

)

where the parameters {Ẽj0, j ∈ J} and {P̃i0, i ∈ I} are known, P̃10 = 1 and P̃i1 = 1 for all i ∈ I.

To keep the mathematical analysis of the maximum likelihood estimators comprehensible, we focus
below on the case where the P̃i0 are known. The maximum likelihood estimators of Ãij and Ẽj1 are then
the solutions of

Âij =
Xij0 +Xij1

P̃i0Ẽj0 + Êj1

and Êj1 =
X#j1

Â#j

, (5)

where X#jk =
∑

iXijk and Â#j =
∑

i Âij .

We first treat the simplest case where the P̃i0 are all equal.

A.3.1 Case of constant ratios Pi0/Pi1

We consider in this paragraph the case where P̃i0 = P̃10 for all i ∈ I. This corresponds to the case where
for all the species i, the probability detection ratios Pi0/Pi1 are the same and equal to P10/P11. We
derive from (5)

Â#j =
X#j0 +X#j1

Ẽj0 + Êj1

and inserting this expression in the formula for Êj1 we obtain Êj1 = Ẽj0X#j1/X#j0. As a consequence,

we obtain the closed-form expression for Âij

Âij =
Xij0 +Xij1

X#j0 +X#j1
× X#j0

Ẽj0

. (6)

According to the strong law of large numbers for Poisson processes, we have

Âij
Ej1�1→ Ãij

Ã#j

× X#j0

Ẽj0

(7)

and

var(Âij)
Ej1�1→

(
Ãij

Ã#j

)2

× Ã#j

Ẽj0

=
Ãij

Ẽj0

× AijPi0∑
lAljPl0

.

If we estimate Ãij with the sole “known-effort” data Xij0, the maximum likelihood estimator is given by

Â0
ij = Xij0/Ẽj0 and its variance equals var(Â0

ij) = Ãij/Ẽj0. We can then compare the variance of Âij

and Â0
ij

var(Âij)
Ej1�1∼ var(Â0

ij)×
AijPi0∑
lAljPl0

. (8)
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A.3.2 Case of arbitrary ratios Pi0/Pi1

We no longer assume that the P̃i0 are all equal. In this case, we have no closed-form formula for Âij but

we can compute a first-order expansion of Âij in terms of the inverse of X#j1.

The first step is to check that Â#j is upper-bounded independently of the Xij1. When Pi0 > 0 for
all i (which means that the same species are monitored in the datasets 0 and 1), we have from (5)

Âij ≤
Xij0 +Xij1

mini(P̃i0Ẽi0) +X#j1/Â#j

.

Summing these inequalities we obtain the upper-bound

Â#j ≤ X#j0/min
i

(P̃i0Ẽj0)

which does not depend on Xij1. The case where Pi0 = 0 for some i can be treated similarly: splitting
apart the indices in I0 = {i ∈ I : Pi0 = 0} and those out of I0, we get from (5)

Â#j ≤
∑

i∈I0(Xij0 +Xij1)

X#j1/Â#j

+

∑
i/∈I0(Xij0 +Xij1)

mini/∈I0(P̃i0Ẽi0) +X#j1/Â#j

.

This inequality is equivalent to

Â#j

(
1−

∑
i∈I0(Xij0 +Xij1)

X#j1

)
≤ X#j0/min

i/∈I0
(P̃i0Ẽj0).

In the asymptotic Ej1 � 1 we obtain the asymptotic upper-bound

Â#j ≤
X#j0

mini/∈I0(P̃i0Ẽj0)
×

∑
i∈I Ãij∑

i∈I\I0 Ãij

.

Now that we have checked that Â#j is (asymptotically) upper-bounded independently of the Xij1,
we can write a first-order expansion of the formula (5)

Âij =
(Xij0 +Xij1)Â#j

X#j1
−

(Xij0 +Xij1)Â2
#jP̃i0Ẽj0

X2
#j1

+O

(
Xij1

X3
#j1

)
. (9)

Summing these expansions over i ∈ I and simplifying the expression gives

Â#j =
X#j0X#j1

Ẽj0

∑
l P̃l0(Xlj0 +Xlj1)

(
1 +O

(
1

X#j1

))
.

Plugging this formula in (9) gives

Âij =
Xij0 +Xij1∑

l P̃l0(Xlj0 +Xlj1)
× X#j0

Ẽj0

×
(

1 +O

(
1

X#j1

))
Ej1�1→ Ãij∑

l P̃l0Ãlj

× X#j0

Ẽj0

,

where the last limit follows again from the law of large numbers for Poisson processes. Computing the
asymptotic variance when Ej1 � 1, we find after simplification

var(Âij)
Ej1�1→

Ã2
ij∑

l P̃l0ÃljẼj0

=
Ãij

P̃i0Ẽj0

× Pi0Aij∑
l Pl0Alj

. (10)

As in the previous case, we can compare this variance to the variance of the maximum likelihood
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estimator Â0
ij = Xij0/(P̃i0Ẽj0) obtained by estimating Ãij with the sole values Xij0. The variance of Â0

ij

being var(Â0
ij) = Ãij/(P̃i0Ẽj0), we obtain the reduction of variance

var(Âij)
Ej1�1∼ var(Â0

ij)×
Pi0Aij∑
l Pl0Alj

. (11)

B Calculations with the R software

In this section, we illustrate how to fit the model presented in the paper with the R software.

The data are stored in the file “DataSTOCLPO.txt” available in the supplementary material of
the paper. We load these data in R, and display the first rows of the data:

detections <- read.table("DataSTOCLPO.txt",

sep = "\t", header = TRUE, stringsAsFactors = TRUE)

head(detections)

## Species Site Effort_M AreaSite

## 1 CARCHL S1 4 5787

## 2 CARCHL S2 4 5534

## 3 CARCHL S3 6 3992

## 4 CARCHL S4 3 5949

## 5 CARCHL S5 10 7419

## 6 CARCHL S6 3 5562

## Total_X_LPO X_M X_L X_R

## 1 32633 22 799 6

## 2 16393 10 520 5

## 3 30113 16 1146 2

## 4 12497 15 413 25

## 5 44965 38 1839 7

## 6 17068 11 674 22

The data are stored in a data frame with 5 columns:

• The species (column Species) is coded as a factor with 22 levels. The latin name corresponding to
each species code is available in the table 2 of the main text;

• The site (column Site) is coded as factor with 6 levels (S1 to S6);

• The numbers of detections in the datasets M, L and R are stored respectively in the columns X M,
X L and X R.

• The log-effort for the dataset M is stored in the column Effort M: it corresponds to the number of
FBBS squares in each site;

• The area of each site is stored in the column AreaSite

• The total number of detections (all species pooled) for the dataset L in each site is stored in the
column Total X LPO.

Each row of this dataframe is a combination of species and site. Therefore, this dataframe contains
I × J = 132 rows.
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C Implementation of the model

The R function below can be used to fit our model:

fitmodel <- function(species_site, X_standardized,

X_opportunistic, Effort_standardized) {

## First check the data: Check that

## species_site is a data.frame

if (!is.data.frame(species_site))

stop("species_site should be a data.frame")

## Check that the columns are factors

if (!all(sapply(species_site, is.factor)))

stop("The columns of species_site should be of class factor")

## Checks for missing values

if (any(is.na(unlist(species_site))))

stop("No missing values are allowed in species_site")

if (any(is.na(X_standardized)))

stop("No missing values are allowed in X_standardized")

if (any(is.na(X_opportunistic)))

stop("No missing values are allowed in X_opportunistic")

if (any(is.na(Effort_standardized)))

stop("No missing values are allowed in Effort_standardized")

## Check that All species are represented

## for each site

if (!all(sapply(split(species_site[,

1], species_site[, 2]), length) ==

length(unique(species_site[, 1]))))

stop("At least one site does not contain information for some species")

## Check the length of the other elements

if (length(X_standardized) != nrow(species_site))

stop("species_site and X_standardized do not match")

if (length(X_opportunistic) != nrow(species_site))

stop("species_site and X_opportunistic do not match")

if (length(Effort_standardized) != nrow(species_site))

stop("species_site and Effort_standardized do not match")

## Prepare the design matrix

ijk <- cbind(rbind(species_site, species_site),

c(rep("Standardized", nrow(species_site)),

rep("Opportunistic", nrow(species_site))))

X <- c(X_standardized, X_opportunistic)

Species.sites_ <- factor(paste(ijk[,

1], ijk[, 2], sep = "."))

Sites.data_ <- factor(paste(ijk[, 2],

ijk[, 3], sep = "."))

Species.data_ <- factor(paste(ijk[, 1],

ijk[, 3], sep = "."))

matrix1 <- model.matrix(glm(X ~ Species.sites_ -

1))

matrix2 <- model.matrix(glm(X ~ Sites.data_ -
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1))

matrix2 <- matrix2[, -grep("Standardized",

colnames(matrix2))]

matrix3 <- model.matrix(glm(X ~ Species.data_ -

1))

matrix3 <- matrix3[, -grep("Opportunistic",

colnames(matrix3))]

matrix3 <- matrix3[, -1]

model_matrix <- as.data.frame(cbind(matrix1,

matrix2, matrix3))

## Prepare the log-effort

logEffort <- log(c(Effort_standardized,

rep(1, length(Effort_standardized))))

## Fit the model

mod <- glm(X ~ . - 1, data = model_matrix,

offset = logEffort, family = quasipoisson())

## Extract the coefficients of interest

coe <- summary(mod)$coefficients[, 1:2]

## Log-Relative abundance

LogAij <- cbind(species_site, do.call("rbind",

lapply(1:nrow(species_site), function(i) {
coe[row.names(coe) == paste("Species.sites_",

species_site[i, 1], ".",

species_site[i, 2], sep = ""),

]

})))
## Log-Effort for the opportunistic

## dataset

so <- sort(unique(species_site[, 2]))

LogEjk <- data.frame(Site = so, do.call("rbind",

lapply(1:length(so), function(i) {
coe[row.names(coe) == paste("Sites.data_",

so[i], ".", "Opportunistic",

sep = ""), ]

})))
## Log-Relative detection probability

so <- sort(unique(species_site[, 1]))[-1]

LogPik <- data.frame(Site = so, do.call("rbind",

lapply(1:length(so), function(i) {
coe[row.names(coe) == paste("Species.data_",

so[i], ".", "Standardized",

sep = ""), ]

})))

## the results

results <- list(LogAij = LogAij, LogEjk = LogEjk,

LogPik = LogPik, model = mod)

## Return

return(results)

}
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This function takes the following arguments:

• species site: a data.frame with two columns and I × J rows containing all the possible combi-
nations of Species (first column) and sites (second column);

• X standardized: a vector with I × J values, each value corresponding to the number of detections
in the standardized dataset, for the corresponding combination of species and site in the data frame
species site

• X opportunistic: a vector with I×J values, each value corresponding to the number of detections
in the opportunistic dataset, for the corresponding combination of species and site in the data frame
species site

• Effort standardized: a vector with I × J values, each value corresponding to the value of the
search effort in the standardized dataset, for the corresponding site × species combination in the
data frame species site.

We use this function in this appendix to carry out our computation, but the reader can use it on
its own data.

D Model fit

We now carry out the calculations described in the paper. First, we fit the model, using the dataset M
as the standardized dataset and the dataset L as the opportunistic dataset:

mod <- fitmodel(detections[, 1:2], X_standardized = detections$X_M,

X_opportunistic = detections$X_L, Effort_standardized = detections$Effort_M)

## Displays a short summary of the

## resulting object

str(mod, 1)

## List of 4

## $ LogAij:’data.frame’: 132 obs. of 4 variables:

## $ LogEjk:’data.frame’: 6 obs. of 3 variables:

## $ LogPik:’data.frame’: 21 obs. of 3 variables:

## $ model :List of 30

## ..- attr(*, "class")= chr [1:2] "glm" "lm"

This function returns a list with the following elements:

• LogAij: a data.frame containing the logarithm of the relative abundance for each species in each
site, as well as the standard error of this estimate

• LogEjk: a data.frame containing the estimate of the logarithm of the search effort estimated by the
model for the opportunistic data.set, as well as the standard error of this estimate;

• LogPik: a data.frame containing the estimate of the logarithm of the relative detection probability
for all species in the standardized dataset, as well as the standard error of this estimate.

• model: the object returned internally by the function glm(), containing all the details of the fit.
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E Predictive capacities of the model

Based on the fit carried out in the previous section, we calculate the various ratios described in the main
text:

R_R <- lapply(unique(detections$Species),

function(i) outer(detections$X_R[detections$Species ==

i], detections$X_R[detections$Species ==

i], FUN = "/"))

R_M <- lapply(unique(detections$Species),

function(i) outer(detections$X_M[detections$Species ==

i]/detections$Effort_M[detections$Species ==

i], detections$X_M[detections$Species ==

i]/detections$Effort_M[detections$Species ==

i], FUN = "/"))

R_L1 <- lapply(unique(detections$Species),

function(i) outer(detections$X_L[detections$Species ==

i]/detections$AreaSite[detections$Species ==

i], detections$X_L[detections$Species ==

i]/detections$AreaSite[detections$Species ==

i], FUN = "/"))

R_L2 <- lapply(unique(detections$Species),

function(i) outer(detections$X_L[detections$Species ==

i]/detections$Total_X_LPO[detections$Species ==

i], detections$X_L[detections$Species ==

i]/detections$Total_X_LPO[detections$Species ==

i], FUN = "/"))

R_S <- lapply(unique(detections$Species),

function(i) outer(mod$LogAij$Estimate[mod$LogAij$Species ==

i], mod$LogAij$Estimate[mod$LogAij$Species ==

i], FUN = "/"))

All these objects are lists with one element per species, each element i corresponding to a square
J×J matrix (containing at the intersection of the row j and of the column j′ the ratio RD(i, j, j′), where
D is one of the datasets). We calculate the correlation coefficient between each log-ratio RD and the
log-ratio calculated on the independent dataset RR:

r_M <- cor(log(unlist(lapply(1:length(R_R),

function(i) R_M[[i]][lower.tri(R_R[[i]])]))),

log(unlist(lapply(1:length(R_R), function(i) R_R[[i]][lower.tri(R_R[[i]])]))))

r_L1 <- cor(log(unlist(lapply(1:length(R_R),

function(i) R_L1[[i]][lower.tri(R_R[[i]])]))),

log(unlist(lapply(1:length(R_R), function(i) R_R[[i]][lower.tri(R_R[[i]])]))))

r_L2 <- cor(log(unlist(lapply(1:length(R_R),

function(i) R_L2[[i]][lower.tri(R_R[[i]])]))),

log(unlist(lapply(1:length(R_R), function(i) R_R[[i]][lower.tri(R_R[[i]])]))))

r_S <- cor(log(unlist(lapply(1:length(R_R),

function(i) R_S[[i]][lower.tri(R_R[[i]])]))),

log(unlist(lapply(1:length(R_R), function(i) R_R[[i]][lower.tri(R_R[[i]])]))))
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data.frame(ratio = c("R_S", "R_M", "R_L1",

"R_L2"), value = c(r_S, r_M, r_L1, r_L2))

## ratio value

## 1 R_S 0.50978

## 2 R_M 0.28784

## 3 R_L1 -0.09043

## 4 R_L2 0.29676

These values correspond to the values displayed in table 1 of the main text.

We now calculate the variance of the log-differences DD:

varD_M <- var(unlist(lapply(1:length(R_R),

function(i) {
aa <- log(R_M[[i]]) - log(R_R[[i]])

## keep only the lower triangular part of

## this matrix

aa[lower.tri(aa)]

})))
varD_L1 <- var(unlist(lapply(1:length(R_R),

function(i) {
aa <- log(R_L1[[i]]) - log(R_R[[i]])

## keep only the lower triangular part of

## this matrix

aa[lower.tri(aa)]

})))
varD_L2 <- var(unlist(lapply(1:length(R_R),

function(i) {
aa <- log(R_L2[[i]]) - log(R_R[[i]])

## keep only the lower triangular part of

## this matrix

aa[lower.tri(aa)]

})))
varD_S <- var(unlist(lapply(1:length(R_R),

function(i) {
aa <- log(R_S[[i]]) - log(R_R[[i]])

## keep only the lower triangular part of

## this matrix

aa[lower.tri(aa)]

})))

data.frame(ratio = c("R_S", "R_M", "R_L1",

"R_L2"), value = c(varD_S, varD_M, varD_L1,

varD_L2))

## ratio value

## 1 R_S 0.6764

## 2 R_M 1.4538

## 3 R_L1 1.5928

## 4 R_L2 0.8307

This table present the values displayed in table 1 of the main text.
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