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EQUIVALENT TRANSFORMATION STRAIN AND ITS
RELATION WITH MARTENSITE VOLUME FRACTION FOR
ISOTROPIC AND ANISOTROPIC SHAPE MEMORY ALLOYS

by
K. TAILLARD, S. ARBAB CHIRANL S. CALLOCH and C. LEXCELLENT

Abstract

The present paper deals with the superelastic behavior of both isotropic and anisotropic Shape
Memory Alloys (SMA). Recently, a macroscopic model, which permits to simulate the
superelasticity of SMA under complex multi-axial loading, has been proposed by Bouvet et al.
(2004). In this model, a conjecture concerning the proportionality of the equivalent
transformation strain with the martensite volume fraction has been adopted. The main goal of
this study is to show the validity of this conjecture when the stress state is multi-axial. In a
first part, the case of isotropic SMA is considered. An equivalent stress and an equivalent
transformation strain are introduced. In the second section, the case of anisotropic SMA is
considered. The previous equivalent stress and equivalent transformation strain are
generalized to take into account the anisotropy of the material. The relation between the
equivalent transformation strain and the martensite volume fraction is discussed by using, on
one hand, experimental results under proportional tension-torsion loadings and, on the other

hand, a polycrystalline model.
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1. Introduction

The Shape Memory Alloys (SMA) specific behavior is due to a solid-solid phase
transformation called martensitic transformation: according to the steels, the high temperature
phase and the low temperature phase are called austenite and martensite, respectively. The
transformation consists mainly in a shear, without volume change, which can be activated
either by stress or temperature. Among the various mechanical properties of SMA, in this
work, the superelastic behavior is considered. In this case the martensitic transformation is
only stress induced whereas the temperature remains constant and greater than the Af
temperature. The two main characteristics of the SMA superelastic behavior are, on the one
hand, a typical hysteretic behavior and, on the other hand, the absence of residual strain after a
total strain of 6% to 8% (for a polycrystalline NiTi SMA): the transformation strain is totally
recoverable.

Superelasticity of SMA has received considerable attention over the last twenty years. Several
types of superelasticity tests under uni-axial and multi-axial loading have been developed to
understand and model the mechanisms of formation and disappearance of martensite variants.
Today, it can be concluded that exhaustive experimental investigations under uni-axial
conditions on the superelasticity behavior of SMA are reported in the literature. Many effects
have been studied under uni-axial loadings and over a large temperature range. Particularly,
the effects of temperature (Wayman, 1983; Berveiller and Fischer, 1997), strain rate (Lim and
McDowell, 1999; Balandraud et al., 2000) and loading direction (tension or compression)
(Patoor et al., 1995; Gall et al., 1997; Liu et al., 1998) have been investigated. Moreover, the
influence of uni-axial stress on martensite plates substructures has been studied (Tan and Xu,
1990; Marketz and Fischer, 1996). Futhermore, for last years, some experimental
investigations under multi-axial loadings have been performed. For instance, the tension-
torsion tests on Cu-Al-Zn-Mn of Sittner et al. (1995), on Cu-Zn-Al of Rogueda et al. (1996),
on Ni-Ti of Lim and McDowell (1999), Raniecki et al. (2001), Helm and Haupt (2001 &
2003), the triaxial proportional tests of Gall e al. (1998), the biaxial tension tests of Vivet and
Lexcellent (1999) and the recent biaxial compression tests on Cu-Al-Be of Bouvet et al. (2002
& 2004). These recent experimental results show clearly that the superelastic behavior of
SMA is influenced by the multi-axial stress state.

In parallel, constitutive laws for superelasticity have been developed following three different
approaches depending on the chosen scale level (micro level, micro-macro level and macro
level). The micro-level models are based on the description of effects occurring at the micro-

scale level, such as nucleation, interface motion, twin growth, etc... They do not consider



phase volume fractions as a priori internal variables, but as a consequence of interfaces
movements. The interested readers can find more details in the following references (Falk,
1980, 1983, 1987, 1989; Ball and James, 1987, 1992...). The micro-macro-level models,
originated by Patoor et al. (1988) study combine micro-mechanical ingredients (such as habit
planes, martensite variants, etc...) and thermodynamics tools. The constitutive equations are
defined on a micro-scale and a localization process is therefore needed to determine the local
stress state. Moreover, the macro quantities are obtained from the micro quantities through the
use of proper homogenization techniques (Patoor et al., 1994; Fischer and Tanaka, 1992;
Fischer et al., 1994; Lexcellent et al., 1996; Boyd and Lagoudas, 1996; Tokuda et al., 1999;
Huang and Zhu, 2002, ). The macro-level models deal with macroscopic quantities, which
lead, only, to a description of the global thermomechanical behavior (Tanaka, 1986; Raniecki
et al., 1992; Raniecki and Lexcellent, 1994; Atanackovic and Miiller, 1995; Fremond, 1987,
1990; Chrysochoos et al., 1993, 1995; Boyd and Lagoudas, 1994; Raniecki and Lexcellent,
1998; Bouvet et al. 2004; Lexcellent and Blanc, 2004; Lexcellent et al. 2006...).

The advantages and disadvantages of the different approaches can be summarized by the
following general remarks. First, the models obtained by the macroscopic approaches are
generally easy to use and enable quick computations but, on the other hand, are often limited
from a predictive point of view. Concerning the micro-macro approaches, it is much more
predictive but a large number of internal variables is introduced. That is the reason for which
micromechanical models are computationally time-intensive and still remain difficult to be
used in structural engineering applications. The micro-level approach is more suitable for the
fundamental development work with real physical description of phenomena than the
quantitative macroscopic behavior description (Patoor et al., 2006; Lagoudas et al., 2006).
Recently, a macroscopic model, which permits to simulate the SMA superelasticity under
complex multi-axial loadings, has been proposed (Bouvet et al., 2004). The originality of this
model is that, the elastic domain of the material, in its two-phased state, is given by the
intersection of two transformation surfaces. The first one permits to control the forward
transformation (i.e., austenite-to-martensite), and the second one the reverse transformation
(i.e., martensite-to-austenite). The reorientation mechanism, which is produced only under
non-proportional multi-axial loading, is activated when the loading point is situated at the
intersection of these two transformation surfaces. None supplementary variable is introduced
in the model, the reorientation is modelized correctly (at the adopted description level) by
simultaneous forward and reverse transformations. This model has been validated by

considering a large base of multi-axial testing under proportional and non-proportional



loadings. Always in this model, a conjecture, already used by other authors (Juhasz et al.,
2002; Helm and Haupt, 2003), has been adopted concerning the proportionality between the
equivalent transformation strain and the martensite volume fraction. Up to now, this
conjecture has been only validated by experimental observations under uni-axial tension
loading (Vacher and Lexcellent, 1991).

So, the main goal of this work is to propose some investigations to show the validity of the
relation between martensite volume fraction and the equivalent transformation strain when the
stress state is multi-axial. The validation will be discussed, on the one hand, by considering a
series of experimental results under tension-compression-torsion loadings on a Cu-Al-Be
SMA and, on the other hand, by using a polycrystalline model (Patoor and Berveiller, 1997).
As this micromechanical model correctly describes the superelastic behavior of SMA, it is
used like a “virtual testing machine” to supply a pseudo-experimental database. By turns,
isotropic and anisotropic SMA cases are considered.

The present paper consists of two main sections. In the first one, the isotropic SMA case is
considered. Equivalent stress and transformation strain are introduced. Then, the
proportionality between the equivalent transformation strain and the martensite volume
fraction is discussed. In the second section, the anisotropic SMA case is considered. The
previous equivalent stress and equivalent transformation strain are generalized to take into
account the anisotropy of the material. The relation between the equivalent transformation
strain and the martensite volume fraction is discussed by using, on one hand, the experimental
results under proportional tension-compression-torsion loadings and, on the other hand,

numerical results obtained with the polycrystalline model on a textured.

2. Relation between martensite volume fraction and transformation strain: isotropic
SMA case

In the model proposed by Bouvet ef al. (2004), a conjecture has been adopted concerning the
proportionality between the equivalent transformation strain and the martensite volume
fraction. Up to now, this conjecture has been validated only in the case of uni-axial tension
loading (Vacher and Lexcellent, 1991). Our purpose here, is to show the validity of this
conjecture when the stress state is multi-axial. As our SMA is not isotropic, the
polycrystalline model from Patoor and Berveiller (1997) is used as a virtual testing machine.
In the first step, this polycrystalline model is described in detail. In the second step, the
definitions of equivalent stress and equivalent transformation strain in the case of isotropic

SMA are proposed. Finally, it is shown, by simulating 24 proportional loading paths, that



there is a linear relation between martensite volume fraction and equivalent transformation

strain.

2.1. Constitutive equations of the polycrystalline model

The polycrystalline model used in this study has been developed by Patoor and Berveiller
(1997). It is based on the self consistent approach. The representative elementary volume is
defined by a polycrystal (i.e., a set of crystal orientations). Loading is evaluated at grain scale
using the localization tensor. Considering the local loading state, the martensite activable
variants are detected and the volume fraction of each variant and the induced transformation
strain are calculated. This operation is realized for all the grains (i.e., crystal orientations) of
the polycrystal. By this way, the microstructure evolution (i.e., the evolution of the martensite
volume fraction of each variant in each grain) can be followed during loading. The martensite
volume fraction can be calculated at different scale. The grain orientations of the polycrystal
permit to define the crystallographic texture of the material so the isotropy or anisotropy of

the SMA produced during the forming process can be taken into account.

2.1.1. Localization
The one site self consistent approach using the Kroner inclusion is used to obtain the
localization tensor.

£ = Ay By, (2.1)

where £, is the increment of the local total strain tensor, E,, is the increment of macroscopic

total strain tensor and A4, is the localization tensor given by:

. . 1
Ay = [L= T [ = LT | (22)

where [, is the identity tensor, /; @ is the effective Green tensor, /,, is the local tangent

ijmn g
modulus and LY}, is the effective tangent modulus.
2.1.2. Local evolution laws

The transformation criterion is the following:

g0, =B(T-M, )+ H"f" (2.3)

m

where &, is the transformation strain tensor of variant “n” defined by Eq. (2.4). B is a

material parameter which permits to define the chemical potential. T is the temperature of the

aggregate considered as uniform. M; is the martensite start temperature. H™ is the



interaction matrix describing weak or strong interaction between the formed martensite
variants (Niclaeys et al. 2002) and f™ is the volume fraction variant “m”.

£ = &R, 2.4)
where g, the transformation strain amplitude, is a material parameter and R;, is the
orientation tensor of variant “n”.

The internal variables are the volume fraction of each variant. Their evolutions are obtained

by the derivation of thermodynamical potential (Entemeyer, 1996).
‘ * yrnm -
f = Z ( H ) g;qu Cpqrs Ers (25)

with
‘H" =H"+¢,, C,, & (2.6)

pqrs rs

where C, . is the rigidity tensor and £, is the increment of the total strain tensor at grain

level.
The local tangent modulus expression is given by:

liwg = Cyy = Cijrszg:ls (*H nm)_l‘g;q Coon 2.7)

n,m

2.1.3. Homogenization
The effective tangent modulus is calculated using the localization tensor and the local tangent

modulus.

Ly =2l A F* 2.8)
N

N is the grain number and F" is the volume fraction of grain number “N”.
The macroscopic behavior is given by:
fy‘ = Lff;@ E, (2.9)

2 .. is the increment of macroscopic stress tensor.

y

2.1.4. Data of the model

24 martensite variants forming 6 self-accommodating groups of a CuAlBe SMA are
considered. They are characterized by the normal to the habit plane and the transformation
direction. They are [1 1 4] type. The transformation strain amplitude, g, is the same for all the
variants and it is about 0.23. The parameters of the interaction matrix are 50 MPa describing

the weak interaction and 260 MPa for the strong one (Siredey et al., 1999). The parameter B



defined in Eq. (2.3) is about 0.23 MPa.K™'. The elasticity is supposed to be isotropic and the
same for the two phases.

The polycrystalline material is represented by 1000 grains with different orientations. An
isotropic and a drawn texture have been used to describe an isotropic and an anisotropic SMA.
To obtain the drawn texture, an elasto-plastic model describing the behavior of polycrystalline
metals, based on the self-consistent scale transition method (Lipinski, 1992) has been used. A
drawn loading has been applied to an isotropic texture of FCC metals until 50% of equivalent

von Misgs strain. So, a transverse isotropic behavior is obtained.

2.2. Macroscopic approach
2.2.1. Equivalent stress for isotropic SMA

For isotropic SMA the equivalent stress depends on the three independent stress tensor

invariants:
P=tr(g)
- |3 , 1
U:\/Edev(g) sdev(ag) with dev(g):g—gtr(g)[ (2.10)
_ 27 det(dev(g))
ag 2 53

As the martensitic transformation is volume invariant, the equivalent stress is independent of
the first stress invariant. To describe the well-known tension-compression asymmetry (Gall et
al., 1997, Liu et al., 1998, Patoor et al., 1995), Bouvet et al. (2002, 2004) proposed the

following equivalent stress:

0,=0,00,,)=08(,) @.11)
with
8(ys)= co{cos‘ (1—;(1—%))} (2.12)

Where a is a material parameter permitting to fit the tension-compression asymmetry.

This definition of equivalent stress yields to a convex criterion (Bigoni and Piccolroaz, 2004)
for all values of a varying from 0 to 1: when a equals to 0 the criterion is the same as the
von Mis¢s criterion and when a equals to 1, the criterion presents its maximal tension-

compression asymmetry.



The value of the material parameter a is determined using only the “yield” stresses in pure

tension, O,, and in pure compression, J,, as the solution of:

0= %{1 —cos{?a cos™ (%M 2.13)

2.2.2. Initial “yield” surface for isotropic SMA
The initial “yield” surface, f/ =0, linked to the equivalent stress (Eq. (2.11)), is defined by
the following equation:

f:aeq—a,=0 (2.14)

Insofar as our Cu-Al-Be SMA is not isotropic (see section 3.2.4.), the polycrystalline model
has been used as a “virtual testing machine” to validate the definition of the initial “yield”

surface (Eq. (2.14)). Twelve simulations have been performed in the two planes (o,,,0,,)
and (0,,,0,,) on an isotropic crystallographic texture of 1000 grains. Figures 1 and 2 shows

the twenty-four proportional loadings considered.

Figures 3 and 4 show the “yield” surfaces obtained, on the one hand, with the polycrystalline
model and, on the other hand, with the macroscopic approach (o, =150 MPa and a=10.7 ).
The agreement between these two sets of data is excellent. As only two points were used to
identify the two coefficients g, and a, these results validate the relevance of the equivalent

stress, 0, , proposed for isotropic SMA.

2.2.3. Equivalent transformation strain
To ensure the coherence of the equivalent transformation strain with the equivalent stress

(Eq.(2.11)), the equality between the phase transformation power under proportional loading,

P"=g:£", and the equivalent transformation power P. =0, £ (Bouvet e al., 2004)

should be verified (White and Drucker, 1950; Hill, 1979, 1987):

o. £ :g_-é‘” (2.15)

eq ~eq

This relation implies that the response of an isotropic SMA for all multi-axial proportional

loading have the same representation on the (&£

eq?

g,,) plane.

The normality rule is also assumed. It means that the direction of transformation strain rate is

supposed to be normal to the “yield” stress surface, f :



o ; 0f _ 00, .
E"=A"—=1—=L=)K 2.16
£ = N og ke (2.16)

where A is the superelastic multiplier and K _ is the normal to the “yield” surface at the
loading point.

For isotropic SMA, the following result can be obtained (Raniecki and Lexcellent, 1998;
Bouvet et al., 2004):

X _6aeq:§
20 ag 2

9 2
g(ya)'ﬂa +Eg (yo)(?’ﬂff _yo.ﬂa _glj (217)

where [ is the unit tensor and

N, =dev(d)
g
delv, ) (2.18)
g'(y,) =827
dys
and g(y,) is given by the equation (2.12).
Therefore:
0:¢"=A0:K, =0, =& =] (2.19)
Using equation (2.20), the superelastic multiplier can be calculated:
é_tr . é_tr 57
A :52; = [E }( = . (2.20)
KoiKo Ny, 0490 (vo (1= 7, )

&" is the von Misés equivalent transformation strain rate defined by:

&= J%g” & (2.21)

And the equivalent transformation strain is defined like the equivalent transformation strain

rate:

gtr _ gtl‘

“ e )9 ) - v,

With this definition, the equivalent transformation strain depends on the third stress invariant,

(2.22)

v, . To avoid that, it is possible to calculate y, as a function of £” for every proportional

loading path. This function cannot be analytically determined, and an approximation is so

used:



1 _&(=r.)

: _ (2.23)
V& ) +9Ag' ) (1 -y,))  &CD
Where Y is the third transformation strain tensor invariant, defined by:
det(&"
Ver =4 _(3 / (2.24)
gtr

Finally, an equivalent transformation strain coherent with the equivalent stress has been

defined:

éJr =? g(_yg”)
N g(—1)

Figure 5 shows the results given by the polycrystalline simulations in the (é’é;,

(2.25)

g,,) plane for
the 24 loading paths. It can be observed that the difference between the 24 curves is very
small. This result permits to validate the definition of the equivalent transformation strain for

. . tr
isotropic SMA, €, .

2.2.4. Relation between martensite volume fraction and equivalent transformation strain
The macroscopic model proposed by Bouvet et al. (2004) uses the transformation strain, £",

as an internal variable, and postulates that the volume fraction of martensite, z, is a function

of the equivalent transformation strain, &, :

gtr
z=-4 (2.26)
4

Our purpose here is to verify the proportionality relation between these two quantities using

micro-macro simulations. Figure 6 shows the evolutions of the martensite volume fraction, z,

(i.e., the average of microscopic martensite volume fractions) versus the equivalent

transformation strain, &,, (Eq.(2.25)) for the 24 proportional loading paths (figures 1 and 2).

11



Figure 6 shows that, for the 24 loading paths considered, the 24 (z, Eé’;[) curves are identical. It

is also shown that, excepted for the beginning of the martensitic transformation, the

martensite volume fraction, z, is a linear function of the equivalent transformation strain, 822 .

At the beginning, a rupture in the slopes of the curves can be observed. This phenomenon is
only due to a numerical cause and is not representative of the real behavior of SMA. It may
provide from too well oriented grains that early begin to transform into martensite (Entemeyer,

1996).

2.2.5. Conclusions

Using simulations of a micro-macro model (Patoor and Berveiller, 1997), an equivalent stress
and an equivalent transformation strain have been defined for isotropic SMA. Moreover, it
has been shown that there is a linear relation between martensite volume fraction and

equivalent transformation strain in the isotropic SMA case.

3. Relation between martensite volume fraction and transformation strain: anisotropic
SMA case

In this part, the relation between martensite volume fraction and equivalent transformation
strain is generalized to the anisotropic SMA case. So, the equivalent stress and the equivalent
transformation strain introduced in the previous section have been modified to take into

account the anisotropy of our material. The anisotropic equivalent stress, g, ., is developed
from the isotropic equivalent stress (Eq.(2.11)), using a dilated stress tensor concept, J ,
obtained from g by an affine transformation (Sobodka, 1969; Boehler and Sawczuck, 1970;

Barlat and Lian, 1989, Barlat et al., 1991; Karafillis and Boyce, 1993). The equivalent

transformation strain, linked to o

oy ani» s been proposed by considering a generalization of
the equivalent transformation power that permits to take into account the anisotropy of the
transformation energy.

The analyses of the results are made by using, on one hand, numerical micro-macro
simulations and, on the other hand, experimental data under tension-compression-torsion on a

Cu-Al-Be SMA.

3.1. Material: Cu-Al-Be SMA
All experimental results presented hereafter have been obtained on a polycrystalline Cu-Al-Be

SMA composed of 87.75wt% copper, 11.33wt% aluminum and 0.49wt% beryllium. It has

12



been provided by the Tréfimétaux Company. The samples have been obtained by drawing,
heat treated at 650°C during 20 minutes and then quenched in boiling water during 1 hour.
The four transformation temperatures at free stress state have been determined using electrical
resistance measurements (austenite start temperature: Ag = 25°C, austenite finish temperature:
Ar=38°C, martensite start temperature: Mg = 22°C, martensite finish temperature: M¢= 4°C)
(figure 7).

3.2. Experimental “yield” stress surfaces

In order to obtain a large database of experimental “yield” stress surfaces, three types of
mechanical tests have been performed: tension-compression-internal pressure and tension-
compression-torsion on tubular specimen and bi-compression on cubic specimen. In this work,
“yield” surface is defined conventionally at a certain off-set of transformation strain (e.g.,
0.1%). More details concerning the experimental procedure can be found in (Bouvet et al.,

2002).

3.2.1. Tension-compression-internal pressure tests

The tests have been carried out on a Schenck axial hydraulic testing machine. The axial
actuator has a load capacity of 63 kN. An 800 bar hydraulic pump has been added to perform
internal pressure loading. Axial and hoop strains have been measured using a rosette-type
strain gauge glued on the external diameter of the tubular specimen. Figure 8 shows the
geometry of the thin walled tubular sample.

A specimen has been subjected to a series of nine proportional loading paths. Figure 9 shows

3

the shape of the experimental transformation “yield” surface in the (0,,,0,, ) upper half-

plane. The well-known tension-compression asymmetry can be observed.

3.2.2. Tension-compression-torsion tests

The tests have been carried out on a MTS axial-torsion hydraulic testing machine. The axial
and rotary actuators have a load capacity of 100 kN and 1.2 kN.m, respectively. Axial and
shear strains were measured using a rosette-type strain gauge glued on the external diameter
of the tubular specimen. The samples are the same thin walled tubes as for the tension-
compression-internal pressure tests (figure 8).

Twelve proportional loading paths have been carried out. Figure 10 shows the shape of the

transformation “yield” surface in the (0;,,,0;, ) plane.
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3.2.3. Biaxial compression tests

The tests were performed on the Schenck multi-axial testing machine, ASTREE. The basic
idea of the biaxial compressive test is to load a cube of Cu-Al-Be alloy in compression along
two perpendicular directions. The main difficulty of this test consists in applying uniformly
the load on each face of the specimen without friction; that is why the load is transferred
through 296 rods to each face. Experimental procedures and first experimental results are
described in details in Bouvet et al. (2002). Nine proportional loading paths have been carried
out. Figure 11 shows the shape of the transformation “yield” surface in the (0,,,0;; ) quarter-

plane.

3.2.4. Comparison between experimental results and the isotropic transformation surface
Figures 9, 10 and 11 show, in the three planes (0,,,0,,), (0,,,0,,) and (0,,,0;; ), the

3

comparison between experimental data and the macroscopic “yield surface” for isotropic
SMA (o, =140MPa and a=0.65 ). Figures 9 and 11 show that the agreement is excellent in
the planes (0,,,0,,) and (0,,,0;; ). But, figure 10 shows a strong anisotropy in the plane
(0,,,0,,). Indeed, the macroscopic criterion gives a value of 90 MPa for the yield stress

under pure torsion whereas the experimental value reaches 145 MPa. So, more general “yield”

surfaces are needed to take into account these observations.

3.3. Determination of microstructure evolution under tension-compression-torsion loading by

electrical resistance measurements
As the austenite and the martensite phases have different resistivities (e.g., 0, =6.2107° Qm

and p,, =8,2107° Qm, respectively), the microstructure evolution (i.e., martensite volume
fraction) can be deduced from the sample electrical resistance variations during loading
(Vacher and Lexcellent, 1991; Gonzalez, 2002; Kotil et al., 2003). This experimental
technique has been performed under tension-compression-torsion proportional loadings on

tubular specimen (figure 8) at constant temperature (T = 50°C).

3.3.1. Relation between the martensite volume fraction and the sample electrical resistance
During the tests, to determine the martensite volume fraction evolution, the sample electrical
resistance has been measured using the 4-wire lead measurement method, which cancels lead

resistance errors inherent in 2-wire systems. The sample electrical resistance is given by:

L
R=p— 3.1
P G.1)

14



where p is the resistivity of the material, L is the specimen length and S is the specimen

section.

If the sample volume is assumed as a constant, V, =S,.L, =S.L (i.e., the volume variation,

due to the elastic deformation, is neglected), the sample electrical resistance can be written:

LZ
R=p— (3.2)

VO
Figure 12 shows the evolution of the sample electrical resistance versus the total axial strain
during a tension-compression test. During a tension-compression-torsion test at constant

temperature, the electrical resistance variation is given by:

2L L’
AR = OAL+20 A 3.3
pVO v 0 (3.3)

2L L’
AR :,0—()% +—0A,0 (3.4)

SO LO VO

2L L’
AR=p"0 g +0 A 3.5
,OS0 ey 0 (3.5)

This last equation (Eq. (3.5)) shows that the electrical resistance variation is caused, on one
hand, by a resistivity change, 4p, (i.e., linked to martensite transformation), and, on the other
hand, by the total axial strain of the sample, &,. It should be noted that a shear strain has no
effect on the electrical resistance variation. The effects of 4o and &, contributions during a
tension-compression loading can be observed on figure 12.

During the first part of the tension test, the behavior is elastic without phase transformation.
So, the electrical resistance variation is only due to the axial strain. In the second part, the
electrical resistance change is due to both axial strain and phase transformation. Concerning
the first part of the compression test (i.e., elastic part), the electrical resistance variation is
negative because the axial strain is negative (Eq. (3.5)). In the second part (i.e., after the yield
stress), the electrical resistance variation is due to a negative axial strain effect (i.e., &, <0)
and a positive martensite transformation effect (i.e., 40>0).

To obtain the resistance variation related only to the martensite transformation, a corrected
electrical resistance, R., should be defined by removing the geometry effect from the
measured electrical resistance, R. The correction to the measured electrical resistance is made
as follow:

R =R-ke, (3.6)
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Where « is a coefficient that has been identified to obtain a (R_,&,, ) symmetrical graph (i.e.,
we assume that the phase transformation has the same effect on electrical resistance variation
under tension or under compression) (figure 13).

Figure 13 shows that the corrected electrical resistance, R., is quasi-constant in the elastic
deformation zone of the tension-compression test.

So, the martensite volume fraction, z, can be calculated from the corrected electrical

resistance, R., by using a mean law (i.e., differential model) (Milton, 2002):

2

o= ]_M(&Jj (3.7)
R,-R, R

where R,, and R, are the sample electrical resistance at martensite and austenite state at

T = 50°C, respectively. These two values can be determined on figure 7.
Figure 14 shows the martensite volume fraction versus the axial transformation strain during a
loading-unloading tension test. The proportionality between the axial transformation strain,

ir

&", and the martensite volume fraction, z, is observed (figure 14). This result has already

been showed by Vacher and Lexcellent in 1991 on a Cu-Al-Zn polycrystalline SMA.

3.3.2. Evolution of martensite volume fraction under tension-compression-torsion loading

A series of nine tests under proportional tension-compression-torsion loading has been
performed on a tubular specimen. Figure 15 shows the loading paths considered. During the
nine tests, the electrical resistance variation has been measured. Figure 16 shows the

martensite volume fraction, z, Eq.(3.7), versus the isotropic equivalent transformation

strain, £, ,

Eq. (2.25).
For each loading path, the proportionality between the isotropic equivalent transformation

strain, £” , and the martensite volume fraction, z, is observed (figure 16). Nevertheless, the

eq
slopes are quite different and seem to be influenced by the loading direction. But, this first
reported results on figure 16 does not take into account the anisotropy of the material, witch is
known to have a strong influence on the yield stress surfaces (Arbab Chirani and Patoor 2000;
Aleong et al. 2002; Lexcellent et al. 2002). So, a generalization of the equivalent stress and
the equivalent transformation strain for anisotropic SMA is required. This is the main

objective of the following parts of the paper.
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3.4. Macroscopic approach
3.4.1. Equivalent stress for anisotropic SMA

The isotropic equivalent stress has been generalized to take into account the anisotropy of the

material. A dilated stress tensor, denoted by J , is defined as a linear transformation of g by:

g=D.C (3.8)

where D contains constant material parameters. This affine transformation D is chosen such

as the Hill’s hyper ellipsoid which becomes a hyper sphere in the dilated stress space. The

form of D is as following:

%msz((b)+%sin"(¢)+é —?cos"(¢)—§xm"(¢)+é —?cosz(¢)—§xin"(¢)+§ 0 0 0
4 B| . A4 B 1 (4 B) B A) . 1
sym (g+3Jcos (¢)+(E+g]sm (¢)+§ (g—EJcas (¢)+(g—3Jsm (¢)+§ 0 0 0
4,8 ~05” + £+£ sin’ +l
inv sym sym (E+E]° () (2 6] (@) 3 0 0 0 (39)
0 0 0 VLo 0
0 0 0 0 M o
0 0 0 0o 0 N]
with:
A’ =acos’(@)+ Bsin’ (@ )+ ycos(@)sin(@)
B’ =asin’(@)+Lcos’(@)— ycos(@)sin(@)
¢ :éarctan( o ) (3.10)
] 2 2 2
V= JE[(D” - D12) + (Du - D13) + (D12 - D13) J
and:
3
a=—(F+H)
2
P a1
2 2
5=3(H-F)
where F, G, H, L, M, N are the Hill’s criterion coefficients:
F(oy, _022)2 +G(0,, _033)2 +H(0;; _011)2 +2L0},+2M0o3;+2Noj, =1 (3.12)

The angle denoted ¢, Eq. (3.10), corresponds to the inclination of the Hill’s hyper ellipsoid in

the stress space. In our case, thanks to transverse isotropy of the material ¢ is equal to 0.
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Based on this linear transformation, the equivalent stress for anisotropic material, O, is

q ani ®

simply defined by substituting g for g in Eq. (2.11):

Ueqani:aeqani(g)yﬁ)zg‘g(yﬁ) (313)
where & and v are the 2" and 3" invariants of the dilated stress tensor & and g is the same

function as the one introduced in the macroscopic criterion for isotropic material, Eq. (2.12).

By the same way, the anisotropic “yield” surface is simply defined by substituting o, for

o,, in Eq. (2.14). Thanks to of the linearity of the tensor transformation, D, the anisotropic

“yield” surface is convex (Betten, 1988).

3.4.2. Material parameters identification procedure

Seven material parameters have been introduced in the definition of the anisotropic “yield”
surface: F, G, H, L, M, N (i.e., the Hill’s criterion coefficients) and a (i.e., the asymmetry
parameter).

The parameter a has been determined as in the isotropic case, Eq. (2.13). As the asymmetry

could be different along the three axes, the average value has been taken into account. If q,

denotes the asymmetry parameter along the axis i, it is the solution of:

0
a, =%|:1 —cos{3 cos” (%)H (3.14)

where o), is the “yield” stress under pure tension and o, the “yield” stress under pure

compression for the axis i. Then, the material parameter a is defined by an average value:

a,ta,+ta
a:1 2 3
3

The six material parameters, F, G, H, L, M and N, can be determined from the “yield” stresses

(3.15)

under pure tension and under pure shear as following:

F+H=—L =L
Jl 1t 2'0-125
1 1
F+G :—0 M = 0 (316)
JZZt 2‘Jl3s
G+H=— N=—L
0331 2‘0-235
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3.4.3. Comparison between the anisotropic “vield” surface and polycrystalline simulations

As in the isotropic case, the polycrystalline model has been used to validate the anisotropic
equivalent stress. To obtain the drawn texture, an elasto-plastic model describing the behavior
of polycrystalline metals, based on the self-consistent scale transition method (Lipinski et al.
1990) has been used. A drawn loading has been applied to an initial isotropic texture of FCC
metals until 50% of equivalent von Mis¢s strain. Otherwise, the principle of the micro-macro
model remains identical. 12 proportional loading paths have been considered in each plane
(0,,05), (05,05 ), (0,,0,,) and (0;;,0,; ). Figures 17a-d show the “yield” surfaces
obtained, on the one hand, with the polycrystalline model and, on the other hand, with the
macroscopic approach. Table 1 gives the material parameters values used for the macroscopic

“yield” surface. The agreement between these two sets of data is good.

3.4.4. Comparison between the anisotropic “vield” surface and experimental results

The identification procedure is similar to the one used in the previous section with the micro-
macro simulations. Nevertheless, with the performed experimental database, some parameters
remain undetermined. Table 2 gives the coefficients for the anisotropic equivalent stress
identified with the experimental database.

Figures 18, 19 and 20 show the comparison between the experimental results and the

anisotropic “yield” surface in the three (o,,,0,,), (0,,,0;;) and (0,,,0,,) planes. The

agreement between these two sets of data is good and shows that the anisotropic “yield”

surface is flexible enough to describe the whole set of experimental data.

3.4.5. Equivalent transformation strain for anisotropic SMA

Insofar as the definition of equivalent stress has been changed, the definition of equivalent
transformation strain has to be also modified.

The main idea here is that there is no reason for an anisotropic alloy to keep the same

transformation power for all loading directions (Hu, 2004), that means:

g &" #cte (3.17)

O-eqani ég]ani 7 g ) éjr (3 1 8)
In this proposition the equivalent quantities (stress and strain) are supposed to be independent
of the loading direction. Consequently, the assumption of power equality is not automatically

validated (Eq. (3.18)).
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To validate this assumption, the transformation energy W, , at constant martensite volume

tr o
fraction z , for every loading direction of the micro-macro simulations has been calculated

using Eq. (3.19).

=[g:e"d (3.19)

z

The results are shown on figures 21a-d. The distance of a point to the origin is proportional to

the transformation energy.

These curves show that the transformation energy, for a given value of martensite volume

fraction, z, depends on the loading direction. A difference of 20% may be reached. Therefore

the notion of “iso-transformation energy surfaces” is introduced.

These “surfaces” of iso-transformation energy can be represented by hyper ellipsoids without

inclinations in the stress space and without asymmetry. It can also be noticed that their shape

remains the same whatever the z value. Consequently, their equation has the following form:
fkf,+gk§2+hk323+lkf2+mkf3+nk§3=1 (3.20)

Where f,g,h,l,m,n are constants and £ is defined by:

k=W, —=W,N 3.21
Il G.2D)

N is the loading direction and W, depends on N and z.

W,(N,z) =W,"" (z).a(N) (3.22)
As the equivalent transformation energy is the same whatever N and equal to the
transformation energy " for tension loading, it can be deduced:

1z

]
q ani * éé; ani d: VI/'”’@”W’” [AgEAN NN 5 d 3.23
Jo W)= = s [ 29

So, for every proportional loading path:

£ = I [g:k (3.24)
a(N) eqam

The equation of the energy surfaces, Eq. (3.20), may also be written as following:
Wi (N,z)( fNj+gN3,+h N +INj,+mNj;+nNy;)=1 (3.25)
As a consequence, a(N)is so calculated:

oo y= FelN.2) V7
— Wtension( ) 2 2 2 2 2 2
r z SN +gNy+h N +IN,+mNj;+nNs;

(3.26)

The identified values for f, g,h,l,m,n, considering W,f (2) =W, (N, =e Ue,,z), are:
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f=

_ Wtemwn Z)
s WE(z)
h _ (Wten::on j
W (z)
tenszon (327)
W12 (Z)

Wleﬂél()}’l
m=\ =5,
W, (Z)
Wleﬂél()}’l ( )
=5, N
W, (2)
3.4.6. Relation between martensite volume fraction and anisotropic equivalent transformation
strain (micro-macro simulations)
The micro-macro simulations on the polycrystalline-textured aggregate are used to compare

the anisotropic equivalent transformation strain versus the volume fraction of martensite.

Twelve loading paths are computed in the studied loading planes: (0,,,0,,), (0,,,0;; ),

(0,,,0,,) and (0;;,0,; ). The results are presented on the following (&, ..,z ) curves for the

eq ani’

48 loading paths considered (figures 22a-d).

The (&, ,.,2z) curves are quasi identical. A particularly good agreement is obtained for the

isotropic plane of the material (22,33). In the other planes, the observed slopes differences are

vanishing small. Therefore, it can be concluded that there is a linear relation between the

equivalent transformation strain &, . and the volume fraction of martensite z :

eq ani

Ecgani = V. (3.28)

3.4.7. Relation between martensite volume fraction and anisotropic equivalent transformation
strain (experimental results)

In this paragraph, the martensite volume fraction in Cu-Al-Be specimen determined by

electrical resistance measurements is compared to the equivalent transformation strain &,

eq ani*

Figure 23 shows the response on (&, ,.,z) graph for the nine tension-compression-torsion

eq ani’

loading paths performed.
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These experimental results under tension-compression-torsion loadings on the Cu-Al-Be

specimen show also quasi-identical (&, ,,,z) curves. The proportionality relation between

éJV

eq ani

and z is so experimentally verified.

4. Conclusion

1.

Macroscopic equivalent stresses have been defined for both isotropic and anisotropic
SMA. For isotropic SMA, the associated yield stress surfaces coincide with those
obtained by micro-macro simulations (Patoor and Berveiller, 1997) performed on an
isotropic 1000 grains aggregate. For anisotropic SMA, the associated “yield” surfaces
are in good qualitative and quantitative agreement, on one hand, with micro-macro
simulations performed on polycrystalline textured aggregate, and on the other hand,
with detection tests on Cu-Al-Be samples. The anisotropic “yield” surface is flexible

enough to describe the whole set of experimental data.

Associated with each equivalent stress, the equivalent transformation strain has been

defined.

The martensite volume fraction is followed experimentally thanks to electrical

resistance measurement of the sample during super-elastic tension-torsion tests.

Finally, the linearity between the martensite volume fraction and the equivalent
transformation strain has been validated in both cases of isotropy and anisotropy. This
validation has been realized for isotropic SMA thanks to micro-macro simulations on
the 1000 grains isotropic aggregate. For anisotropic SMA, the validation has been
performed using both micro-macro simulations on the textured aggregate and tension-

torsion super-elastic tests with electrical resistance measurement of the sample.

Therefore, the assumption 822 = y.z (for isotropic SMA) or &, ,,; = y.z(for anisotropic

SMA) is fully established.
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Figure captions:

Fig. 1. The 12 loading paths in the (0,,,0,, ) plane.

Fig. 2. The 12 loading paths in the (0,,,0;, ) plane.

Fig. 3. Shape of the “yield” surface in the (0,,,0,, ) plane.
Fig. 4. Shape of the “yield” surface in the (0,,,0,, ) plane.

Fig. 5. Equivalent stress versus equivalent transformation strain for the 24 loading paths
considered.

Fig. 6. Martensite volume fraction versus equivalent transformation strain for the 24 loading
paths considered.

Fig. 7. Transformation temperatures determination by electric resistance variation
measurements.

Fig. 8. Geometry and sizes of the tubular specimen (in mm).

Fig. 9. Comparison between experimental results and the isotropic “yield” surface in
(0,,,0,,) half-plane.

Fig. 10. Comparison between experimental results and the isotropic “yield” surface in
(0,,,0,,) quarter-plane.

Fig. 11. Comparison between experimental results and the isotropic “yield” surface in
(0,,,0;; ) quarter-plane.

Fig. 12. Evolution of electrical voltage proportional to electrical resistance during a tension-
compression test.

Fig. 13. Evolution of voltage proportional to corrected electrical resistance during a tension-
compression test.

Fig. 14. Evolution of martensite volume fraction versus axial transformation strain during a
loading-unloading tension test.

Fig. 15: Description of the nine tension-compression-torsion loading paths.

Fig. 16. Martensite volume fraction versus isotropic equivalent transformation strain for nine
tension-compression-torsion loadings.

Fig. 17. Comparison between the “yield” surfaces obtained with the textured polycrystalline
model and with the anisotropic approach in different planes.

Fig. 18. Comparison between experimental results and the anisotropic “yield” surface in
(0,,,0,, ) half-plane.
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Fig. 19. Comparison between experimental results and the anisotropic “yield” surface in
(0,,,0;; ) half-plane.

Fig. 20. Comparison between experimental results and the anisotropic “yield” surface in
(0,,,0,, ) plane.

Fig. 21. “Iso-transformation energy surfaces”: angle stands for the loading direction in the
loading plane, and radius is proportional to the transformation energy for a given value of z

Fig. 22. Martensite volume fraction versus the anisotropic equivalent transformation strain
obtained with the textured polycrystalline model for the 48 loading paths considered.

Fig. 23. Martensite volume fraction versus the anisotropic equivalent transformation strain
obtained on Cu-Al-Be for the nine tension-compression-torsion loading paths performed.
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Table captions:

Table 1: Coefficients for the anisotropic equivalent stress identified with textured
polycrystalline simulations.

Table 2: Coefficients of the anisotropic equivalent stress for Cu-Al-Be SMA.

Table 3: Coefficients of the energy surface identified from the micro-macro model on the
textured aggregate.

Table 4: Coefticients of the energy surface identified for Cu-Al-Be samples.
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