
HAL Id: hal-01021350
https://hal.science/hal-01021350v1

Submitted on 9 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correctness by Construction and Style Preserving
Reconfigurations of Distributed Systems.

Cédric Eichler, Patricia Stolf, Thierry Monteil, Khalil Drira

To cite this version:
Cédric Eichler, Patricia Stolf, Thierry Monteil, Khalil Drira. Correctness by Construction and Style
Preserving Reconfigurations of Distributed Systems.. 2014. �hal-01021350�

https://hal.science/hal-01021350v1
https://hal.archives-ouvertes.fr

Correctness by Construction and Style

Preserving Reconfigurations of Distributed

Systems.

Cédric Eichler123, Patricia Stolf13, Thierry Monteil23, and Khalil Drira23

1 IRIT; F-31062 Toulouse, France. eichler@irit.fr, stolf@irit.fr
2 CNRS; LAAS; F-31077 Toulouse, France. eichler@laas.fr, monteil@laas.fr,

drira@laas.fr
3 Univ de Toulouse, UPS F-31400, INSA, F-31400, UTM F-31100, Toulouse, France.

Abstract. In distributed systems and dynamic environments, software
architectures may evolve. A crucial issue when conducting system evo-
lutions is to maintain the system in a consistent and functional state.
Based on formal proofs in design-time, correctness by construction has
recently emerged to efficiently guarantee system coherency.

This article proposes a new method for the construction and specification
of correct by construction system reconfigurations. Such transformations
are characterized by graph rewriting rules that necessarily preserve the
coherency of a system. We firstly propose operators on graph transfor-
mations and show that they conserve their correctness. Given a system
specified by a graph grammar, these operators then serve to construct
and characterize a set of correct transformations. We show in particular
that any correct configuration can be reached starting from any other
one without inconsistent intermediate step, using these transformations
only.

Keywords: Correctness by Construction, System Reconfigurations, Graph
Rewriting, Dynamic Software Architecture

1 Introduction

Dynamic software architectures are studied in order to handle adaptation in au-
tonomic distributed systems, coping with new requirements, new environments,
and failures. By their very nature, the description of evolving architectures can-
not be limited to the specification of a unique static topology, but must cover
the scope of all the correct configurations. This scope is characterized by an
architectural style, qualifying what is correct and what is not. Once this distinc-
tion made, system transformations themselves must be specified to depict their
applicability conditions and effects. A crucial undesirable implication of these
evolutions is a potential loss of correctness, the system withdrawing from the
scope of consistency.

Formal unambiguous methods are necessary to study the consistency of a
system at a given time (i.e., its compliance to a specified architectural style).
Several ways of doing so have been developed in the literature. The most im-
mediate approach, checking the consistency of the system at run-time, may lead
to combinatorial explosions and the necessity of roll-backs if it is discovered
that the system is in an inconsistent state. To efficiently tackle correctness in
the scope of dynamic reconfiguration, correctness by construction [1] through
formal approaches have emerged [2, 3]. Based on formal proofs and reasoning
in design-time, they guarantee the correctness of a system, requiring little or
no verifications in run-time. A way to achieve such proofs is to investigate the
properties of transformations with regard to consistency preservation, so as to
ensure that if a transformation is applicable on a correct configuration its re-
sult is another correct configuration. A transformation satisfying this property
is then considered correct. Note that this notion of correctness is related to a
certain style (a rule correct w.r.t. a style is not necessarily correct w.r.t. an-
other). Conceptually, this means that any evolution characterized by a correct
transformation can be safely triggered without worrying about the consistency
of the resulting configuration.

Graph grammars constitute an expressive formalism for the characterisation
of architectural styles. In particular, they offer a generative definition of the
scope of correctness, where a set of graph rewriting rules called production rules
axiomatically satisfy the criteria of correctness for the specified system. The ap-
proach presented in this paper consists in exploiting three operators on graph
rewriting rule preserving the properties of consistency preservation (i.e., trans-
formation correctness). Given some graph grammar, and thus a set of production
rules, these operators can be used to construct a set of correct transformations.
Evolutions specified by this set are sufficient to reach any correct instance of the
style starting from any other one without any inconsistent intermediate step.

This paper present a new method for the construction and specification of
correct transformations. To achieve this aim, the key contributions of this paper
are :

1. The specification of two operators on graph transformations (specialization
and composition).

2. The proof that these two operators conserve the correctness of transforma-
tions.

3. The stipulation of the hypothesises under which inversion of graph transfor-
mations preserve their correctness.

4. The characterization, for any given grammar (that satisfies the one hypoth-
esis required for inversion to preserve correctness), of a set of correct trans-
formations ensuring that :
– Any instance of the style may be reached starting from any other.
– Reconfigurations from a correct instance to another can be done without

any inconsistent intermediate step.

Vocabulary and concepts from category theory is willingly ignored in this
paper. Rather, a low-level, implementation-appropriate, view is adopted.

Section 2 introduces aspects of model transformations and approaches for
correctness verification. Key concepts related to partially instantiated graphs,
their relationships and transformations are introduced in Sec. 3. Based on those,
said section presents the formal specification of architectural styles using graph
grammars. Operators on transformations conserving their correctness are defined
in Sec. 4. Section 5 shows that, starting from the set of correct transformations
comprised in a given grammar, these operators can be used to generatively char-
acterize a set of correct transformation. Besides, it establishes the property of
configuration reachability using only correct transformation from the previously
built set.

2 Related Works

Methodologies for correctness validation of evolving systems can be classified
within three categories :

– Model checking, that consists in validating in run-time the whole system
by verifying that some properties are met. This technique is very time-
consuming and may lead to combinatorial explosions. Furthermore roll-backs
may have to be applied if it is discovered that the system is in an inconsistent
state.

– Transformation checking [4, 5], consists in verifying in run-time that a trans-
formation do not introduce any inconsistency. While it is generally more ef-
fective than the previous solution, roll-backs are not dismissed. In real-life
systems, roll-backs induce a loss of time, energy, and resources and should
be avoided.

– Correct-by-Construction Transformations [2, 3, 6], consists in guaranteeing
in design time that a transformation necessarily produce a correct state. Not
only does this method implies few to no reasoning in design-time, but it also
completely discard roll-backs.

There exists also various taxonomy for transformations themselves, each dif-
ferent kind having different purposes. They are classified :

– Depending on their impact on the model used to represent a transformation.
• Exogenous transformations [2, 3, 6] imply a change of model but do not
modify the system (or its properties). They are used to generate code or
to transform a graphical model into a more formal one, for example.

• Endogenous transformations [4, 5, 7] remains the model invariant but
change the state of a system (e.g., its architecture, its behaviour...).

– Depending on their impact on the considered level of abstraction.
• Vertical transformations [2, 3, 6, 7] symbolize refinement that modify
the granularity and the level of precision with which the system is rep-
resented.

• Horizontal transformations [4, 5] are usually related to either model
changes or evolutions of adaptive systems.

Endogenous horizontal transformations, called reconfigurations, typically repre-
sent system changes and adaptations.

In turn, the notion of correctness may vary depending on the transforma-
tions’ nature. It may be the preservation of the system behaviour [2, 3], for code
generation of model modification, for example. In some other case, correctness is
linked to the presence, the absence or the the conservation of some property [5].
Architectural styles are particularly relevant when considering dynamic system.
In this context, consistency is synonym of the compliance to a style [4].

Furthermore, and unlike [4], we consider transformations as rewriting rules
solely and decorrelate them from graphs they are applied to. In this way, correct-
ness is a property of the rule only, and transformations are valid for the whole
range of valid graphs. To the best of our knowledge, the method presented in this
paper is the first to guarantee correctness-by-construction for reconfigurations
w.r.t. an architectural style allowing to reach any of its instance.

3 Preliminaries, Graph Background.

The following offer a quick overview of the formal approach adopted in this pa-
per. Firstly, variable attributed graphs are introduced, as well as relationships
between them based on patterns matching through attributed graph morphisms.
These relations then serve as a basis for the definition of various graphs transfor-
mations and rewriting techniques. Transformations themselves intervene in the
definition of a software architecture, as finally seen.

3.1 Attributed Graphs

The state of a system at a given time can be modelled by a conceptual graph.
Following the commonly used conventions for standard graphical descriptions,
one considers that vertices (V) represent services or architectural components
and edges (E ⊆ V 2) correspond to their related connections, interdependencies
or relationships. Each element el of the graph (i.e., its vertices and edges) is
associated with an arbitrary number of attributes Attel representing any relevant
property or information. Each attribute might be either constant or variable. It is
a couple composed by its value Atteli and its domain of definition DAtteli (the set
of its possible values, Atteli DAtteli). An graph with constant and variable

attributes is noted G = (V,E,Att).

To distinguish between constant and variable attributes in the examples,
a constant attribute will be noted within quotation marks. Furthermore, we
impose that two variable attributes from two disjoint graphs can not have the
same name.

3.2 Pattern Matching and Relationships between Graphs

In order to find graph-like patterns in a context where attributes may be variable,
the notion of element (vertices and edges) identification has to be defined. When
trying to identified two elements, theirs attributes are matched two at a time
w.r.t. the order of their occurrence (i.e., the i-th attributes of the first and second
are associated with one another). Two elements are unifiable if (1) they have
the same number of attributes and (2) matched attributes have the same domain
of definition.

Element unifications thus induce attribute associations that can be seen as
an equivalence relation (noted ∼)over the set of considered attributes. The
resulting setoid is called a set of identifications. Such a set is considered
coherent if each of the induced equivalence class contains at most one constant.
It simply means that no variable has been directly or transitively identified with
two different constants, and that the overall attribute matching is correct.

An affectation is the function impacting attributes identifications. Each oc-
currence of a variable is substituted with the representative of its equivalence
class. If the class contains a constant, it is its representative, else the represen-
tative is chosen arbitrarily.

The existence of a homomorphism between two graphs formalizes the pres-
ence of a pattern similar to the first graph within the second. A homomorphism

h between two attributed graphs G and G is defined as an injective function f
from the vertices of G to those of G that preserves the edges [8] (if there is an
edge between two vertexes in G, there is an edge between their images in G).
In addition, associated vertexes and edges have to be unifiable and the resulting
set of identification Ĩ has to be consistent. An homomorphism is characterized
by f and I, a consistent set of identification such as I ⊇ Ĩ. Due to space short-
age, the formal definition and an example of graph homomorphisms are detailed
in appendix. By notational abuse, any function f : A → B is assimilated to its
canonic extension f : A ∪ A2 → B ∪ B2 such as ∀ (a,ã) ∈ A2, f((a,ã)) = (f(a),
f(ã)).

In addition of graph homomorphisms, we consider the notion of graph com-
patibility. The idea is to consider two induced sub-graphs and to associate them,
not through any morphism, but a weaker condition : if there exists an edge be-
tween two vertices of the first graph there does not need to be an edge between
their images, but if there is one, then those two edges have to be unifiable. Due
to space shortage, the definition of compatibility is presented in appendix.

Example 1. Figure 1 shows an example of two compatible graphs. For readabil-
ity sake, the attributes of the edges have not been represented and will all be
considered equals (and thus disregarded).

Let VS be the set of vertices named 1, 2, and 3 in the figure and V’S be
the set of vertices named 2′, 3′ and 4′. The function f : VS → V′

S associating
the vertices named 1 to 2′, 2 to 4′, and 3 to 3′ induces the (coherent) set of
identification I = {a, b, c, x, y, “1′′, “2′′} with a ∼ x and b ∼ 2. G and G’ are (f,

I, VS , V’S)-compatible.

Fig. 1. two compatible graphs

3.3 Graph Transformations

The occurrence of a pattern within a graph or a relation between two graphs,
grant the possibility of applying graphs transformations. Since configurations of
a system can be represented using graphs, graph transformations are used to
model their evolutions.

Before introducing graph rewriting rules, let’s consider two binary operator
on graphs, restriction ↑ and expansion ↓. These lasts are similar to classical
intersection and union, respectively. The difference arises from the fact that a
similarity shall be found rather than a strict equality between elements of the
graphs. Identifying analogous elements or sub-graphs is tackled by the notion
of compatibility previously defined. Restriction and expansion thus depend on
a graph compatibility, and are similarly characterized by an injective function
between two sets of vertices and an affectation. Due to space shortage, formal
definitions of these two operators are reported in appendix.

Example 2. With G, G’, f, Aff, VS and V’S defined in the example 1, the result
of G↓(f,I,VS ,V ′

S
)G’ is represented in Fig. 2(a). The result of G↑(f,I,VS ,V ′

S
)G’ is

represented in Fig. 2(b).

Remark 1. For any (f, Aff, VS , V’S)-compatible graphs G and G’ and any sub-
graphs Gsub and G’sub,
Gsub ↓(f,I,VS,V

′
S
)G’sub → Gsub and

Gsub ↓(f,I,VS,V
′
S)G’sub → G’sub. Similarly, Gsub → Gsub ↑(f,I,VS ,V ′

S)
G’sub and

G’sub → Gsub ↑(f,I,VS,V
′
S
)G’sub.

(a) restriction, G↓(f,I,VS ,V ′
S
)G’ (b) expansion, G↑(f,I,VS ,V ′

S
)G’

Fig. 2. graph restriction (intersection) and expansion (union)

Graph rewriting is a well-studied domain where a rule describes both a graph
transformation and the circumstances under which it may be applied. The ap-
proach used in this paper is based on the Single Pushout (SPO) [9], where a rule
is characterized by two graphs (L,R), respectively called left- and right-hand
side, alongside a partial morphism m from L to R. For clarity sake, we consider
rules satisfying L ∩ R 6= ∅, so that m is implicit and induced by the identity
function over L∩R (noted K). In addition, transformations are given the possi-
bility to update the value of attributes of the graph on which they are applied.
An example of a rule and its application is provided in appendix. We assume the
canonic notations where for any set S, its cardinality is noted |S| and an interval
of integer between a and b is noted [|a, b|].

Definition 1. (Graph rewriting rule) A graph rewriting rule is a 3-tuple (L,
R, OPs) where L = (VL, EL, AttL) and R = (VR, ER, AttR) are two graphs.
OPs is a set of triples OP = (el, i, op), where el ∈ VK∪ EK , i ∈ [| 1, |(AttK)el|
|], and op is an unary invertible operation on (DattK)eli under which (DattK)eli
has closure.

A rule is applicable on a graph G = (V, E, Att) if there is a homomorphism
h = (f, I) : L → G.

Its application consists in (1) erasing the image of L\K and deleting the
potential dangling edges. (2) Adding an isomorph copy of R\K integrating the
affectation obtained with h. (3) Conducting the specified updates of attributes.

The following notations will be adopted :

1. r h(G) is the result of the application of a graph rewriting rule r to the graph
G considering the homomorphism h : L → G.

2. r2 h2.r1 h1(G) is the result of the sequence of rewriting consisting in applying
r2 in regard of the matching h2 to the result of r1 applied to G with the
matching h1.

3.4 Characterizing Architectural Style

Inspired from Chomsky’s generative grammars, graph grammars [8] constitute
an expressive formalism for describing dynamic structures. In this paper, archi-
tectural styles are characterized by such grammars. The correctness of the design

(i.e. of the grammar) is not questioned and defines the scope of acceptable con-
figurations.

Definition 2. (Graph Grammar)A graph grammar is defined by the 4-tuple
(AX,NT, T, P) where AX is the axiom, NT is the sets of non-terminal arch-
vertices or archetypes of vertices, T is the set of terminal arch-vertices or archetypes
of vertices, and P is the set of graph rewriting rules (or productions) belonging
to the graph grammar.

Definition 3. (Instance belonging to the graph grammar) An instance be-
longing to the graph grammar (AX,NT, T, P) is a graph whose vertices and edges
have only constant attributes and obtained by applying a sequence of productions
in P to AX. If it does not contain any vertex unifiable with an arch-vertex from
NT , it is said to be consistent.

We consider in the following that an instance of the style is a correct con-
figuration whether it is consistent or not. Restricting the notion of correctness
to consistent instances would only require to verify whether a correct rule intro-
duces a non terminal vertex.

4 Three Operators Preserving Transformations

Correctness

The generative definition of the architectural style is at the very core of the work
proposed here. By very definition, any production rule is correct by construction.
This means that the specification of a style also provides an initial set of correct
transformations. Starting from this original set, we wish to build other correct
transformations. To do so, this section introduces operations on transformations
and show that they preserve transformation correctness.

4.1 Specialization

The first operation introduced in this paper is rule specialization. It consists in
strengthening the applicability condition of a rule and/or narrowing the scope
of its possible results. A possible use is to restrict the application of a rule to
a particular context or to an entity with a specific identifier (e.g., a component
that has been reported as faulty) or nature, for example.

Definition 4. Specialization A rule q = (Lq, Rq, OPsq) is said to be a spe-
cialization of p = (Lp, Rp,OPsp) if and only if each of the following conditions
is met.

1. There is a homomorphism hL
1 = (fL, IL) : Lp

hL−−→ Lq such as the elements
IL are attributes of Lq and Lq is invariant for the affectation induced by IL

2.

1 This homomorphism can be an identity alongside some set of identification.
2 Hence, h(Lq) has necessarily less free variables than Lp.

2. There is a homomorphism hR = (fR, IR) : Rp
hR−−→ Rq such as the elements

IR are attributes of Rq, Rq is invariant for the affectation induced by IR and
∀v ∈ VRp

, v ∈ VLp
=⇒ fR(v) = fL(v).

3. ∀ el ∈ VLq
∪ELq

, el /∈ fL(VLp
) ∪ f(ELp

) =⇒ el ∈ VRq
∪ ERq

.3

4. ∀ el ∈ VRq
∪ ERq

, el /∈ fR(VRp
) ∪ fR(ERp

) =⇒ el ∈ VLq
∪ ELq

.4

5. OPsq = OPsp.

Lemma 1. For any graph G, any graph rewriting rule p and any specialization

q of p, if there exist a homomorphism h such as Lq
h
−→ G then there exists a

homomorphism h̄ such as Lp
h̄
−→ G and q h(G) = p h̄(G).

Proof. Remember that a homomorphism is characterized among others by a
consistent set of identifications that includes the identifications resulting from
the actual element unifications. For any graph G, let’s suppose that there exist

a homomorphism h = (f, I) such as Lp
h
−→ G.

Lq → G =⇒ Lp → G since Lp → Lq. In particular, let h̄ = (f ◦ fL,
I ∪ IL ∪ IR). Since IL and IR are integrated within Lq and Rq, I ∪ IL ∪ IR can
not be inconsistent. Hence, h̄ is an homomorphism from Lp to G. Thanks to the
third condition, the application of p to G w.r.t. h̄ can not leads to the apparition
of a dangling edge that would not have been deleted by the application of q
(since any vertex deleted by p is deleted by q). It is immediate that q h(G) =

p ĥ(G).

Theorem 1. A specialization of a correct (w.r.t. some architectural style) graph
rewriting rule is correct (w.r.t. said style).

Proof. Let G be a graph representing a consistent configuration of some ar-
chitectural style, p a graph rewriting rule p correct w.r.t. said style, and q a
specialization of p.

If q is applicable to G w.r.t. h, according to lemma 1 there exists a homo-
morphism h̄ such as p is applicable to G and q h(G) = p h̄(G). By hypothesis
and since p is correct, p h̄(G) is a correct instance of the style. Hence q h(G) is
consistent.

4.2 Composition

Compositionality of graph transformation depends on the formalism used for
their specification [10]. It is usually employed to enable re-usability of rules and

3 This means that any element deleted during an application of q is deleted during an
application of p; i.e. any element of Lq that is not an image of an element of Lp by
fL is invariant w.r.t. the application of q.

4 This means that any element added during an application of q is added during an
application of p; i.e. any element of Rq that is not an image of an element of Rp by
fR is invariant w.r.t. the application of q.

to decompose rules, for better understanding and scalability [11, 12]. Remem-
ber that production rules can includes non-terminal vertexes with no “real-life”
value. Consequently, composition can also be used in the context of this pa-
per to skip inconsistent instances of the style. Yet, there exists, to the best of
our knowledge, no low-level definition of composition for SPO-expressed rules.
For rules expressed in the SPO formalism including variable attributes and op-
erators, composition exists but is not unique and depends on compatibilities
between parts of the rules, as defined below.

Definition 5. (Graph rewriting rule composition considering a specific

compatibility) For any couple of graph rewriting rules (p,q) and any compati-
bility C = (f, I, V ⊆ VLp

, V’⊆ VRq
) such as Lp and Rq are C-compatible.5 Let

G be the sub-graph of Lp induced by V and let G’ be the sub-graph of Rq induced
by V’.

If (H1) ∀ v ∈ VG, ∃ ṽ ∈ VLp
such as (v, ṽ) ∈ ELp

∨ (ṽ, v) ∈ ELp
=⇒ f(v)

∈ Kq and
(H2) ∀(v, v′) ∈ VG, f(v, v

′) /∈ (Kq)
2 =⇒ ((v, v′) ∈ ELp

=⇒ f((v, v′)) ∈ ERq
)

then p and q can be composed w.r.t. C and p◦Cq is the rewriting rule described
by :

1. Let r1 = (AffI(G), G ↓(f,Aff,VG,f(VG)) Kq, ∅) and let M = r1 (id,AffI)(Lp).
6

Lp◦Cq = M ↑(f,I,V(G↓
f,Aff,V,V ′Kq),VKq

Lq.

2. Let r1’ = (AffI(G’), Kp ↓(f,I,V,V ′) G’, ∅) and M’ = r1’ (id,AffI)(Rq).
7

Rp◦Cq = Rp ↑(f,I,V(G↓
f,Aff,V,V ′Kq),VKq

M’.

3. OPsp◦Cq = OPsp ∪ OPsq

Lemma 2. For any graph G and any graph rewriting rule r such as there exists
a couple of graph rewriting rule (p,q) and a compatibility C with r = p◦Cq, if r is
applicable to G w.r.t. h, then there exists a couple of homomorphism (h̄, h̃) such
as q is applicable to G w.r.t. h̃, p is applicable to q h̃(G) w.r.t. h̄, and r h(G) =
p h̄.q h̃(G).

Proof. Let C = (f, I, V, V ′) and h be (f ′, I ′).

According to remark 1, there exists h́ = (f́ , Í) such as Lq
h́
−→ Lr. By hypoth-

esis, Lr
h
−→ G. Hence h̃ = (f ′|

f́(VLq)
◦ f́ , Í ∪ I ′) is such as Lq

h̃
−→ G.

By definition of graph rewriting rules, there exists a homomorphism ĥ =

(f̂ , I ′) such as Rq
ĥ
−→ q h̃(G). According to remark 1, there exists h̀ = (f̀ , Ì) such

5 Note that there exists at least one compatibility since V’ can be empty (in which
case the rule would be applied on independent parts of the graph).

6 M is, modulo an affectation, Lp deprived of the part of G not identified with Kq via
f (the part of G added when q is applied).

7 M’ is, modulo an affectation, Rq deprived of the part of G’ not belonging to f(Kp)
(the part of G’ suppressed when p is applied).

as M
h̀
−→ Lr. Let f̄ : VLp

→ Vq h̃(G) be such as ∀v ∈ VLp
, f̄(v) = f ′ ◦ f̀(v) if

v ∈ VM and f̂ ◦f(v) else. By construction, h̄ = (f̄ , I∪I ′∪ Í) is a homomorphism
from Lp to q h̃(G) if it preserves edges. Thanks to H1, ∀(v, v′) ∈ ELp

, (1) (v, v′)
∈ (VM)2∨ (2) ((v, v′) ∈ VG ∧ f(v, v′) /∈ (Kq)

2).

(1) Since M
h̀
−→ Lr

h
−→, (v, v′) ∈ (VM)2 =⇒ f̄((v, v′)) ∈ EG.

(2) Thanks to H2, (v, v′) ∈ VG ∧ f(v, v′) /∈ (Kq)
2 =⇒ f((v, v′) ∈ ERq

. Since

Rq
ĥ
−→ q h̃(G), f̄((v, v′)) ∈ EG.

Hence, Lp
h̄
−→ q h̃(G).

Due to space shortage, we do not report here the second part of the proof
that states that with the appropriate homomorphisms defined in this proof and
the construction of Rr, r h(G) = p h̄.q h̃(G).

Theorem 2. The composition of two correct (w.r.t. some style) graph rewriting
rules is correct (w.r.t. said style).

This theorem is immediate considering lemma 2

4.3 Inversion

Inversion exploits the property of reversibility of graph rewriting rules [8]. It
consists in defining an opposite transformation cancelling the effect of another.
Intuitively, considering for example the deployment of a new server to absorb a
load peak, inversion allows the characterization of its shut-down once the load
goes back to normal. Inversion is classically conducted by swap the right and left
hand-side of a rule. However, this would not be enough to guarantee correctness
conservation. In addition, we have to verify that as long as a transformations
that did require (i.e., that could be applied only in the presence of) the com-
ponent has not been “cancelled”, the component can not be suppressed. When
using graph rewriting, this “require” relationship translates to the presence of
the component in the image of the left hand-side of the rule considering the
homomorphism linked with its application.

As a consequence, we assume that each vertex possesses an attribute that
is a matching counter. This can be easily automated and hidden to the user by
adding, for each element el, a concealed attribute ATTel

0 in N that is a mute free
variable, except when initialized. It is initialized at 0 (i.e., for each production
rule p, for all el element of Rp\ Kp, ATT

el
0 = 0). To each production rule is

appended operators that increment the counter of each element in K (i.e., for
each el ∈ VK ∪ EK , OP = (el, 0, f : N → N such as f(x) = x+1) ∈ OPs).

Definition 6. (Inverse rule) A graph rewriting rule r−1 is the inverse of a
graph rewriting rule r if : Rr−1 = Lr, Lr−1 = Rr, and OPsr−1 = { OP = (el, i,
f) : ∃ ÕP ∈ OPsr, OP = (el, i, f−1) }.

Noticeably, if the inversion of a production rule is applicable on a graph, then
the matching counter of each vertex that would be deleted during its application
is equal to 0. Moreover, its application decrements the matching counter of each
vertex in its invariant part. In addition, for any graph rewriting rule r, (r−1)−1

= r.

Theorem 3. The inversion of a correct (w.r.t. some style) graph rewriting rule
r is correct (w.r.t. said style) if :

– (H1) : there exists a “matching counter” as described previously.
– (H2) : for any instance of the style G, the presence of a pattern isomorph to

Rr in G implies that G can be obtained starting from the axiom by applying a
sequence of correct rewriting rules, one of which being r (that has introduced
said pattern).

Please note that the second hypothesis is not met for any grammar. Intu-
itively, for the set of rules : p1 : AX → a, p2 : AX → ab, it is possible to have a
pattern corresponding to the right-hand side of a rule (a) in a word that can not
be derived using said rule (ab). It is also not a property of the style (i.e., the scope
of consistency) itself, but rather of its definition (i.e., the grammar). Indeed, the
previous grammar can be rewritten in a way that respects this property such as
: p1̃ : AX → a and p2̃ : a → ab.

Proof. By hypothesis (H2), if r−1 is applicable to G w.r.t. some homomorphism
h, then there exists a sequence of rules and homomorphisms ((ri, hi))i∈[|1,n]] such
as rn hn.. . . .r1 h1(AX) = G and there exists k ∈ [|1, n]] such as rk = r.

It is immediate that for any graph graph rewriting rule r and any graph G, if
r is applicable to G w.r.t a homomorphism h̄ then there exists a homomorphism
h’ such as r−1 h’.r h̄(G) = G. h’ is the canonical homomorphism associating
Lr−1 = Rr with the isomorph copy of Rr introduced while applying r on G.
Consequently, if k = n, the theorem is true since r−1 h(G) = rn−1 hn−1.(. . .)
.r1 h1(AX) which is by definition an instance of the style. If k < n, the idea of
the proof is as follows:

According to H2, h(Lr−1 has been introduced by applying rk (i.e., rn applied
w.r.t. hn do not introduce anything required for the application of r−1 w.r.t. h).
Hence r−1 is applicable on rn−1 hn−1.(. . .).r1 h1(AX) w.r.t. h.

Since r−1 does not delete any element of G match with Lrn through hn
(H1), (2.a) suppressing dangling edges can not affect hn (since the suppressed
extremity should also be matched through hn), (2.b) r−1 do not invalidate
hnHence, rn is applicable to r−1 h.rn−1 hn−1.(. . .).r1 h1(AX) w.r.t. hn. In par-
ticular, rn hn.r

−1 h.(. . .).r1 h1(AX) = r−1 h(G).
By conducting this reasoning until getting r−1 h(G) = rn hn.(. . .).r

−1 h.rk.hk.
(. . .).r1 h1(AX), we obtain r−1 h(G) = rn hn.(. . .).rk−1 h.rk+1.hk.(. . .).r1 h1(AX),
which is by definition an instance of the style.

5 Handling Dynamism with Correct Transformations

On one hand, we have seen in Sec. 3.4 that the definition of an architectural
style through a graph grammar comprises a set of correct rules called produc-
tion rules. On the other, section 4 introduces unary and binary operators on
transformations that preserve their correctness. These two facts immediately
bring up the following questions : what do we obtain if we apply introduced op-
erators to the set of productions? Is a dynamic system manageable using correct
transformations only?

5.1 Configuration reachability

The first worthwhile property that is studied here is the capacity of reaching a
configuration given an initial state. Typically, a (potentially autonomic) manager
identify a desirable configuration that better some optimization criterion. Can
it necessarily be reached given the current state of the system? The focus of this
paper is the correctness of rules, a property linked to their application on an
instance of the style. In particular here, we aim at studying the reachability of
configurations using correct rules only, and have few to no information on their
behaviour w.r.t. states that do not conform the style.. Thus, the possible initial
states are restricted to instances of the style.

Theorem 4. Any instance of a given graph grammar can be reached starting
from any other using only production rules and their inverses.

The proof is summarized in the next sub-section.

5.2 Avoiding inconsistent instances of the style

Instances of the style can be correct or not, depending on the existence of non-
terminal vertexes within them. Such vertexes are theoretic artefacts with no
“real-life” value. Inconsistent instances of the style thus carry vertex(es) that
are not matched with any component of the modelled system. To avoid this
discrepancy, one may wish to remain in the scope of consistent configurations
and avoid inconsistent instances.

Theorem 5. For any graph grammar (AX, T, NT, P), let Trans be the smallest
set of graph rewriting rules containing P for which inversion and composition
have closure.8 Any consistent instance of the grammar can be reached starting
from any other without any inconsistent intermediary by applying a sequence of
rules in Trans.

Proof. The idea of the proof of theorems 4 and 5 is as follows :

8 Note that Trans is an infinite set.

Firstly, for a given grammar, let’s consider a graph whose vertexes represent
configurations of the style. An edge model the application of a production (a
rule and a homomorphisms) such as the application of the symbolized transfor-
mation to its source result in its target. For each edge (v, v′) symbolizing the
application of p, one can introduce an edge (v′, v) representing the application
of p−1 cancelling the application of p.

Since there exists a path from the axiom to any vertex and a path from any
vertex to the axiom, it is easy to see that there exists a path from any vertex
to any other one. The fact that this graph is strongly connected directly implies
theorem 4.

For each path from a consistence instance to another, each sub-path that
contains only inconsistent instances can be by-passed by adding to the graph a
vertex representing the composition of the transformation leading to or within
the set of inconsistent instances. Finally, each inconsistent configuration can be
deleted, and the resulting graph is still strongly connected, giving theorem 5.

6 Conclusion

Given a graph grammar specifying an architectural style, this paper introduces a
method to build correct-by-constructions transformations that are style-preserving.
It is important to notice that the style axiomatically defines the scope of cor-
rectness and that its faultlessness is not questioned. Correct transformations are
particularly relevant in the management of dynamic distributed systems. Their
use can assure the theoretical consistency of a system without requiring any
checking in run-time.

The defined method originate from the fact that a graph grammar comprise a
set of axiomatically correct transformations. The first contribution of this paper
is the specification of correctness-preserving operators on system transforma-
tions. Alongside the initial correct transformations, they allow the characteriza-
tion of a larger (infinite) set of correct transformations. We finally prove that any
correct configuration can be reached starting from any other one without any
inconsistent intermediate step using transformations from the previously defined
set only.

However, the style-preserving property of one of the operator (inversion) is
subject to an hypothesis on the grammar. Furthermore, there exists some gram-
mars that do not satisfy hypothesis. In a short future, we plan on further investi-
gating this property. We are particularly interested in grammar transformations
that introduce the satisfaction of the required condition. On a more practical
side, it is necessary to hide the intrinsic complexity of the formalism to future
users. To this end, we wish to implement a graphical tool for the creation and
manipulation of transformations.

Acknowledgement The work presented in this paper has been partially funded
by the ANR in the context of the project SOP, ANR-11-INFR-001.

Bibliography

[1] Gössler, G., Graf, S., Majster-Cederbaum, M., Martens, M., Sifakis, J.:
Program analysis and compilation, theory and practice. Springer-Verlag,
Berlin, Heidelberg (2007) 201–224

[2] Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A., Fre-
und, U., Schlenker, E., Wolff, H.J.: Correct-by-construction transforma-
tions across design environments for model-based embedded software de-
velopment. In: Design, Automation and Test in Europe, 2005. Proceedings.
(2005) 1044–1049 Vol. 2

[3] Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Auto-
mated conflict-free distributed implementation of component-based models.
In: 2010 International Symposium on Industrial Embedded Systems (SIES).
(2010) 108–117

[4] Hirsch, D., Montanari, U.: Consistent transformations for software architec-
ture styles of distributed systems. Electronic Notes in Theoretical Computer
Science 28(0) (2000) pp.4–25

[5] Percebois, C., Strecker, M., Tran, H.N.: Rule-level verification of graph
transformations for invariants based on edges’ transitive closure. In Hierons,
R.M., Merayo, M.G., Bravetti, M., eds.: Software Engineering and For-
mal Methods, Madrid, Spain, 25/09/2013-27/09/2013. Volume 8137 of Lec-
ture Notes in Computer Science., http://www.springerlink.com, Springer
(September 2013) 106–121

[6] Tounsi, M., Mosbah, M., Méry, D.: From Event-B Specifications to Pro-
grams for Distributed Algorithms. In: 22th IEEE International Conference
on Enabling Technologies: Infrastructures for Collaborative Enterprises.

[7] Oquendo, F.: pi-arl: An architecture refinement language for formally mod-
elling the stepwise refinement of software architectures. SIGSOFT Softw.
Eng. Notes 29(5) (September 2004) 1–20

[8] Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. In Rozenberg, G., ed.:
Handbook of Graph Grammars, World Scientific (1997)

[9] Löwe, M.: Algebraic approach to single-pushout graph transformation. The-
oretical Computer Science 109(12) (1993) 181 – 224

[10] Duval, D., Echahed, R., Prost, F.: Categorical abstract rewriting systems
and functoriality of graph transformation. ECEASST 41 (2011)

[11] Rensink, A.: Compositionality in graph transformation. In Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P., eds.: Au-
tomata, Languages and Programming. Volume 6199 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2010) 309–320

[12] Balogh, A., Varr, D.: Pattern composition in graph transformation rules.
In: European Workshop on Composition of Model Transformations, Bilbao,
Spain (2006)

Appendix

Definition 7. (Graph homomorphism with variable label) There exists an
homomorphism h between two graphs G and G’ such as G = (V, E, Att) and G’

= (V’, E’, Att’), noted G → G’ or G
h
−→ G’, if and only if there is a consistent

set of identification I and an injective function f : V → V’, such as :

1. ∀ (vi, vj) ∈ V2, ∀ (v’i, v’j) ∈ (V’)2, f(vi) = v’i ∧ f(vj) = v’j =⇒ (vi, vj)
∈ E =⇒ ((v’i, v’j) ∈ E’ ∧ ((vi, vj) is unifiable with (v’i, v’j)).

2. ∀ v ∈ V, ∀ v’ ∈ V’, v’ = f(v) =⇒ v and v’ are unifiable.

3. I ⊇ Ī, where Ī is the set of identifications resulting from element unifications.

The resulting homomorphism is characterised by the couple (f, I).

Definition 8. (Compatible graphs) Two graphs G = (V, E, Att) and G’ =
(V’, E’, Att’) are said to be compatible or (f, I, VS, V’S)-compatible if and only
if there exists VS ⊆ V, V’S ⊆ V’, a consistent set of identification I and a
bijective function f : VS → V’S such as :

1. ∀ (v1, v2) ∈ VS
2, ∀ (v’1, v’2) = (f(v1) , f(v2)) ∈ V’S

2 =⇒ ((v1, v2) ∈ E
∧ (v1’, v2’) ∈ E’) =⇒ (v1, v2) is unifiable with (v1’, v2’).

2. ∀ v ∈ VS, ∀ v’ ∈ V’S, v’ = f(v) =⇒ v and v’ are unifiable.

3. I ⊇ Ī, where Ī is the set of identifications resulting from element unifications.

Definition 9. (Restriction ↓) For any G and G’ (f, Aff, VS, V’S)-compatible
graphs and any sub-graphs Gsub = (VGsub

, EGsub
, AttGsub

), G’sub = (VG′
sub

,
EG′

sub
, AttG′

sub
),

1. let V = { v ∈ VS ∩ VGsub
| f(v) ∈ V’S∩ VG′

sub
},

2. let E = { (v,ṽ) ∈ V2∩ EGsub
| (f(vi),f(vj)) ∈ EG′

sub
},

3. let Att =
⋃

el∈V ∪E (AttGsub
)el.

The restriction relation is defined by Gsub ↓(f,Aff,VS,V
′
S)G’sub = Aff((V, E, Att)).

Definition 10. (Expansion ↑) For any G and G’ (f, Aff, VS, V’S)-compatible
graphs and any sub-graphs Gsub = (VGsub

, EGsub
, AttGsub

), G’sub = (VG′
sub

,
EG′

sub
, AttG′

sub
),

1. let V = { v | (v ∈ VGsub
) ∨

(v ∈ VG′
sub

∧ v /∈ f(VS∩ VGsub
)) } ,

2. let E = { (v,ṽ) ∈ V2 |
(v,ṽ) ∈ EGsub

∪ EG′
sub

∨
(v ∈ VS∧ (f(v),ṽ) ∈ EG′

sub
) ∨

(ṽ ∈ VS∧ (v,f(ṽ)) ∈ EG′
sub

) ∨

((v, ṽ) ∈ V2
S∧ (f(v),f(ṽ)) ∈ EG′

sub
) },

3. let Att = { Attel ∈ AttGsub
∪ AttG′

sub
| el ∈ V ∪ E ∧ (

(∃ ẽl ∈ VGsub
∪ VG′

sub
∪ EGsub

∪ EG′
sub

, el = ẽl) ∨ (
el = (v, ṽ) ∈ E \ (EGsub

∪ EG′
sub

) ∧ (

(v ∈ VS∧ (f(v),ṽ) ∈ EG′
sub

∧ Attel = (AttG′
sub

)(f(v),ṽ)) ∨

(ṽ ∈ VS∧ (v,f(ṽ)) ∈ EG′
sub

∧ Attel = (AttG′
sub

)(v,f(ṽ))) ∨

((v, ṽ) ∈ V2
S∧ (f(v),f(ṽ)) ∈ EG′

sub
∧ Attel = (AttG′

sub
)(f(v),f(ṽ))

)))}.

The expansion relation is defined by :
Gsub ↑(f,Aff,VS ,V ′

S
)G’sub = Aff((V, E, Att)).

Fig. 3. An example of graph transformation

Example 3. Figure 3 offers an example of how a transformation is handled in this
paper. To lighten the figure, the attributes of the edges have not been represented
and will all be considered equals. Considering that L and G1 are homomorph
and that the suppression of the edge 4 would not introduce any dangling edge,
the transformation R can be applied to G1. The graph corresponding to the Del
zone is removed and an isomorph copy of the Add zone is then added.

