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Backup State Observer Based on Optic Flow Applied to Lunar Landing

Guillaume Sabiron1,2, Laurent Burlion2, Grégory Jonniaux3,

Erwan Kervendal3, Eric Bornschlegl4, Thibaut Raharijaona1, and Franck Ruffier1

Abstract— The observer presented in this paper, which was
based on the use of three minimalistic bio-inspired Visual
Motion Sensors (VMS) detecting Optic Flow (OF) cues, states
was intended as a backup solution in the case of Inertial
Measurement Unit (IMU) failure. Contrary to most previous
Guidance Navigation and Control (GNC) solutions for plane-
tary landing, which have involved a sensor suite including an
IMU, an innovative strategy is presented here for estimating
states without any need for inertial measurements, based solely
on information about the relative velocity of the images of
the surrounding environment. A Linear Parameter Varying
(LPV) observer designed on a LPV system linearized around a
reference trajectory, estimates: the ventral OF, the expansion
OF and the local pitch angle. A previously developed observer
was applied here to a larger class of nonlinear systems by
making an ingenious change of variable. Simulations performed
on a lunar landing scenario yielded satisfactory performance
and showed the robustness of the OF based observer to initial
uncertainties and measurement noise.

I. INTRODUCTION

In most previous systems designed for the autonomous

navigation of robotic systems, pose and attitude parameters

have usually been measured or estimated during planetary

landing [5], [33], [16]. However, vision based sensors and

algorithms which meet the stringent weight, size and power

consumption requirements of spatial applications, have re-

cently provided new means of controlling these complex

systems. Two different vision based approaches have been

widely studied by performing numerical simulations:

• The first approach was based on the use of images along

with information provided by sensors of other kinds

or embedded knowledge of the terrain to reconstruct

classical states such as velocities, attitude angles and

angular velocities [19], [28], [6], [8], [27], [11]. Once

these states have been estimated, classical control theory

can be used to bring the system autonomously to the
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appropriate destination. However, these recent develop-

ments are often associated with a high computational

cost, mainly due to the image processing algorithm

extracting visual cues from the cameras output.

• In the second approach, the system was driven on the

basis of relative information extracted from images of

the environment. It has been established that flying

insects use the Optic Flow (OF), which provides them

with relative angular velocity and proximity information

with respect to obstacles, to navigate swiftly in unknown

complex environments. The authors of several robotic

studies inspired by insects’ behavior have used the OF

to perform hazardous tasks such as taking off, terrain-

following, and landing safely and efficiently [29], [14],

avoiding frontal obstacles [2], [12], [30], [4], tracking

a moving target [23] and hovering and landing on a

moving platform [15]. OF based lunar landing has been

addressed in several studies using either a nonlinear

observer connected to a LQ controller to track a constant

OF reference in [32] or PID type controllers to track

constant OF references [26] or exponentially decreasing

[17] or more recently, Model Predictive Control [18]. In

all these studies, sensors oriented at constant angles of

90◦ and sometimes 135◦ were used to compute specific

OF expressions [26] so that:

{

ωx = Vx

h
= ω90◦

ωz = Vz

h
= ω90◦ − 2ω135◦

(1)

Keeping (1) constant or near a slowly varying reference

trajectory while h decreases ensures a soft touchdown

of the closed loop system.

In other studies, OF measurements have been used as a

means of estimating the usual states of the system along with

other more classical sensors such as Inertial Measurement

Units (IMUs), sonars, Global Positioning System (GPS),

airspeed sensors and/or accelerometers [10], [22], [32], [9].

However, in all of these studies, the Inertial Measurement

Unit (IMU) was the crucial cue: nowadays, an IMU is the

corner stone of all the autopilots designed for vehicles of

all kinds. For instance, in August 2012, the NASA scientists

reported the occurrence of an IMU failure which caused the

very advanced Morpheus lander prototype to crash while

performing its first untethered flight [7]. IMU-less backup

solutions are still urgently required in order to prevent

accidents of this kind.

In the present paper, which focuses on the navigation part

of the whole GNC strategy (observation issue), it is not



proposed to address the important closed-loop control and

guidance issues arising in Guidance Navigation and Control

(GNC) design.

In this study (for the first time to the best of our knowl-

edge), a novel backup solution was simulated for estimating

the main parameters required to perform a bio-inspired

planetary landing, namely the ventral and expansion OFs

and the pitch angle [29], [26], [17] (The expansion OF has

also been referred to as the inverse of the Time To Contact)

in the case of IMU failure using only three strapped down

OF sensors. With these hard-mounted sensors, there is no

need for gimbal systems, which usually require a dedicated

IMU. No additional exteroceptive or proprioceptive sensors

were used in this setup. The reference landing trajectory

was used to design a Linear Parameter Varying (LPV)

observer. These bio-inspired lightweight, small-sized, and

energy efficient sensors featuring only 6 pixels, which were

previously developed and tested outdoors onboard a UAV

flying freely over various fields, gave promising results in

terms of the measured OF on a real life system subjected to

strong disturbances [31].

In section 2, the dynamic model for the lander is described

and a mathematical definition of the OF is presented. Section

3 describes the fusion scheme based on the least squares

of OF measurements along with a linearized version of the

model around a reference trajectory. Section 4 describes how

the OF based observer was designed. Section 5 presents the

results of the PANGU-based simulations. Section 6 contains

some concluding comments and outlines our plans for future

developments.

II. LUNAR LANDER DYNAMICS AND OPTIC

FLOW EQUATIONS

In this section, the dynamic model of the OF system shown

in Fig. 1, and the mathematical background are described.

The dynamic system studied here consisted of a spacecraft,

which was actuated via the main thrust uth acting along e3
the third canonical basis vector in the bodys fixed reference

frame associated with the vector basis (e1; e2; e3) and uθ

creating a pitch torque. Since the lunar atmosphere was very

thin, no friction or wind forces were applied to the lander. In

line with previous studies in the literature, the lunar ground

was assumed to be flat (with an infinite radius of curvature)

(see [20]). The landers dynamic motion can be described on

the vertical plane (ex; ez) of the inertial frame I associated

with the vector basis (ex; ey; ez) by the following dynamic

system:























V̇x(t) =
sin(θ(t))
mldr(t)

uth(t)

V̇z(t) =
cos(θ(t))
mldr(t)

uth(t)− gMoon

q̇(t) = R
I
uθ(t)

ṁldr(t) =
−uth(t)

Ispth .gEarth
+ −|uθ(t)|

Ispθ .gEarth

(2)

where Vx,z denotes the lander’s velocities in I, mldr stand

for the lander’s mass, which was assumed to be measured at

all times, θ is the pitch angle (the pitch angular rate is written

q = dθ
dt

since this is taken to be a simplified 2-D problem), t

θ
e1e3

uth

FoE

ΦN Φ1

ωαN+θ ωα1+θωα2+θ

DN

D1D2

γ

α1,2,··· ,N

~Vx

~V~VzInertial Frame
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ez
ey

Fig. 1. Definition of the body-fixed frame B, the inertial frame I and
notations for the lander’s dynamics and the optic flow. Example of a N
VMS setup. Sensors fixed to the landers structure measured the OF ωαN+θ

depending on the lander’s position, velocity, pitch angle and pitch angular
velocity (see (5)). It can be noted that Φ(t) = α+θ(t)+γ(t). The canonical
vector e2 of B was not included here for the sake of clarity.

denotes the time, and gMoon denotes the lunar acceleration

due to the gravity (gMoon = 1.63 m/s2, gMoon was taken to

be constant due to the low initial altitude). I is the landers

moment of inertia, and R denotes the eccentricity of the

attitude thrusters from the center of mass. Isp is the specific

impulse: Ispth
= 325s that of the braking thrusters, Ispθ

=
287s that of the attitude thrusters and gEarth = 9.81 m/s2

is the Earth’s gravity. In the first step, we focused on a 2-

D setup (planar motion) in line with previous studies and

because of the 6-pixel OF sensors capabilities presented in

[31]. In order to progress to a 3-D setup, we would have

to adopt a larger photoreceptor chip with a matrix-shaped

design to be able to measure the 2-D OF involved in roll

and yaw movements.

In the vertical plane, the OF ω(Φ), the sole value measured

in this study, was defined in line with [24] as follows:

ω(Φ) =
V

D
sin(Φ)− q (3)

where the term V
D
sin(Φ), which has been called the transla-

tional OF, depends on the linear velocity V expressed in the

inertial frame, the distance from the ground D in the gaze

direction and the elevation angle Φ (i.e. the angle between

the gaze direction and the heading direction). In order to use

the useful properties of the translational OF, a bulky gyro

stabilized gimbal system has often been used to compensate

for spacecrafts rotations and thus to keep the visual sensors

oriented in the same direction. This means not only that the

last term in (3) corresponding to the rotational OF no longer

occurs in the measurements, but also that the angle Φ − γ
was kept constant which simplifies calculations.

Although this is simple, useful mathematical framework

no gimbal systems were used in this paper, it would

have required an extra IMU, which is not possible since we

are dealing with a case of IMU failure. The challenge of

using the present strapped down sensor setup was twofold.



First the angle Φ − γ was no longer constant, which ruled

out simple calculations such as those performed in (1).

Secondly, the rotational OF ωR = −q was included in the

measurements. This component ωR was usually subtracted

from the measured OF, ωmeas, using IMU measurements:

this operation is known as the derotation process (see [1]).

Unfortunately, since the IMU was lost, it was no longer

possible to perform the derotation process or to close the

attitude control loop depending on pitch and angular pitch

velocity measurements. We therefore used an OF based

observer to estimate ωx and ωz during the descent as well as

the pitch angle θ without using any gimbaled sensors, IMUs

or velocity measurements. In the case of IMU failure, this

solution could be used as a backup solution to feed control

laws with accurate estimates and enable a small airborne

vehicle to perform a soft landing.

III. OPTIC FLOW FUSION AND LPV MODEL

DEFINITION

A fusion scheme was applied to the OF measurements and

the landers dynamics (2) were linearized around a reference

trajectory so as to obtain a Linear Parameter Varying (LPV)

state space model, which was used throughout to design the

observer.

Let us take only N available measurements

(ωα1
; · · · ; ωαN

) to estimate the pitch angle θ and

useful values of OF, namely the ventral OF, ωx, and

the expansion OF, ωz:

[

ωx(t)
ωz(t)

]

=

[

Vx

h(t)
Vz

h(t)

]

from the

available measurements.

Assuming that we are dealing with a practically flat ground

(i.e. D = h/ cos(π2 −Φ+γ), where γ denotes the flight path

angle (the orientation of the velocity vector with respect to

the local horizontal), h denotes the ground height, and Φ−γ
denotes the angle between the gaze direction and the local

horizontal) and using the notations presented on Fig. 1, we

obtain the following general expression for the 2D OF:

ωΦ(t) =
V (t)

D(t)
sin(Φ(t))− q(t) (4)

where Φ(t) = α+ θ(t) + γ(t), and D = h(t)
sin(α+θ(t))

Based on (1) this gives:

ωα+θ(t) =
1

2





1− c (2 (α+ θ(t)))
s (2 (α+ θ(t)))

−2





T 



ωx(t)
ωz(t)
q(t)



 (5)

where sin(γ(t)) = Vz

V
and cos(γ(t)) = Vx

V
and α, the only

time invariant parameter (time notations were dropped for the

sake of clarity); s (·) and c (·) denotes the sine function and

the cosine function.

Extracting a time invariant matrix depending on α yields

ωα+θ =





1

2

c (2α)
s (2α)





T 



ωx − 2q
−c(2θ)ωx + s (2θ)ωz

s(2θ)ωx + c (2θ)ωz



 (6)

The following linear system can then be solved using N ≥
3 measurements if HTH is invertible:





ωx − 2q
− cos(2θ)ωx + sin (2θ)ωz

sin(2θ)ωx + cos (2θ)ωz



 = H−1
leftN







ωα1+θ

...

ωαN+θ







(7)

where the left inverse H−1
left is defined as H−1

left =

(HTH)−1HT , with H−1
leftH = In, H ∈ M(m,n,R),

m > n and H defined as follows:

HN =







1 cos (2α1) sin (2α1)
...

...
...

1 cos (2αN ) sin (2αN )







Remark It should be noted that for N=3 the matrix H
matrix is a square matrix:





ωx − 2q
−c(2θ)ωx + s (2θ)ωz

s(2θ)ωx + c (2θ)ωz



 = H−1





ωα1+θ

ωα2+θ

ωα3+θ



 (8)

with

H =





1
2 cos (2α1) sin (2α1)
1
2 cos (2α2) sin (2α2)
1
2 cos (2α3) sin (2α3)





It has to be checked that the following condition is satisfied

to ensure that H is invertible

s (2 (α3 − α2))+ s (2 (α1 − α3))+ s (2 (α2 − α1)) 6= 0 (9)

The result of the linear least squares calculation with N > 3
(and the matrix inversion with N = 3) gives a nonlinear

system with three equations and four unknowns (i.e. ωx,

ωz , θ and q) which it is impossible to solve analytically.

We therefore had to make use of the knowledge available

about the systems dynamics, which was done by designing

an LPV observer for a linearized model of the lander’s

dynamics. Roughly speaking, we therefore linked together

two unknowns θ and q, since θ̇ = q. During space missions

including entry, descent and landing phases, a reference

trajectory has often been provided. This trajectory has to

be followed during the actual landing to ensure the safety

of the lander and reduce the fuel consumption (see [25],

[34]). The reference trajectory can be expressed in terms

of state trajectories, crater patterns, or a 2-D or 3-D image

database [21]. In this study, we adopted a landing scenario

with a computed offline reference trajectory which had to be

followed. Our main assumption was that we would stay

sufficiently close to this reference trajectory to be able to

derive and use an LPV model for the system around the

reference trajectory defined by X∗ = [h∗, ω∗
x, ω

∗
z , θ

∗

, q∗]T

involving the input control sequences u∗ = [u∗
th, u

∗
θ]

T

from the system dynamics (2) and the results of the linear

least squares calculations (8). Linearized outputs are given

by



Y =





1 0 0
−c (2θ∗) s (2θ∗) 2ω∗

xs (2θ∗) + 2ω∗

zc (2θ∗)
s (2θ∗) c (2θ∗) 2ω∗

xc (2θ∗)− 2ω∗

z s (2θ∗)









∆ωx

∆ωz

∆θ





+





−2
0
0



∆q +





ω∗

x − 2q∗

−c (2θ∗)ω∗

x + s (2θ∗)ω∗

z

s (2θ∗)ω∗

x + c (2θ∗)ω∗

z





(10)

Which was rewritten as follows

Y = C1

(

∆h
∆q

)

+ C2 (X
∗(t))





∆ωx

∆ωz

∆θ



+ Y ∗ (11)

where C1 =





0 −2
0 0
0 0



.

A linearized state space model around a reference trajectory

is given by



























∆Ẋ =











∆ḣ
∆q̇
∆ω̇x

∆ω̇z

∆θ̇











= A (ρ (t))∆X +B (ρ (t))

(

∆uth

∆uθ

)

∆Y = C (ρ (t))∆X = Y − Y ∗

(12)

with

A =

















ω∗

z 0 0 h∗ 0
0 0 0 0 0

−s(θ∗)u∗

th

mldrh
∗
2 0 −ω∗

z −ω∗

x

c(θ∗)u∗

th

mldrh
∗

−c(θ∗)u∗

th

mldrh
∗
2 + gMoon

h∗
2 0 0 −2ω∗

z

−s(θ∗)u∗

th

mldrh
∗

0 1 0 0 0

















(13)

B =















0 0
0 R/I

s(θ∗)
mldrh

∗
0

c(θ∗)
mldrh

∗
0

0 0















; C (ρ (t)) =
(

C1 C2 (ρ (t))
)

(14)

The time varying vector ρ(t) depended on the reference

trajectory, its associated input control signals and on the

lander’s mass so that ρ(t) = [h∗, ω∗
x, ω

∗
z , θ

∗

, q∗, u∗
th,mldr]

T .

An LPV system was obtained; an LPV observer will now

be designed to estimate state deviations from the reference

trajectory, assuming that these deviations are small.

IV. OBSERVER DESIGN FOR A CLASS OF LPV

SYSTEMS AND APPLICATION TO A LUNAR

LANDING SCENARIO

In this section, we present an LPV observer based on the

solution proposed in [3], which was extended to include a

larger class of nonlinear systems and applied to the lunar

landing scenario adopted in this paper.

A. LPV Observer Design

Let us now consider an LPV system having the following

form

{

Ẋ (t) = A (ρ (t))X +B (ρ (t))u (t)
y (t) = C (ρ (t))X (t) =

(

C1 C2 (ρ (t))
)

X (t)
(15)

where X ∈ R
n, ρ ∈ R

m, u ∈ R
p, y ∈ R

r, A : Rm →
M(n, n), B : R

m → M(n, p), C : R
m → M(r, n),

C1 ∈ M(r, n − s), C2 : R
m → M(r, s) where M(k, l)

denotes the space consisting of k × l matrices with k rows

and l columns with coefficients provided in R. Ia denotes

the identity matrix having the size a× a.

It is worth noting that the system described by (11)-(12)

belongs to this class of LPV systems.

Lemma 1 Let us consider the system (15) and assume that

the parameter ρ(t) is measured and regularly persistent (see

[3] for a definition) and the sub-matrix C2 (ρ(t)) is invertible

and differentiable with respect to time, then for all gain

matrices Θ > 0,the system:

˙̄̂
X (t) = Ā ˆ̄X (t) + B̄u (t)− S−1C̄T (ŷ (t)− y (t))

(16)

Ṡ (t) = −ΘS (t)− Ā (ρ(t))
T
S (t)

−S (t) Ā (ρ(t)) + C̄ (ρ(t))
T
C̄ (ρ(t))

S(0) > 0

(17)

where

X̄ (t) =

(

In−s 0n−s,s

0s,n−s C2 (ρ(t))

)

X (t) = M (ρ(t))X (t)

which yields

Ā =
(

Ṁ (ρ(t))M (ρ(t))−1 +M (ρ(t))A (ρ(t))M (ρ(t))−1
)

B̄ = M (ρ(t))B (ρ(t)) ; C̄ =
(

C1 Is
)

is an observer for (12).

Proof: Let us now consider the new state vector result-

ing from the following change of variable X̄ = M (ρ(t))X:

(12) becomes

˙̄X =
(

Ṁ (ρ(t))M (ρ(t))−1 +M (ρ(t))A (ρ(t))M (ρ(t))−1
)

X̄

+ M (ρ(t))B (ρ(t))u

and

y = C̄X̄

which corresponds to the class of systems covered by

theorem 2.1 presented in [3] (additional proof can be found

in [13]).

As previous authors have pointed out, with this observer,

we ensure that ‖ǫ (t)‖
2

≤ ae−λmin(Θ)t where ǫ (t) =
X̂ (t)−X (t) is the estimation error, λmin(Θ) is the smallest

eigenvalue of Θ and a is a constant depending on the initial

errors, Θ and u.



B. Application to the lunar lander LPV state space model

Applying the change of variable to the system described

in (11)-(12) gives the new state vector

∆X̄ =













∆h
∆q
∆x̄1

∆x̄2

∆x̄3













=

(

I2 02,3
03,2 C2 (ρ (t))

)

∆X

∆X̄ = M (ρ (t))∆X

where 0a,b denotes the null matrix having the size a× b.
The measurement equation can then be written with a time

invariant observation matrix C̄

Y = Y ∗ +
(

C1 I3
)

∆X̄ = Y ∗ + C∆X̄

and the state equation can be written as follows

∆ ˙̄X =

(

I2 02,3
03,2 Ċ2C

−1
2 + C2AC−1

2

)

∆X̄

+

(

I2 02,3
03,2 C2

)

B∆u

with

Ċ2 =





0 0 0
2q∗s (2θ∗) 2q∗c (2θ∗) C223

2q∗c (2θ∗) −2q∗s (2θ∗) C233





C223
= 2

[

2q
∗

c
(

2θ
∗
)

ω
∗

x + s
(

2θ
∗
)

ω̇
∗

x − 2q
∗

s
(

2θ
∗
)

ω
∗

z + c
(

2θ
∗
)

ω̇
∗

z

]

C233
= 2

[

−2q
∗

s
(

2θ
∗
)

ω
∗

x + c
(

2θ
∗
)

ω̇
∗

x − 2q
∗

c
(

2θ
∗
)

ω
∗

z − s
(

2θ
∗
)

ω̇
∗

z

]

By applying lemma (1), the observer can be expressed as

follows:

∆
˙̄̂
X =

(

I2 02,3
03,2 Ċ2C

−1

2 + C2AC−1

2

)

∆ ˆ̄X

+

(

I2 02,3
03,2 C2

)

B∆u− S−1C
T
(

Ŷ − Y
)

= Ā ˆ̄X (t) + B̄u (t)− S−1C̄T
(

Ŷ (t)− Y (t)
)

(18)

Ṡ = −ΘS − ĀTS − SĀ+ C̄T C̄; S(0) > 0 (19)

Θ does influence the observers convergence time, but a

high gain Θ is liable to amplify any measurement noise

present in the simulation involving virtual images of the

lunar ground. We therefore used a trial and error method

and engineering knowledge of the dynamics and sensors to

define the S and Θ matrices as follows:

S(0) =







1
0.2

I2
0.2






and Θ =







20
0.05

20I2
0.3







Θ is a tuning parameter which affects the rate of conver-

gence of the estimated states.

V. SIMULATION RESULTS WITH 3 OF SENSORS

(N = 3)

The results of the simulation illustrate the performances

of the LPV observer. We focused here on performing sim-

ulations based on real image processing rather than using

methods based on the intentional corruption of signals by

adding Gaussian noise. Simulations were run under open

loop conditions to obtain realistic OF measurements using

three sensors placed on the lander at random angles α1 =
90◦ , α2 = 120◦ and α3 = 160◦ in a range corresponding

to the landing scenario adopted here, so that they remained

ground oriented during the entire descent phase and the

condition defined by (9) was satisfied.

Fig. 2. Example of an image of the lunar ground obtained using PANGU
software 2.70

PANGU software was used to generate images of the

lunar surface, taking the position of the system, the elevation

of the sun and the camera’s properties into account. The

simulated lunar surface was irregular and sometimes included

craters up to 40 m deep. The images generated by PANGU

contained 256 gray-scale levels and had a resolution of

256×256 pixels. Each of the OF sensors (also called VMSs)

included six photoreceptors: the visual axes of each pair of

photoreceptors were separated by the inter-receptor angle

∆ϕ = 0.1◦. The angular sensitivity of each photoreceptor

obeyed a 2-D Gaussian function mimicking the angular

sensitivity of the fly’s photoreceptors with the acceptance

angle (the angular width at half height) ∆ρ = ∆ϕ = 0.1◦.

These small inter-receptor and acceptance angles make it

possible to compute very low velocities. Since we have such

a narrow field of view, even high spatial frequency contrasts

will be detected by the photodiodes, which is extremely

useful at low OF levels, where fewer contrasts occur in

the sensor’s line of sight. In the simulated VMS model,

the photoreceptors’ output was simulated at each time step

by convolving the PANGU-generated lunar surface image

with the 2-D Gaussian filter. The simulated 6-pixel VMSs

based on the actual code implemented in the sensor then

assessed the OF. Fig. 2 shows a simulated image of the lunar

ground generated using PANGU. One can see various craters,

boulders and shadows caused by the rims of craters and

the elevation of the sun. Simulations were run in open loop

with precomputed input control signals using a lunar landing

scenario starting with h0 = 1496m, ωx0
= 2.18◦/s, ωz0 =
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Fig. 3. Evolution of estimated ω̂x, ω̂x and θ̂ in the nonlinear system with the newly designed LPV observer. The three sub-figures show the actual
state of the nonlinear system (blue line), the reference state (dashed black line), the open loop linearized system (△-mark line) and the estimated states
(∗-mark line). The open loop linearized system states correspond to a simulation where the linearized system is run in open loop from the same initial
conditions as the observer (states are denoted ωxOLlin

, ωzOLlin
and θOLlin). One can see that the estimated states converged quickly toward the actual

states of the nonlinear system, which were deliberately intended not to follow the reference trajectory. It should be noted in addition that the open loop
linearized system alone would not have sufficed to obtain an accurate state estimation. Estimated states were initialized, giving ∆ω̂x0

= −0.126◦/s,

∆ω̂z0 = 0.23◦/s, ∆θ̂0 = 3.23◦.

−1.72◦/s, θ0 = −53.43◦, q0 = −0.92◦/s, mldr0 = 758kg.

Initial states deviations from the reference trajectory were

chosen so that ∆h0 = 100m, ∆ωx0
= −0.115◦/s, ∆ωz0 =

−0.08/s, ∆θ0 = −2◦, ∆q0 = −0.2◦/s. The estimated states

were initialized, giving ∆ĥ0 = 60m, ∆ω̂x0
= −0.126◦/s,

∆ω̂z0 = 0.23/s, ∆θ̂0 = 3.23◦, ∆q̂0 = −0.2◦/s. Fig. 3

and Fig.4 present simulations based on the state estimation

technique presented here. In sub-figures 3.a-c, one can see

the actual state (blue line), the reference state (dashed black

line), the open loop linearized system (△-mark line) and the

estimated states (∗-mark line). In the sub-figures 4.c, one

can see the actual outputs (blue line), the reference outputs

(dashed black line), the linearized open loop outputs (△-

mark line), the estimated outputs (∗-mark line) and the output

given by the PANGU-based measurements (▽-mark line).

The open loop linearized system states and outputs were

obtained in simulation with the linearized system run in open

loop from the same initial conditions as the observer (states

are denoted ωxOLlin
, ωzOLlin

, θOLlin, hOLlin, qOLlin and

yOLlin).

As expected ω̂x, ω̂z and θ̂ converged quickly toward the

actual states, and it is worth noting that we also obtained

a raw estimates of h which took longer to converge but

were not intended to be used in the future control scheme. q̂
seems to have been more sensitive to the simulated image-

based measurements than the other estimates: this was due

to the events created by the OF measurement techniques
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Fig. 4. Evolution of ĥ, q̂ and the outputs of the observer Ŷ = [ŷ1, ŷ2, ŷ3]T in the nonlinear system equipped with an LPV observer. One can see from
this figure that the estimated states gave good raw estimates of the actual states despite the intrinsic sensitivity of the system to noise during the last few
seconds. The estimated outputs were very close to the actual outputs of the nonlinear system. The estimated states were initialized in such a way that

∆ĥ0 = 60m, ∆q̂0 = −0.2◦/s. The open loop linearized system states correspond to a simulation where the linearized system is run in open loop from
the same initial conditions as the observer (states are denoted hOLlin, qOLlin and yOLlin).

as well as the noise in the measurements. Simulations with

theoretical measurements were also run to check the validity

of this statement (i.e. q̂ − q tended to 0 when the outputs

were perfect). Open loop linearized system (△-mark line)

states (without the presence of an observer) did not converge

toward true values, and even diverged with ωx and ωz .

VI. CONCLUSIONS

This study addressed the state estimation problem by

using OF sensors without any need for IMU measurements.

In the novel LPV observer adapted from [3] to our class

of nonlinear systems by making a change of variable, the

measurements used required only three lightweight bio-

inspired visual motion sensors hard-mounted onto the lan-

ders structure (i.e. ωα1+θ, ωα2+θ and ωα3+θ). No inertial

measurements (attitude, angular velocities, angular or linear

accelerations) or linear velocities or even altitudes were

needed in this setup. The promising results obtained here

showed the effectiveness of the observer in simulations

based on software-generated images of the lunar ground. The

ventral OF, expansion OF and pitch angle estimates were

very near the actual states although substantial sensor noise

and the estimated initial states were slightly inaccurate. Due

to the extreme minimalism of the present OF sensors and

the overall backup solution, the performances of the present

observer are not comparable with the high-accuracy IMU de-

vices available. However, the present observer was intended

as a backup means of driving the lander safely toward the

lunar surface based on the use of small, energy efficient

sensors if major sensor failures of any kind (involving not

only the IMU) should occur.

The next step will consist in designing the control laws,



taking ωx, ωz and θ as inputs to bring the lander safely to the

ground while following a precomputed reference trajectory.

To overcome the poor estimation of the pitch angular speed,

two approaches could be used:

• controlling the lander’s attitude only using pitch mea-

surement (basically a position feedback),

• or combining the estimated angular pitch rate with the

time derivative of the estimated pitch angle.

It would also be interesting to compare results obtained with

the present LPV observer with traditional extended unscented

Kalman filters, which are designed on very similar lines

and are being increasingly used to meet challenges of this

kind. The LPV observer was chosen because of its well-

established success with nonlinear systems, and also because

of the proof of convergence provided by the Lyapunov theory

underlying Besançon, Bornard and Hammouri’s observer [3].

A cost-minimization scheme could be developed in order to

improve the settings of the observers matrices Θ and S(0).
Further simulations will be performed in order to define the

limitations of the solution proposed in terms of the initial

errors and measurement noise.
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