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Backup State Observer Based on Optic Flow Applied to Lunar Landing
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Abstract— The observer presented in this paper, which was
based on the use of three minimalistic bio-inspired Visual
Motion Sensors (VMS) detecting Optic Flow (OF) cues, states
was intended as a backup solution in the case of Inertial
Measurement Unit (IMU) failure. Contrary to most previous
Guidance Navigation and Control (GNC) solutions for plane-
tary landing, which have involved a sensor suite including an
IMU, an innovative strategy is presented here for estimating
states without any need for inertial measurements, based solely
on information about the relative velocity of the images of
the surrounding environment. A Linear Parameter Varying
(LPV) observer designed on a LPV system linearized around a
reference trajectory, estimates: the ventral OF, the expansion
OF and the local pitch angle. A previously developed observer
was applied here to a larger class of nonlinear systems by
making an ingenious change of variable. Simulations performed
on a lunar landing scenario yielded satisfactory performance
and showed the robustness of the OF based observer to initial
uncertainties and measurement noise.

I. INTRODUCTION

In most previous systems designed for the autonomous
navigation of robotic systems, pose and attitude parameters
have usually been measured or estimated during planetary
landing [5], [33], [16]. However, vision based sensors and
algorithms which meet the stringent weight, size and power
consumption requirements of spatial applications, have re-
cently provided new means of controlling these complex
systems. Two different vision based approaches have been
widely studied by performing numerical simulations:

« The first approach was based on the use of images along
with information provided by sensors of other kinds
or embedded knowledge of the terrain to reconstruct
classical states such as velocities, attitude angles and
angular velocities [19], [28], [6], [8], [27], [11]. Once
these states have been estimated, classical control theory
can be used to bring the system autonomously to the
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appropriate destination. However, these recent develop-
ments are often associated with a high computational
cost, mainly due to the image processing algorithm
extracting visual cues from the cameras output.

o In the second approach, the system was driven on the
basis of relative information extracted from images of
the environment. It has been established that flying
insects use the Optic Flow (OF), which provides them
with relative angular velocity and proximity information
with respect to obstacles, to navigate swiftly in unknown
complex environments. The authors of several robotic
studies inspired by insects’ behavior have used the OF
to perform hazardous tasks such as taking off, terrain-
following, and landing safely and efficiently [29], [14],
avoiding frontal obstacles [2], [12], [30], [4], tracking
a moving target [23] and hovering and landing on a
moving platform [15]. OF based lunar landing has been
addressed in several studies using either a nonlinear
observer connected to a LQ controller to track a constant
OF reference in [32] or PID type controllers to track
constant OF references [26] or exponentially decreasing
[17] or more recently, Model Predictive Control [18]. In
all these studies, sensors oriented at constant angles of
90° and sometimes 135° were used to compute specific
OF expressions [26] so that:

= Wooe
(D
= wyge — 2w13s50

Keeping (1) constant or near a slowly varying reference
trajectory while h decreases ensures a soft touchdown
of the closed loop system.

In other studies, OF measurements have been used as a
means of estimating the usual states of the system along with
other more classical sensors such as Inertial Measurement
Units (IMUs), sonars, Global Positioning System (GPS),
airspeed sensors and/or accelerometers [10], [22], [32], [9].

However, in all of these studies, the Inertial Measurement
Unit (IMU) was the crucial cue: nowadays, an IMU is the
corner stone of all the autopilots designed for vehicles of
all kinds. For instance, in August 2012, the NASA scientists
reported the occurrence of an IMU failure which caused the
very advanced Morpheus lander prototype to crash while
performing its first untethered flight [7]. IMU-less backup
solutions are still urgently required in order to prevent
accidents of this kind.

In the present paper, which focuses on the navigation part
of the whole GNC strategy (observation issue), it is not



proposed to address the important closed-loop control and
guidance issues arising in Guidance Navigation and Control
(GNC) design.

In this study (for the first time to the best of our knowl-
edge), a novel backup solution was simulated for estimating
the main parameters required to perform a bio-inspired
planetary landing, namely the ventral and expansion OFs
and the pitch angle [29], [26], [17] (The expansion OF has
also been referred to as the inverse of the Time To Contact)
in the case of IMU failure using only three strapped down
OF sensors. With these hard-mounted sensors, there is no
need for gimbal systems, which usually require a dedicated
IMU. No additional exteroceptive or proprioceptive sensors
were used in this setup. The reference landing trajectory
was used to design a Linear Parameter Varying (LPV)
observer. These bio-inspired lightweight, small-sized, and
energy efficient sensors featuring only 6 pixels, which were
previously developed and tested outdoors onboard a UAV
flying freely over various fields, gave promising results in
terms of the measured OF on a real life system subjected to
strong disturbances [31].

In section 2, the dynamic model for the lander is described
and a mathematical definition of the OF is presented. Section
3 describes the fusion scheme based on the least squares
of OF measurements along with a linearized version of the
model around a reference trajectory. Section 4 describes how
the OF based observer was designed. Section 5 presents the
results of the PANGU-based simulations. Section 6 contains
some concluding comments and outlines our plans for future
developments.

II. LUNAR LANDER DYNAMICS AND OPTIC
FLOW EQUATIONS

In this section, the dynamic model of the OF system shown
in Fig. 1, and the mathematical background are described.
The dynamic system studied here consisted of a spacecraft,
which was actuated via the main thrust u;, acting along es
the third canonical basis vector in the bodys fixed reference
frame associated with the vector basis (e1;e2;e3) and ug
creating a pitch torque. Since the lunar atmosphere was very
thin, no friction or wind forces were applied to the lander. In
line with previous studies in the literature, the lunar ground
was assumed to be flat (with an infinite radius of curvature)
(see [20]). The landers dynamic motion can be described on
the vertical plane (e;;e,) of the inertial frame Z associated
with the vector basis (e;ey;e.) by the following dynamic
system:

Vo (t) = 20, (1)

My (t)

Vz(t) = COS(O(t))uth(t) — GMoon

fmdr(t) R

q(t) = Tue(t)
—usn(t)
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where V,, . denotes the lander’s velocities in Z, m;q, stand
for the lander’s mass, which was assumed to be measured at
all times, 6 is the pitch angle (the pitch angular rate is written

q= % since this is taken to be a simplified 2-D problem), ¢

Uth,

€z
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e

Inertial Frame

Fig. 1. Definition of the body-fixed frame B, the inertial frame 7 and
notations for the lander’s dynamics and the optic flow. Example of a N
VMS setup. Sensors fixed to the landers structure measured the OF wq, ;¢
depending on the lander’s position, velocity, pitch angle and pitch angular
velocity (see (5)). It can be noted that () = a+6(t)+~(t). The canonical
vector ep of B was not included here for the sake of clarity.

denotes the time, and gps.0, denotes the lunar acceleration
due to the gravity (gproon = 1.63 m/52, 9Moon Was taken to
be constant due to the low initial altitude). I is the landers
moment of inertia, and R denotes the eccentricity of the
attitude thrusters from the center of mass. I, is the specific
impulse: I,,,, = 325s that of the braking thrusters, I,, =
287s that of the attitude thrusters and ggq.tp, = 9.81 m/ 52
is the Earth’s gravity. In the first step, we focused on a 2-
D setup (planar motion) in line with previous studies and
because of the 6-pixel OF sensors capabilities presented in
[31]. In order to progress to a 3-D setup, we would have
to adopt a larger photoreceptor chip with a matrix-shaped
design to be able to measure the 2-D OF involved in roll
and yaw movements.

In the vertical plane, the OF w(®), the sole value measured
in this study, was defined in line with [24] as follows:

w(®) = sin(®) — g 3
where the term % sin(®), which has been called the transla-
tional OF, depends on the linear velocity V' expressed in the
inertial frame, the distance from the ground D in the gaze
direction and the elevation angle ® (i.e. the angle between
the gaze direction and the heading direction). In order to use
the useful properties of the translational OF, a bulky gyro
stabilized gimbal system has often been used to compensate
for spacecrafts rotations and thus to keep the visual sensors
oriented in the same direction. This means not only that the
last term in (3) corresponding to the rotational OF no longer
occurs in the measurements, but also that the angle ® —
was kept constant which simplifies calculations.

Although this is simple, useful mathematical framework
no gimbal systems were used in this paper, it would
have required an extra IMU, which is not possible since we
are dealing with a case of IMU failure. The challenge of
using the present strapped down sensor setup was twofold.



First the angle & — v was no longer constant, which ruled
out simple calculations such as those performed in (1).
Secondly, the rotational OF wr = —¢q was included in the
measurements. This component wgr was usually subtracted
from the measured OF, wy,eqs, using IMU measurements:
this operation is known as the derotation process (see [1]).
Unfortunately, since the IMU was lost, it was no longer
possible to perform the derotation process or to close the
attitude control loop depending on pitch and angular pitch
velocity measurements. We therefore used an OF based
observer to estimate w, and w, during the descent as well as
the pitch angle 6 without using any gimbaled sensors, IMUs
or velocity measurements. In the case of IMU failure, this
solution could be used as a backup solution to feed control
laws with accurate estimates and enable a small airborne
vehicle to perform a soft landing.

ITII. OPTIC FLOW FUSION AND LPV MODEL
DEFINITION

A fusion scheme was applied to the OF measurements and
the landers dynamics (2) were linearized around a reference
trajectory so as to obtain a Linear Parameter Varying (LPV)
state space model, which was used throughout to design the
observer.

Let wus take only NN available measurements
(Way5 -+ 3 Way) to estimate the pitch angle 6 and
useful values of OF, namely the ventrab OF, w,, and
wa(t) ] = | ™ | from the

z

h(t

the expansion OF, w,: [ w. (1)
available measurements.
Assuming that we are dealing with a practically flat ground
(i.e. D = h/cos(§ —®+), where y denotes the flight path
angle (the orientation of the velocity vector with respect to
the local horizontal), h denotes the ground height, and & —~
denotes the angle between the gaze direction and the local
horizontal) and using the notations presented on Fig. 1, we

obtain the following general expression for the 2D OF:

alt) = ik sin@(0) = o() @
where ®(t) = a4+ 0(t) + v(¢), and D = %
Based on (1) this gives:
L[ 1@t 0m) \ [ wal)
waro(t) =5 | s2(a+0() w:(t) | ()
-2 q(t)

where sin(7(t)) = ¥ and cos(7(t)) = ¥z and «, the only
time invariant parameter (time notations were dropped for the
sake of clarity); s (-) and c (-) denotes the sine function and
the cosine function.

Extracting a time invariant matrix depending on « yields

L r Wy — 2
Wats = ( c(%a) ) [ —c(20)wz+sq(26) Ws ] 6)
s (2ar) $(20)ws + ¢ (20) w,

The following linear system can then be solved using N >
3 measurements if HZ H is invertible:

we —2¢ Way+6
—cos(20)w, +sin (20)w. | = Hy 5,
sin(20)w, + cos (26) w, Wan+6
anN

(N
where the left inverse Hl;}t is defined as Hl;lct =
(H"H)"'HT, with H, ;,H = I,, H € M(m,n,R),
m > n and H defined as follows:
1 cos(2aq) sin(2aq)

Hy=| : : :
1 cos(2ay) sin(2ayn)
Remark It should be noted that for N=3 the matrix H
matrix is a square matrix:

Wy — 2q Waq 46
—c(20)we +5(20)w. | = H ' wayso (8)
$(20)w, + ¢ (20) w, Wag+0
with
% cos (2aq) sin (2a)
H= ? cos (2az)  sin (2a2)
5 cos(2a3) sin(2a3)

It has to be checked that the following condition is satisfied
to ensure that H is invertible

s(2(az —a2))+s5(2(ar —az))+s5s(2 (a2 —a1)) #0 9)

The result of the linear least squares calculation with N > 3
(and the matrix inversion with N = 3) gives a nonlinear
system with three equations and four unknowns (i.e. w,,
w,, B and ¢) which it is impossible to solve analytically.
We therefore had to make use of the knowledge available
about the systems dynamics, which was done by designing
an LPV observer for a linearized model of the lander’s
dynamics. Roughly speaking, we therefore linked together
two unknowns 6 and ¢, since 6 = q. During space missions
including entry, descent and landing phases, a reference
trajectory has often been provided. This trajectory has to
be followed during the actual landing to ensure the safety
of the lander and reduce the fuel consumption (see [25],
[34]). The reference trajectory can be expressed in terms
of state trajectories, crater patterns, or a 2-D or 3-D image
database [21]. In this study, we adopted a landing scenario
with a computed offline reference trajectory which had to be
followed. Our main assumption was that we would stay
sufficiently close to this reference trajectory to be able to
derive and use an LPV model for the system around the
reference trajectory defined by X* = [h*, w*,w*, 0", ¢*|”
involving the input control sequences u* = [u},,u}]”
from the system dynamics (2) and the results of the linear
least squares calculations (8). Linearized outputs are given
by



1 0 0 Awg
Y = (c (20*) s(20%) 2w§s(29*)+2w;‘c(29*)> (sz>

s(20%)  c(20%) 2wic(20%) — 2wis(20%) A6

-2 wy — 2q*
+ 0 | Ag+ [ —c(20*)wj +s(20%) w3
0 s (20%) wk + ¢ (20%) wi

(10)
Which was rewritten as follows

Al Awy
Y=0C (A )—I—CQ(X*(t)) Aw, | +Y* (11)
q
A6
0 -2
where C = 0 O
0 0

A linearized state space model around a reference trajectory
is given by

Ah
y Ag Au
AX = Awg =A(p(t)) AX + B(p(t)) ( Auth )
Aw, o
Af
AY =C(p(t)) AX =Y —-Y*
(12)
with
wl 0 0 h* 0
0 0 0 0 0
PR = L T
Mdr r
_:L(lz 2::;)1 + gM:,;n 0 0 —Qw: _:Slgdr):th
1 0 0 0
(13)
0 0
0 R/I
s(é‘*)
B=| mn 0 i Clpt) = (Cl C2 (p (t)))
0(9*) 0
mygrh*
0 0
(14)

The time varying vector p(t) depended on the reference
trajectory, its associated input control signals and on the
lander’s mass so that p(t) = [b*,wk,w?, 0, ¢*, uly,, Mgy "

An LPV system was obtained; an LPV observer will now
be designed to estimate state deviations from the reference
trajectory, assuming that these deviations are small.

IV. OBSERVER DESIGN FOR A CLASS OF LPV
SYSTEMS AND APPLICATION TO A LUNAR
LANDING SCENARIO

In this section, we present an LPV observer based on the
solution proposed in [3], which was extended to include a
larger class of nonlinear systems and applied to the lunar
landing scenario adopted in this paper.

A. LPV Observer Design

Let us now consider an LPV system having the following
form

{ X () =A(pt)X + B(p(t)u(t) (15)

y() =Cp®))X ()= (C1 Ca(p(t)) X (t)

where X e R", pe R™, u e RP, y e R", A: R™ —
M(n,n), B : R™ — M(n,p), C : R™ — M(r,n),
C; € M(r,n —s), Co : R™ — M(r,s) where M(k,l)
denotes the space consisting of k x [ matrices with k& rows
and [ columns with coefficients provided in R. I, denotes
the identity matrix having the size a X a.

It is worth noting that the system described by (11)-(12)
belongs to this class of LPV systems.

Lemma 1 Let us consider the system (15) and assume that
the parameter p(t) is measured and regularly persistent (see
[3] for a definition) and the sub-matrix Cy (p(t)) is invertible
and differentiable with respect to time, then for all gain
matrices © > 0,the system:

X(t)= AX(t)+Bu(t)— S'CT (5 () —y (1)
S

(16)
()= —OS(t) - A(n) 5()
=S () A(p(1)) + C (p(1)" C(p(1) (17
S(0) >0
where
£0= (o, o) X O =M X0

which yields
A= (M (p(1)) M (p(t) ™ + M (p(6)) A (p(t)) M (p(£)) ")

B=M(p(t)B(p(t); C=(C I)
is an observer for (12).

Proof: Let us now consider the new state vector result-
ing from the following change of variable X = M (p(t)) X:
(12) becomes

X = (N(p(t) M (p(8) ™" + M (p(1)) A (p()) M (p(t) ") X
+ M (p(1)) B (p(t) u
and
y=CX

which corresponds to the class of systems covered by
theorem 2.1 presented in [3] (additional proof can be found
in [13]). ]
As previous authors have pointed out, with this observer,
we ensure that |[e ()||> < ae?min(®)F where €(t) =
X (t)— X (t) is the estimation error, Ay, (©) is the smallest
eigenvalue of © and « is a constant depending on the initial
errors, © and wu.



B. Application to the lunar lander LPV state space model

Applying the change of variable to the system described
in (11)-(12) gives the new state vector

Ah
_( L2
~ \ 03,2

AX =M (p(t) AX

02,3
Ca (p <t>)) ax

where 0, ; denotes the null matrix having the size a x b.
The measurement equation can then be written with a time
invariant observation matrix C
Y=Y"+(C1 L)AX =Y"+CAX

and the state equation can be written as follows

s I 02,3 =
AX = (03,2 CoCyt + CQAC;) AX
I, 023
+ 032 Ch BAu
with
. 0 0 0
Co=| 2¢*s(20*) 2¢*c(20*) Co,,
2q*c (29*) —2(]*8 (26*> 0233

Cayy =227 (207) w +5(20") W —2¢"s (20") w] +¢(267) ]|

Cagy = 2 [~2¢7s (207) W' + ¢ (207) &% — 2q7¢ (207) w? — 5 (207) 7]

By applying lemma (1), the observer can be expressed as
follows:

5 I 02,3 3
AX = (03,2 CoCyt + CACT! ) Ax
I 023 _ a-1AT 18
+ 032 Co S5 ( Y) (18)
=  AX(#®)+Bu(t)- S~ 1OT( (t)-Y (¢ )
S=-08-ATS - SA+CTC; S(0)>0 (19)

O does influence the observers convergence time, but a
high gain © is liable to amplify any measurement noise
present in the simulation involving virtual images of the
lunar ground. We therefore used a trial and error method
and engineering knowledge of the dynamics and sensors to
define the S and © matrices as follows:

1 20
0.2 0.05
S(0) = ( I ) and © = ( 207, )
0.2 0.3

O is a tuning parameter which affects the rate of conver-
gence of the estimated states.

V. SIMULATION RESULTS wiTH 3 OF SENSORS
(N =3)

The results of the simulation illustrate the performances
of the LPV observer. We focused here on performing sim-
ulations based on real image processing rather than using
methods based on the intentional corruption of signals by
adding Gaussian noise. Simulations were run under open
loop conditions to obtain realistic OF measurements using
three sensors placed on the lander at random angles a; =
90° , ap = 120° and a3 = 160° in a range corresponding
to the landing scenario adopted here, so that they remained
ground oriented during the entire descent phase and the
condition defined by (9) was satisfied.

Fig. 2. Example of an image of the lunar ground obtained using PANGU
software 2.70

PANGU software was used to generate images of the
lunar surface, taking the position of the system, the elevation
of the sun and the camera’s properties into account. The
simulated lunar surface was irregular and sometimes included
craters up to 40 m deep. The images generated by PANGU
contained 256 gray-scale levels and had a resolution of
256 x 256 pixels. Each of the OF sensors (also called VMSs)
included six photoreceptors: the visual axes of each pair of
photoreceptors were separated by the inter-receptor angle
Ay = 0.1°. The angular sensitivity of each photoreceptor
obeyed a 2-D Gaussian function mimicking the angular
sensitivity of the fly’s photoreceptors with the acceptance
angle (the angular width at half height) Ap = Ap = 0.1°.
These small inter-receptor and acceptance angles make it
possible to compute very low velocities. Since we have such
a narrow field of view, even high spatial frequency contrasts
will be detected by the photodiodes, which is extremely
useful at low OF levels, where fewer contrasts occur in
the sensor’s line of sight. In the simulated VMS model,
the photoreceptors’ output was simulated at each time step
by convolving the PANGU-generated lunar surface image
with the 2-D Gaussian filter. The simulated 6-pixel VMSs
based on the actual code implemented in the sensor then
assessed the OF. Fig. 2 shows a simulated image of the lunar
ground generated using PANGU. One can see various craters,
boulders and shadows caused by the rims of craters and
the elevation of the sun. Simulations were run in open loop
with precomputed input control signals using a lunar landing
scenario starting with hg = 1496m, w,, = 2.18°/s, w,, =
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Fig. 3.
state of the nonlinear system (blue line), the reference state (dashed black

Evolution of estimated @z, &z and 6 in the nonlinear system with the newly designed LPV observer. The three sub-figures show the actual

line), the open loop linearized system (A-mark line) and the estimated states

(x-mark line). The open loop linearized system states correspond to a simulation where the linearized system is run in open loop from the same initial
conditions as the observer (states are denoted Wz, ;0> Wz AN 00L1in). One can see that the estimated states converged quickly toward the actual
states of the nonlinear system, which were deliberately intended not to follow the reference trajectory. It should be noted in addition that the open loop
linearized system alone would not have sufficed to obtain an accurate state estimation. Estimated states were initialized, giving A&y, = —0.126°/s,

Ab, =0.23°/s, Ay = 3.23°.

—1.72°/s, 6y = —53.43°, qo = —0.92°/s, My4r, = 758kg.
Initial states deviations from the reference trajectory were
chosen so that Ahg = 100m, Aw,, = —0.115°/s, Aw,, =
—0.08/s, Afy = —2°, Agy = —0.2°/s. The estimated states
were initialized, giving Aﬁo = 60m, Aw,, = —0.126°/s,
Ad}zo = 023/8, A(% = 3.230, AqA() = —0.20/8. Flg 3
and Fig.4 present simulations based on the state estimation
technique presented here. In sub-figures 3.a-c, one can see
the actual state (blue line), the reference state (dashed black
line), the open loop linearized system (A-mark line) and the
estimated states (x-mark line). In the sub-figures 4.c, one
can see the actual outputs (blue line), the reference outputs
(dashed black line), the linearized open loop outputs (A-

mark line), the estimated outputs (x-mark line) and the output
given by the PANGU-based measurements (5/-mark line).
The open loop linearized system states and outputs were
obtained in simulation with the linearized system run in open
loop from the same initial conditions as the observer (states
are denoted Wypp 150> Weoriins 00Llin, ROLIins qoLlin and
YOLlin)- A

As expected ., w, and @ converged quickly toward the
actual states, and it is worth noting that we also obtained
a raw estimates of h which took longer to converge but
were not intended to be used in the future control scheme. §
seems to have been more sensitive to the simulated image-
based measurements than the other estimates: this was due
to the events created by the OF measurement techniques
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Fig. 4. Evolution of h, ¢ and the outputs of the observer Y = [91, 92, 93] in the nonlinear system equipped with an LPV observer. One can see from
this figure that the estimated states gave good raw estimates of the actual states despite the intrinsic sensitivity of the system to noise during the last few
seconds. The estimated outputs were very close to the actual outputs of the nonlinear system. The estimated states were initialized in such a way that
Ahg = 60m, Ago = —0.2°/s. The open loop linearized system states correspond to a simulation where the linearized system is run in open loop from
the same initial conditions as the observer (states are denoted hori1in, 9O L1in a0d YO LIin)-

as well as the noise in the measurements. Simulations with
theoretical measurements were also run to check the validity
of this statement (i.e. § — g tended to 0 when the outputs
were perfect). Open loop linearized system (/A-mark line)
states (without the presence of an observer) did not converge
toward true values, and even diverged with w, and w,.

VI. CONCLUSIONS

This study addressed the state estimation problem by
using OF sensors without any need for IMU measurements.
In the novel LPV observer adapted from [3] to our class
of nonlinear systems by making a change of variable, the
measurements used required only three lightweight bio-
inspired visual motion sensors hard-mounted onto the lan-
ders structure (i.e. Wa,+0, Was+o and wa,46). No inertial
measurements (attitude, angular velocities, angular or linear

accelerations) or linear velocities or even altitudes were
needed in this setup. The promising results obtained here
showed the effectiveness of the observer in simulations
based on software-generated images of the lunar ground. The
ventral OF, expansion OF and pitch angle estimates were
very near the actual states although substantial sensor noise
and the estimated initial states were slightly inaccurate. Due
to the extreme minimalism of the present OF sensors and
the overall backup solution, the performances of the present
observer are not comparable with the high-accuracy IMU de-
vices available. However, the present observer was intended
as a backup means of driving the lander safely toward the
lunar surface based on the use of small, energy efficient
sensors if major sensor failures of any kind (involving not
only the IMU) should occur.

The next step will consist in designing the control laws,



taking w,, w, and 6 as inputs to bring the lander safely to the
ground while following a precomputed reference trajectory.
To overcome the poor estimation of the pitch angular speed,
two approaches could be used:

« controlling the lander’s attitude only using pitch mea-
surement (basically a position feedback),

o or combining the estimated angular pitch rate with the
time derivative of the estimated pitch angle.

It would also be interesting to compare results obtained with
the present LPV observer with traditional extended unscented
Kalman filters, which are designed on very similar lines
and are being increasingly used to meet challenges of this
kind. The LPV observer was chosen because of its well-
established success with nonlinear systems, and also because
of the proof of convergence provided by the Lyapunov theory
underlying Besangon, Bornard and Hammouri’s observer [3].
A cost-minimization scheme could be developed in order to
improve the settings of the observers matrices © and S(0).
Further simulations will be performed in order to define the
limitations of the solution proposed in terms of the initial
errors and measurement noise.

ACKNOWLEDGEMENTS

We thank J. Blanc for improving the English manuscript.
The authors would like to thank the three anonymous referees
for their valuable comments and suggestions to improve the
quality of the paper.

REFERENCES

[11 A.A. Argyros, D.P. Tsakiris, and C. Groyer. Biomimetic centering
behavior [mobile robots with panoramic sensors]. Robotics Automation
Magazine, 11(4):21 — 30, 68, Dec. 2004.

[2] G.L. Barrows and C. Neely. Mixed-mode VLSI optic flow sensors
for in-flight control of a Micro Air Vehicle. In SPIE : Critical
technologies for the future of computing, volume 4109, pages 52-63,
San Diego, CA, USA, Aug. 2000.

[3] G. Besangon, G. Bornard, and H. Hammouri. Observer synthesis for
a class of nonlinear control systems. European Journal of Control,
2(3):176-192, 1996.

[4] A. Beyeler, J.C. Zufferey, and D. Floreano. OptiPilot: control of take-
off and landing using optic flow. In European Micro Aerial Vehicle
Conference (EMAV), volume 27, Delft, Nederlands, Sept. 2009.

[5] M. Bryson and S. Sukkarieh. Vehicle model aided inertial navigation
for a uav using low-cost sensors. In Proceedings of the Australasian
Conference on Robotics and Automation, 2004.

[6] T. Cheviron, T. Hamel, R. Mahony, and G. Baldwin. Robust nonlinear
fusion of inertial and visual data for position, velocity and attitude es-
timation of uav. In Robotics and Automation, 2007 IEEE International
Conference on, pages 2010-2016. IEEE, 2007.

[7] J. Devolites, J.B. Olansen, and S. Munday. Morpheus 1.5 a lander
failure investigation results. In AIAA SPACE 2013 Conference and
Exposition, 2013.

[8] G. Flandin, B. Polle, B. Frapard, P. Vidal, C. Philippe, and T. Voirin.
Vision based navigation for planetary exploration. In 32nd Annual
AAS Rocky Mountain Guidance and Control Conference, 2009.

[9] L. R. Garcia Carrillo, A. E. Dzul Lépez, R. Lozano, and C. Pégard.

Combining stereo vision and inertial navigation system for a quad-

rotor uav. Journal of Intelligent & Robotic Systems, 65(1-4):373-387,

2012.

M.A. Garratt and J.S. Chahl. Vision-based terrain following for an

unmanned rotorcraft. Journal of Field Robotics, 25:284-301, 2008.

V. Grabe, H.H. Bulthoff, and P.R. Giordano. On-board velocity

estimation and closed-loop control of a quadrotor uav based on optical

flow. In Robotics and Automation (ICRA), 2012 IEEE International

Conference on, pages 491-497, May 2012.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

S. Griffiths, J. Saunders, A. Curtis, B. Barber, T. McLain, and
R. Beard. Maximizing miniature aerial vehicles. IEEE Robotics &
Automation Magazine, 13:34—43, 2006.

H Hammouri and J de Leon Morales. Observer synthesis for state-
affine systems. In Decision and Control, 1990., Proceedings of the
29th IEEE Conference on, pages 784—785. IEEE, 1990.

B. Hérissé, T. Hamel, R. Mahony, and F.X. Russotto. A terrain-
following control approach for a vtol unmanned aerial vehicle using
average optical flow. Autonomous Robots, 29(3-4):381-399, 2010.
B. Hérissé, T. Hamel, R. Mahony, and F.X. Russotto. Landing a VTOL
unmanned aerial vehicle on a moving platform using optical flow.
IEEE Transactions on Robotics, 28(1):77 -89, Feb. 2012.

M.D. Hua. Attitude estimation for accelerated vehicles using gps/ins
measurements. Control Engineering Practice, 18(7):723-732, 2010.
D. Izzo and G. de Croon. Landing with time-to-contact and ventral
optic flow estimates. Journal of Guidance, Control, and Dynamics,
35 (4):1362-1367, 2011.

D. Izzo and G. de Croon. Nonlinear model predictive control applied
to vision-based spacecraft landing. In Proceedings of the EuroGNC
2013, 2nd CEAS Specialist Conference on Guidance, Navigation &
Control, Delft University of Technology, pages 91-107, Delft, The
Netherlands, Apr. 10-12 2013.

T. Jean-Marius and S.E. Strandmoe. Integrated vision and navigation
for a planetary lander. Technical report, AEROSPATIAL, Espace et
Défense, Les Mureaux-France. ESA, ESTEC, 1998.

T. Jean-Marius and S. Trinh. Integrated vision and navigation for
planetary exploration - final report. Technical Report RM-TN-00-18-
AS/M, Aérospatiale Espace & Défense, 1999.

A.E. Johnson and J.F. Montgomery. Overview of terrain relative navi-
gation approaches for precise lunar landing. In Aerospace Conference,
2008 IEEE, pages 1-10. IEEE, 2008.

F. Kendoul, I Fantoni, and K. Nonamib. Optic flow-based vision
system for autonomous 3d localization and control of small aerial
vehicles. Robotics and Autonomous Systems, 57:591-602, 2009.

F. Kendoul, K. Nonami, I. Fantoni, and R. Lozano. An adaptive vision-
based autopilot for mini flying machines guidance, navigation and
control. Autonomous Robots, 27:165-188, 2009.

J.J. Koenderink and A.J. Doorn. Facts on optic flow. Biological
Cybernetics, 56:247-254, 1987.

X.L. Liu and G.R. Duan. Robust guidance and control of lunar lander
using model reference approach. In Proc. SPIE, volume 5985, pages
856-860, 2005.

V. Medici, G. Orchard, S. Ammann, G. Indiveri, and S.N. Fry.
Neuromorphic computation of optic flow data bio-inspired landing
using biomorphic vision sensors. Technical report, ESA, 2010.

A.L Mourikis, N. Trawny, S.I. Roumeliotis, A.E. Johnson, A. Ansar,
and L. Matthies. Vision-aided inertial navigation for spacecraft entry,
descent, and landing. /IEEE Transactions on Robotics, 25(2):264 -280,
Apr. 20009.

S. Parkes, M. Dunstan, D. Matthews, I. Martin, and V. Silva. LIDAR-
based GNC for planetary landing: Simulation with PANGU. In R.A.
Harris, editor, Data Systems in Aerospace (DASIA), page 18.1, Prague,
Czech Republic, Jun. 2003.

F. Ruffier and N. Franceschini.
aircraft automatic guidance.
50:177-194, 2005.

F. Ruffier and N. Franceschini. Aerial robot piloted in steep relief
by optic flow sensors. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1266—1273. IEEE, 2008.
G. Sabiron, P. Chavent, T. Raharijaona, P. Fabiani, and F. Ruffier.
Low-speed optic-flow sensor onboard an unmanned helicopter flying
outside over fields. In IEEE International Conference on Robotics and
Automation (ICRA), 2013.

F. Valette, F. Ruffier, S. Viollet, and T. Seidl. Biomimetic optic
flow sensing applied to a lunar landing scenario. In International
Conference on Robotics and Automation (ICRA), pages 2253-2260,
2010.

J. Wendel, O. Meister, Schlaile C., and G.F. Trommer. An inte-
grated gps/mems-imu navigation system for an autonomous helicopter.
Aerospace Science and Technology, 10(6):527 — 533, 2006.

J.Y. Zhou, K.L. Teo, D. Zhou, and G.H. Zhao. Optimal guidance for
lunar module soft landing. Nonlinear Dynamics and Systems Theory,
10(2):189-201, 2010.

Optic flow regulation: the key to
Robotics and Autonomous Systems,



