N

N

Evolution of neural controllers for locomotion and
obstacle-avoidance in a 6-legged robot
David Filliat, Jérome Kodjabachian, Jean-Arcady Meyer

» To cite this version:

David Filliat, Jérome Kodjabachian, Jean-Arcady Meyer. Evolution of neural controllers for loco-
motion and obstacle-avoidance in a 6-legged robot. Connection Science, 1999, 11, pp.223-240. hal-
01021228v2

HAL Id: hal-01021228
https://hal.science/hal-01021228v2
Submitted on 17 Feb 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01021228v2
https://hal.archives-ouvertes.fr

Evolution of Neural Controllers for Locomotion and
Obstacle-Avoidance in a 6-legged Robot

D. Filliatt* J. Kodjabachian® ** J.-A. Meyer* **

*AnimatLab / OASIS - LIP6 **MASA
Case 169. 4, place Jussieu. Paris. France. 24 Boulevard de I’'Hopital.
75252 PARIS CEDEX 05 France. 75005 Paris. France.

fphone : (433 1 44 27 88 04)

Keywords

Evolutionary robotics, neural controllers, locomotion, obstacle avoidance, walk-
ing robot.

Abstract

This article describes how the SGOCE paradigm has been used within the con-
text of a ”minimal simulation” strategy to evolve neural networks controlling
locomotion and obstacle-avoidance in a 6-legged robot. A standard genetic al-
gorithm has been used to evolve developmental programs according to which
recurrent networks of leaky-integrator neurons were grown in a user-provided de-
velopmental substrate and were connected to the robot’s sensors and actuators.
Specific grammars have been used to limit the complexity of the developmental
programs and of the corresponding neural controllers. Such controllers have
been first evolved through simulation and then successfully downloaded on the
real robot.

1 Introduction

To overcome the difficulties of designing the control architecture of a truly au-
tonomous robot - i.e., a robot that has to survive and fulfill its mission in a
variety of challenging circumstances that are impossible to predict - numer-
ous researchers advocate the use of evolutionary procedures that bypass human
intervention insofar as possible and that more or less automatically adapt a
robot’s controller and morphology to the specific problems it has to solve. The
basic idea underlying such approaches to evolutionary robotics (Gomi, 1997,
1998; Higuchi et al., 1997; Husbands and Meyer, 1998), is to draw inspiration
from biology and to implement a process of artificial selection that exploits the
coding of a robot’s phenotype into its genotype.

In three previous articles (Kodjabachian and Meyer, 1995, 1998a, 1998b)
the advantages of inserting a developmental process between the genotype and
the phenotype have been emphasized and a methodology implementing such a
process has been developed. In particular, it has been shown how the so-called
SGOCE evolutionary paradigm could be used to generate neural networks ca-
pable of controlling the behavior of a simulated artificial insect. More specifi-

cally, developmental programs generating controllers for locomotion, obstacle-
avoidance and gradient-following have been automatically generated, thus en-
dowing the insect with navigation abilities through a simple guidance strategy
(Trullier and Meyer 1997, Trullier et al. 1997).

In this article, we show how the SGOCE paradigm has been used to generate
neural controllers for locomotion and obstacle-avoidance in a real 6-legged SECT
robot manufactured by Applied AT Systems (figure 1).

The article first outlines the main characteristics of the SGOCE paradigm.
Then, it describes how neural controllers for locomotion and obstacle-avoidance
has been evolved in the SECT robot. Finally, it discusses the advantages and
limitations of SGOCE.

Figure 1: a : The SECT robot. It is equipped with infra-red and light sensors.
Each leg is controlled by two servo-motors that react to angular-position com-
mands, e.g., one for horizontal moves and one for vertical moves. b : The robot
and the environment that has been used to check the evolved behaviors.

2 The SGOCE evolutionary paradigm

The SGOCE (Simple Geometry-Oriented Cellular Encoding) evolutionary paradigm
is characterized by an encoding scheme, by an evolutionary algorithm, by an
incremental strategy, and by a fitness evaluation procedure that will be sketched

in turn. More detailed descriptions can be found in Chavas et al. (1998), Filliat
(1998), Kodjabachian and Meyer (1998a, 1998b).

2.1 Encoding scheme

The encoding scheme of SGOCE (figure 2) is a geometry-oriented variation of
Gruau’s cellular encoding (Gruau 1994). The developmental programs that are
evolved have a tree-like structure and call upon developmental instructions that
cause a set of precursor cells positioned by the experimenter in a 2D metric sub-
strate to divide, die, or grow efferent or afferent connections. In particular, such

cells can get connected to each other, or to sensory cells and motoneurons that
have also been positioned in the substrate. Thus, a possibly short and compact
genotype may ultimately produce a complex phenotype, i.e., a fully recurrent
neural network made of individual leaky-integrator neurons and able to control
the behavior of the robot through its sensors and actuators. Within such net-
works, the mean membrane potential m; of a neuron N; evolves according to
the following equation:

dmi

Titge T it zj:wiﬂj +1i (1)

where z; = (1 + e~ ("i+B))=1 ig the neuron short-term average firing fre-
quency, B; is a uniform random variable whose mean b; is the neuron’s bias, and
7; is the time constant associated with the passive properties of NV;’s membrane.
I; is the input that neuron N; may receive from a given sensor, and w; ; is the
synaptic weight of a connection from neuron NV; to neuron IV;.

A leaky-integrator model has been chosen a priori because neurons with in-
ternal dynamics were considered as suitable for the implementation of biomimetic
central pattern generators (Delcomyn 1980) and because this kind of model is
known to be an universal dynamics approximator (Beer 1995).

2.2 Evolutionary algorithm

The evolutionary algorithm of SGOCE is a steady-state genetic algorithm that
involves a population of well-formed developmental programs whose structure
is constrained by a grammar provided by the experimenter (figure 3). The use
of such a grammar makes it possible to reduce the size of the genotypic space
explored by the algorithm and to limit the complexity of the neural networks
that are evolved.

2.3 Incremental strategy

Finally, the SGOCE paradigm calls upon an incremental strategy that takes ad-
vantage of the geometrical nature of the developmental process. In particular,
it makes it possible to automatically generate appropriate controllers and be-
haviors through successive stages, in which good solutions to a simpler version
of a given problem are iteratively used to seed the initial population of solutions
likely to solve a harder version of the same problem.

Thus, in a first stage of the present work, the SGOCE paradigm was used
to generate a recurrent neural network controlling straight locomotion in the
SECT robot. At the end of this stage, this network was frozen, in the sense
that the number of its neurons, their individual parameters, and their intra-
modular connections were not allowed to evolve anymore. However, during a
second evolutionary stage, an additional recurrent neural network was evolved
and its neurons were allowed to grow, not only intra-modular connections be-
tween themselves, but also inter-modular connections to neurons in the loco-

Environment

Organism L
VvV
Genotype Developmental
i S Substrate _ _
,r ! |,_ sensory cell)
| [GROW(L10-D) [<-1 |
| | . | |
| ol
I DRAW|('5’10’2) : ... _precursor cell :
| |
| DIVIDE(S,5) Lo Y |
l | | M i
' DIE GROW(9,10,1)! ' I
: ! : motoneurons !
| SETTAU(S) | 1 :
o _____) o _____)
[[
VVV VVV
GROW(.1,10,-1) GROW(.1,10,-1)

|
DRAW(5,102) }<--.. DRAW(.5,10,2)
DIVIDE(S,5) 0 DIVIDE(8,5) =
N

DIE GROW(.9,10,1) -1 DIE GROW(.9,10,1)
SETTAU(.5) SETTAU(.5)
Step 1 Step 2
GROW|(.1,10,-1) GROW(.1,10,-1)
DRAW(.5,10,2)

DRAV\T(.S,[O,Z)

DIVIDE(85) ...~ DIVIDE(8,5)

DIE GROW(9.10.1) .-~
—
Step 3 Step 4

Final phenotype

Figure 2: The developmental encoding scheme of SGOCE. The genotype that
specifies the robot’s nervous system is encoded as a program whose nodes are
specific developmental instructions. This developmental program is read at a
different position by each cell in the substrate. The precursor cell first makes
connections with the motoneuron MO and the sensory cell SO (Steps 1 and
2). Then it divides, giving birth to a new cell that gets the same connections
than those of the mother cell (Step 3). Finally, the mother cell dies, while the
daughter cell makes a connection with the motoneuron M1 and changes the
value of the time constant 7 in equation 1 (Step 4).

Terminal symbols
DIVIDE, GROW, DRAW, SETBIAS, SETTAU, DIE,
NOLINK, DEFBIAS, DEFTAU, SIMULT3, SIMULT4.
Variables

Startl, Levell, Level2, Neuron, Bias, Tau, Connex, Link.
Production rules

Startl —— DIVIDE(Levell, Levell)

Levell —DIVIDE(Level2, Level2)

Level2—— DIVIDE(Neuron, Neuron)
Neuron——SIMULT3(Bias, Tau, Connex) | DIE

Bias— SETBIAS | DEFBIAS

Tau——SETTAU | DEFTAU

Connex—SIMULT4(Link, Link, Link, Link)

Link— GROW | DRAW | NOLINK

Starting symbol

Startl.

Figure 3: This grammar defines a set of developmental programs, i.e., those that
can be generated from it, starting with the Start1 symbol. When this grammar is
used, a cell that executes such a program undergoes two division cycles, yielding
four daughter cells, which can either die or modify internal parameters (e.g.,
time constant 7 or bias B in equation 1) that will influence their behavior within
the final neural controller. Finally, each surviving cell establishes a number of
connections, either with another cell, or with the sensory cells or motoneurons
that have been positioned by the experimenter in the developmental substrate.
According to this grammar, no more than three successive divisions can occur
and the number of connections created by any cell is limited to four. Thus, the
final number of interneurons and connections created by a program well-formed
according to this grammar cannot be greater than 8 and 32, respectively.

motion controller. This additional controller was expected to modulate the leg
movements secured by the first controller, so as to make it possible for the robot
to turn in the presence of an obstacle in order to avoid it.

Figure 4 describes the two substrates that have been used to generate the
two modules of the present application.

2.4 Fitness evaluation

Fitness evaluation is one of the main difficulties of the evolutionary design of
controllers in real robots (Mataric and Cliff, 1996; Meyer et al., 1998). Such
difficulties are enhanced in the case of legged robots, because these robots tend
to be more brittle than their wheeled counterparts, and because fitness evalua-
tions require a lot of time and cannot be easily automated. We therefore chose
to use simulations to assess the fitness of our controllers, taking advantage of
an argument put forth by Jakobi (Jakobi, 1997; 1998), namely that what really
matters is to accurately simulate the efficient behaviors that will be used by
the real robot. Less efficient behaviors - i.e., behaviors that an efficient robot
will not exhibit in reality - do not need to be minutely simulated, as long as
one is sure that their fitnesses will be lower than the fitnesses of the behaviors
that are sought. Pushing such reasoning to the extreme, Jakobi evolved neu-
ral controllers for an octopod robot capable of walking, of avoiding obstacles
using its infra-red sensors, and backing away from objects that were hit with

Right ITR sensor Rig;n motcT)rs

i AN
e ¢ o o o e
-? -?

<_$
Module 2 w Module 1
o o e

N I IR

v I =
Left IR sensor Left motors
@ Motoneuron @ Precursor cell O Sensory cell

Figure 4: The substrates and the modular approach that have been used in the
present work. Module 1 produces straight walking, while Module 2 modifies the
behavior of Module 1 in order to avoid obstacles.

its bumpers. Jakobi’s approach did not resort to any simulation of the robot’s
behavior in its environment, and only relied on the specification that legs on the
floor should move backwards as fast as possible, and that legs in the air should
move forward as fast as possible. Given such specification, the simulation only
rewarded controllers that did generate these movements. However, despite the
practical success of Jakobi’s approach, our aim was to provide less constraints
on the target behavior. Therefore, we only specified that the robot should go
ahead as far as possible while avoiding obstacles, and we did not provide any
hints about leg movements. To this end, we had to design a simulation of the
behavior of the robot in its environment.

2.5 Simulation

As Jakobi points out, the difficulty in devising a legged robot simulation is to
manage the cases when some leg slippage occurs. However, because such events
are only involved in poorly efficient behaviors, they are not expected to occur
with a fast-walking gait. As a consequence, controllers producing leg slippage
will never be used by an efficient real robot, and therefore leg slippage does not
need to be accurately simulated, thus tremendously simplifying the simulation
problem. !

According to such considerations, our simulation assumed that all the legs

INaturally, this argument holds for the kind of intrinsically non-slippery surface on which
the robots that are evolved here are implicitly supposed to walk. It is clear that even the
most efficient controller thus evolved will not be able to avoid slippage on a slippery surface.
If we were seeking mechanisms to cope with such circumstances, we should either imple-
ment additional learning capacities to the evolved controllers or explicitly confront successive
generations to the relevant surfaces.

were characterized by the same constant slippage factor, and simply calculated
the movement of the robot body that minimized the slippage of any leg touching
the floor between two time steps. As a consequence, if the real movement did
not involve any slippage, the calculated movement was exact and, conversely,
if the real movement did involve slippage, the calculated movement was a good
approximation of the real one.

The algorithm used for the simulation is given in figure 5.

- Set initial robot leg and body positions.
- Iterate N times :
1. Update sensor values using robot position.
2. Update neural network outputs M times using sensor values.
3. Update leg positions relative to robot body using network
outputs.
4. Find a set S of 3 legs Li, Lj, Lk, the extremities xi, xj, xk
of which form a support triangle.
5. Add into S all legs lying within a distance d of the plane P
generated by xi, xj and xk.
6. Find the elementary translation and rotation of the body that
minimize the displacement of the extremities of the legs in S.
7. Update body position, applying the optimal rotation and
translation.

Figure 5: The algorithm used for the simulation of the 6-legged robot

The simulation of the sensors of the robot (step 1 in figure 5) was straight-
forward, as only 2 binary obstacle detectors, placed on both sides of the head,
were used. It entailed simply calculating the distance of each robot sensor to the
closest obstacles it could detect and, if the distance fell under a certain thresh-
old, setting the activity of the corresponding sensory neuron to 1. Otherwise,
the activity was set to 0.

At every iteration of the algorithm, the neural network was updated M times
(M=1 in the present work) using the updated sensory activities to yield new
motoneuron outputs (step 2 in figure 5).

The position of each leg relative to the robot body (step 3 in figure 5) was
obtained through a simple geometric computation because leg positions were
determined by neural network outputs only.

The determination of the legs in contact with the ground first involved find-
ing three legs whose extremities formed a support triangle (step 4 in figure 5).
Such a triangle had to be such that all other leg extremities were above its plane,
and that the vertical projection of the robot’s center of mass fell inside such a
triangle.

Then, all leg extremities ending at a sufficiently short distance from the plane
of the triangle were also considered as being in contact with the ground (step 5
in figure 5). The aim of this step was to smoothen the effect of differences in leg
lengths and positions in real and simulated robots. This warranted that more

legs were in contact with the ground in the simulation than in reality, which
implied that the fitnesses of the controllers were not overestimated because
controllers that did not lift the legs above a given threshold were penalized in
the simulation.

The computation of the movements of the robot body was based on the
assumption that the actual slippage of the legs on the ground minimized the
energy dissipated by friction. In the simulation, it was assumed that the slippage
factor was constant and identical for all legs. As a consequence, the energy
dissipated by friction was proportional to the sum of the distances covered
by all leg extremities in contact with the ground. Hence, to determine the
body movement between two time steps, the elementary horizontal rotation
and translation of the robot that minimized the displacement of the legs on the
ground were sought (step 6 in figure 5). To achieve this, the distance covered
by the legs in contact with the ground was computed as a function of three
parameters : the two coordinates of the body translation and the angle of the
body rotation. Minimizing this function, with the assumption that the body
rotation remained small, lead to a simple linear system with 3 equations and 3
unknowns, which was computationally easy to solve.

Such simulations have been used to assess the fitness of each developmental
program produced by the evolutionary process (figure 6). Once an efficient
controller was thus obtained, it was downloaded on the SECT robot, where its
ability to generate the target behaviors in reality was assessed again.

3 Experimental results

3.1 Locomotion

The 2D substrate that was used in this experiment corresponds to Module 1
shown in figure 4. It contained 12 motoneurons that were connected to the 12
motors of the robot, in the sense that the activity level of a given motoneu-
ron determined the target angular position that was sent to the corresponding
servo-motor. The six precursor cells executed the same evolved developmen-
tal program in order to impose symmetrical constraints to the growing neural
network. Developmental programs were generated according to the grammar
shown in figure 3. As for each controller’s fitness, it was estimated by the
mean distance covered in 3 obstacle-free environments during a fixed amount
of time, increased by a slight bonus encouraging any leg motion (Kodjabachian
and Meyer, 1998a; 1998b). It should also be noted that the simulation implic-
itly rewarded controllers that raised legs above a small threshold as mentioned
in section 2.5. Finally, the size of the population was of 100 individuals that
evolved during 500 generations (taking 24 hours on a SUN Ultra 1).

All the evolved controllers could be classified into two categories: those
generating tripod gaits and those generating symmetrical gaits (i.e., moving the
corresponding legs on both sides of the robot simultaneously). Such controllers
were as efficient in reality as they were in simulation (figure 7). The main

Neural Controller

Developmental Program Xi

Xi
Fitness Evaluation Behavior

Figure 6: The three stages of the fitness evaluation procedure. An evolved
developmental program is executed to yield an artificial neural network. Then,
the neural network is used to control the behavior of a simulated robot. Finally,
the fitness of the program is assessed according to the result of the simulation.

Leg 0

AWAWAYWAWAWAWAN
FAVAVAVEVE VIV
A NN

-
L
| JASNVINNTSNSN S

,_
2
3
)

Simulated robot.

AVEAWAWAWAWAWA
AUAVYEVAVAVA
AW ANAYAYAYS

Real robot.

Figure 7: Comparison of leg movements in the simulated and the real robot.
Both graphs show commands sent to leg swing motors. Although the controller’s
outputs might have been altered by the procedure preventing over currents in
the real robot, the commands actually sent to the motors, and hence the robot’s
overall behaviors, are qualitatively the same in simulation and in reality.

differences between both situations were due to the fact that, on the real robot,
a continuous monitoring of the motor currents might entail modifying the motor
commands independently of the neural network when such current were too
high. This security procedure, which was implemented to avoid motor breaks in
leg-blocking situations, was triggered in a few occasions when symmetric gaits
were used, because such gaits occasionally provoked jumps producing very high
motor currents.

Figure 8 shows the best tripod-gait controller that has been obtained. We
analyzed its behavior in order to understand how this gait was generated. The
mechanism responsible for leg lift is straightforward. It calls upon 6 central
pattern generators, one for each leg, made up of only 3 neurons (figure 9).
These pattern generators are synchronized by two connections between the legs
of the same side of the body, and by two connections linking 2 symmetric legs
on each side of the body - thus closely approximating the biologically plausible
model of Cruse et al. (1995). The mechanism producing leg swing is far more
intricate because it is extremely distributed. In fact, the activation of a given
leg’s swing neuron depends on neurons involved in the control of all the other
legs, and it cannot be decomposed in six similar units as is the case for the lift
neurons.

3.2 Obstacle-avoidance

Obstacle-avoidance was evolved using a second module whose neurons could
be connected to those of the tripod-gait controller of figure 8. The substrate
of this second module is shown on figure 4. The grammar was identical to
that of figure 3, with two exceptions. The first one concerns the replace-
ment of rule Startl—DIVIDE(Levell, Levell) by Startl—DRAWI & DI-
VIDE(Levell, Levell), where DRAWT is a terminal symbol creating a connec-
tion from an input cell, and where character & means that the two symbols
it connects should be executed in sequence. This rule enforces connections be-
tween input neurons and precursor cells. The second exception concerns the
addition of the instruction GROWD to the rule Link—GROW | DRAW | NO-
LINK. This instruction allows the precursor cell to grow an outgoing connection
towards neurons in the first module. Each IR sensor was binary, i.e., it returned
0 when it detected no obstacle, and it returned 1 when an obstacle was detected
within a 30 cm-range. The robot evolved in 3 different closed environments con-
taining some obstacles (figure 10). Instead of specifying what leg movements
should be favored in each possible sensory circumstance, as Jakobi (1998) did,
the fitness was the distance covered by the robot until it touched an obstacle,
or until the simulation time was over, averaged over the 3 environments. The
population was made of 100 individuals and evolution lasted 200 generations.
The robot’s simulated and actual behaviors were very similar and simple:
legs on the opposite side of a detected obstacle were blocked, thus causing
the robot to change its direction and to avoid the obstacle. Analyzing the
inner working of the corresponding controller (figure 9), it turned out that such
behavior was possible due to a strong inhibitory connection between a given

11

Leg 5 Leg 4
Lift Swing Lift
13 12 11

0

B
e

1]

AT—’ v
)

»—
o
i
[o%]
(&}

7%
/A
/
=

/
/7
7

L

y
Y
/>

7 8
Lift Swing Lift Swing Lift Swing
Leg 0 Leg 1 Leg2

Figure 8: An example of an evolved controller. Black neurons belong to the
module controlling locomotion, gray neurons belong to the module controlling
obstacle-avoidance. Neurons 0 and 1 are input neurons connected to the IR
sensors, neurons 2 to 13 are output neurons connected to the robot motors.
The first controller contains 48 neurons and 82 connections; the second contains
14 neurons and 36 connections.

12

Leg 5 Leg 4 Leg3
Lift Swing Lift Swing Lift Swing
o3 12 ol 910 Py 8

038
@60
039
40
43

5 4 o’ 3
Lift Swing Lift Swing Lift Swing
Leg 0 Leg1 Leg2

.3

Figure 9: The central pattern generator that controls the swing motors of the
robot. A group of 3 neurons (2, 43, 54 and their 5 symmetrical counterparts
) participates in six identical and independent oscillators whose phase differ-
ences are controlled by the connections which link them (54-4, 40-43 and their
symmetrical counterparts). The obstacle-avoidance module gets connected to
this subnetwork only. Its inner-working is simple : whenever a IR neuron is
activated, the connections between neurons 18-28,20-31,22-34,24-37, 17-40 and
15-43 (not shown here) stop the oscillators on the opposite side of the detected
obstacle, hence blocking the leg swing movement and making the robot turn to
avoid the obstacle.

13

Figure 10: Robot behavior in simulated (a,b,c) and real (d) environments. The 3
trajectories shown in d have been reconstructed from video recordings of actual
experiments. They illustrate the fact that the robot actually avoids obstacles
most of the time, but that it may occasionally fail because of the dead-angle
between its front IR sensors.

14

Figure 11: Close-up on the obstacle-avoidance behavior.

15

sensor and the swing neurons of the legs on the opposite side of the robot.

Figures 11 illustrates a specific avoidance behavior when the robot encoun-
ters a given obstacle. Figure 10 shows the robot’s trajectories over longer periods
of time, in 3 simulated environments and in reality.

4 Discussion

Results that have been shown here demonstrate that the ”minimal simulation”
methodology advocated by Jakobi (Jakobi, 1997; 1998) may be effectively used
to evolve simple behaviors in a real robot. However, our implementation of this
methodology makes it possible to avoid specifying as many details about the
dynamics of each effector involved in the production of the sought behavior as
Jakobi was committed to do. Actually, we succeeded to evolve locomotion and
obstacle-avoidance in a legged robot simply rewarding movement and punish-
ing obstacle-hitting, and such high-level specification is more in the spirit of
the automatic generation of behavioral controllers that evolutionary approaches
afford than Jakobi’s solution is. Nevertheless, it must be emphasized that a
cost is associated to such a benefit, namely that of entailing a more detailed
simulation than that of Jakobi. In other words, what is gained at the level of
the simulation, may be lost at the level of the fitness evaluation and, for obvious
lack of hindsight reasons, it is definitely unclear where it is worth devoting more
resources in order to evolve any given behavior on a real robot.

Results that have been shown here also demonstrate the effectiveness of the
SGOCE evolutionary paradigm. Its potential to evolve locomotion and higher-
level behaviors in a simulated insect have already been exemplified elsewhere
(Kodjabachian and Meyer, 1998a; 1998b). In the present work such poten-
tialities have been extended to a real 6-legged robot. However, for the same
lack of hindsight reasons as above, it is still unclear whether each aspect of this
paradigm is mandatory, useful, or without any effect at all. Although many iden-
tical implementation details have been successfully used in the above-mentioned
applications and in others (Chavas et al., 1998; Ijspeert and Kodjabachian,
1999), one may wonder, for instance, if another evolutionary procedure than a
genetic algorithm - e.g., an evolution strategy (Schwefel, 1995) or a genetic pro-
gramming approach (Koza, 1992) - would not lead to better results. Likewise, it
is unclear if the developmental instructions or the constraining grammars that
have been used here might not have been replaced by others, and if freezing one
controller and letting a second one evolve is a better strategy than evolving both
controllers at the same time. Concerning the latter point, however, it has been
shown on a specific application involving obstacle-avoidance in a Khepera robot
that this was not the case (Chavas et al. 1998) but, again, any generalization
to other behaviors and other robots would be definitely premature. Finally, it
must be acknowledged that there is at the moment definitely no hint about the
convergence properties of the algorithm that has been used here.

Current research efforts are aiming at endowing the robot with additional
behavioral capacities. In particular, neural modules controlling backward lo-

16

comotion and light-seeking are sought. Such efforts obviously raise strategic
issues like that of deciding in which order such modules should be evolved,
according to which fitness functions and which grammars. Intuition suggests
that it is wiser to evolve straight-locomotion first, then backward-locomotion,
and then strategies for turning. Likewise, it suggests that modules responsi-
ble for obstacle-avoidance and light-seeking, could be rather independent from
each other, but should both get connected to the modules that control forward
and backward locomotion. However, experience shows that nothing can be more
counter-intuitive than the results of an artificial evolution process and success in
the above-mentioned research efforts will possibly derive from entirely different
options. In this respect, current research efforts involving modular architectures
(Nolfi, 1997a, 1997b; Tani and Nolfi, 1998; Urzelai et al., 1998) could provide
valuable insights.

5 Conclusions

Assuming that an on-board evolution of neural controllers would not have been
feasible on a SECT robot because of the excessively high demands that would
have been placed on its motors, we called upon a ”minimal simulation” approach
and upon the SGOCE evolutionary paradigm to evolve tripod-gait locomotion
and obstacle-avoidance. Successful neural controllers have been obtained, both
in simulation and in reality, and their inner workings have been deciphered.
However, it is yet unclear whether every implementation detail that has been
used here was mandatory to the present success, nor whether it would be useful
in any other application.

Acknowledgements

The authors express their gratitude to Dr. Takashi Gomi and to Applied Al
Systems for having kindly lent them the SECT robot.

References

Beer, R.D. (1995) On the dynamics of small continuous-time recurrent neural
networks. Adaptive Behavior. 3(4), 469-509.

Chavas, J., Corne, C., Horvai, P., Kodjabachian, J. and Meyer, J.A. (1998)
Incremental Evolution of Neural Controllers for Robust Obstacle-Avoidance in
Khepera. In Husbands, P. and Meyer, J.A. (Eds.). Proceedings of The First
European Workshop on Evolutionary Robotics - EvoRobot’98. Springer Verlag.

Cruse, H., Brunn, D.E., Bartling, Ch., Dean, J., Dreifert, M., Kindermann,
T. and Schmitz, J. (1995) Walking: A Complex Behavior Controlled by Simple
Networks. Adaptive Behavior. 3(4), 385-418.

17

Delcomyn, F. (1980) Neural basis for rhythmic behavior in animals. Science.
210, 1980.

Filliat, D. (1998) Ewvolution de réseauzr de neurones pour le contréle d’un
robot hexapode. Lip6 Technical Report. University Paris VI.

Gomi, T. (1997) Evolutionary Robotics - Vol I. AAI Books.
Gomi, T. (1998) Ewolutionary Robotics - Vol II. AAI Books.

Gruau, F. (1994) Automatic definition of modular neural networks. Adaptive
Behavior. 3(2), 151-183.

Higuchi, T., Iwata, M. and Liu, W. (Eds.) (1997) Evolvable Systems : From
Biology to Hardware. Springer Verlag.

Husbands, P. and Meyer, J.A. (Eds.). (1998) Proceedings of The First Furo-
pean Workshop on Evolutionary Robotics - EvoRobot’98. Springer Verlag.

Ijspeert, A.J. and Kodjabachian, J. (1999) Evolution and development of a
central pattern generator for the swimming of a lamprey. Artificial Life. In
press.

Jakobi, N. (1997): Evolutionary Robotics and the Radical Envelope of Noise
Hypothesis. Adaptive Behavior. 6(2), 325-367.

Jakobi, N. (1998) Running across the reality gap : octopod locomotion
evolved in minimal simulation. In Husbands, P. and Meyer, J.A. (Eds.), Proceed-
ings of The First Furopean Workshop on Evolutionary Robotics - EvoRobot’98.
Springer Verlag.

Kodjabachian, J. and Meyer, J.A. (1995) Evolution and development of con-
trol architectures in animats. Robotics and Autonomous Systems. 16, 161-182.

Kodjabachian, J. and Meyer, J.A. (1998a) Evolution and Development of

Modular Control Architectures for 1-D Locomotion in Six-legged Animats. Con-
nection Science. 10, 211-237.

Kodjabachian, J. and Meyer, J.A. (1998b) Evolution and Development of
Neural Controllers for Locomotion, Gradient-Following, and Obstacle-Avoidance
in Artificial Insects. IEEE Transactions on Neural Networks. 9(5), 796-812.

Koza, J.R. (1992) Genetic Programming: On the Programming of Computers
by Means of Natural Selection. The MIT Press.

Mataric, M. and Cliff, D. (1996) Challenges in evolving controllers for phys-
ical robots. Robotics and Autonomous Systems. 19(1), 67-83.

Meyer, J.A. (1998) Evolutionary approaches to neural control in mobile
robots. In Proceedings of the IEEE International Conference on Systems and
Cybernetics. San Diego.

Meyer, J.A., Husbands, P. and Harvey, I. (1998) Evolutionary Robotics:
a Survey of Applications and Problems. In Husbands, P. and Meyer, J.A.
(Eds.), Proceedings of The First European Workshop on Evolutionary Robotics
- FvoRobot’98. Springer Verlag.

18

Nolfi, S. (1997a) Evolving non-trivial behavior on autonomous robots : adap-
tation is more powerful than decomposition and integration. In Gomi, T. (Ed.)
Evolutionary robotics. From intelligent robots to artificial life. AAT Books.

Nolfi, S. (1997b) Using emergent modularity to develop control systems for
mobile robots. Adaptive Behavior 5, 343-364.

Schwefel, H.P. (1995) Evolution and Optimum Seeking. Wiley.

Tani, J. and Nolfi, S. (1998) Learn to perceive world as articulated : an
approach for hierarchical learning. In Pfeiffer, R. et al. (Eds.) From Animals

to Animats 5 : Proceeding of the Fifth International Conference on Adaptive
Behavior. The MIT Press.

Trullier, O. and Meyer, J.A. (1997) Biomimetic Navigation Models and
Strategies in Animats. AI Communications. 10, 79-92.

Trullier, O., Wiener, S., Berthoz, A. and Meyer, J.A. (1997) Biologically-
based artificial navigation systems: Review and Prospects. Progress in Neuro-
biology. 51, 483-544.

Urzelai, J., Floreano, D., Dorigo, M. and Colombetti, M. (1998) Incremental
Robot Shaping. Connection Science. 10, 341-360.

19

