
HAL Id: hal-01021030
https://hal.science/hal-01021030v1

Submitted on 9 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of stiff interfaces: from statics to dynamics
Serge Dumont, Frédéric Lebon, Raffaella Rizzoni

To cite this version:
Serge Dumont, Frédéric Lebon, Raffaella Rizzoni. Modeling of stiff interfaces: from statics to dynam-
ics. Machine Dynamics Research, 2013, 37 (1), pp.37-50. �hal-01021030�

https://hal.science/hal-01021030v1
https://hal.archives-ouvertes.fr


Machine Dynamics Research
2012, Vol. 36, No 4, ..-..

Modeling of stiff interfaces: from statics to
dynamics

Serge Dumonta,b, Frédéric Lebonb and Raffaella Rizzonic

a University of Picardie and CNRS, France1

serge.dumont@u-picardie.fr
b Aix-Marseille University, CNRS and Centrale Marseille, France2

lebon@lma.cnrs-mrs.fr
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Abstract

In this paper, some results on the asymptotic behavior of stiff thin interfaces in elasto-

statics are recalled. A specific study of stiff interfaces in elastodynamics is presented

and a numerical procedure is given.
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1 Introduction

The consideration of interfaces became a major challenge in mechanical and

civil engineering. For example, the more and more important use of structural

bonding led to the development of new techniques of characterization and to

the implementation of more and more precise models. However, considering

bonding conditions, in particular in dynamics, is not easy. The purpose of

this paper is to propose a methodology based on asymptotic theory allowing

to obtain a family of interface laws in elastodynamics and to show how the

problem can be solved numerically.

In this paper, we consider the bonding of two elastic bodies (the adherents)

by a third one (the adhesive). The thickness of the adhesive is supposed to be

small. Thus, its seems natural mathematically to study the limit problem i.e.

when the thickness tends to zero. This methodology was employed successfully

in previous papers (see Klarbring, 1991, Licht et al. 1997, Abdelmoula et al.,

1998, Krasucki et al. 2000 , Zaittouni et al., 2000, Lebon et al., 1997-2011,
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Benveniste, 2006, Dumont et al., to appear) and references therein, for soft

(the stiffness of the glue is small) and hard interfaces (the stiffness of the glue

is of the same order as that of the adherents). The novelty of this paper is

to consider ”hard” interface in elastodynamics and to propose a numerical

procedure able to solve the limit problem.

The paper is organized as follows. Section 2 is devoted to some generalities

and recalls in elastostatics. In Section 3, a result in elastodynamics for soft

interface is recalled. Section 4 is devoted to the derivation of an interface law

for hard thin layers. In Section 5, a numerical scheme is proposed.

2 Theoretical results for thin stiff films: a recall in

elastostatics

2.1 Generalities

In this section, the equilibrium of a mechanical system constitued by two

elastic bodies glued together by a third one is considered. The two adherent

and the adhesive are supposed to have mechanical characteristics of same

order. However, the thickness of the glue is considered as thin in regards of

the dimensions of the two adherents. In the next section, notations are given.

Figure 1: Schema of the procedure.
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2.2 Notations

• Bε = {(x1, x2) ∈ Ω : |x2| <
ε

2
} (the glue);

• Ωε
± = {(x1, x2) ∈ Ω : ±x2 >

ε

2
} (the adherents);

• Sε
± = {(x1, x2) ∈ Ω : x2 = ±

ε

2
} (the interfaces between the glue and

the adherents);

• Ω± = {(x1, x2) ∈ Ω : ±x2 >
1

2
} (the rescalled adherents);

• B = {(x1, x2) ∈ Ω : |x2| <
1

2
} (the rescalled adhesive);

• S± = {(x1, x2) ∈ Ω : x± = ±
1

2
} (the rescalled interfaces);

• S = {(x1, x2) ∈ Ω : x2 = 0} (the interface at the limit);

• Ω0
± = {(x1, x2) ∈ Ω : ±x2 > 0} (the adherents at the limit).

2.3 The mechanical problem

On a part Γ1 of ∂Ω, an external load g is applied, and on a part Γ0 of ∂Ω such

that Γ0 ∩ Γ1 = ∅ a displacement ud is imposed. Moreover, we suppose that

Γ0 ∩Bε = ∅ and Γ1 ∩Bε = ∅. A body force f is applied in Ωε
±. The equations

of the problem are:



































divσε + f = 0 in Ωε
±

divσε = 0 in Bε

σεn = g on Γ1

uε = ud on Γ0

σε = A±e(u
ε) in Ωε

±

σε = Âe(uε) in Bε

(1)

where σε is the stress tensor, e(uε) is the strain tensor (eij(u
ε) =

1

2
(ui,j +

uj,i), i, j = 1, 2, 3) and A±, Â are the elasticity tensors of the deformable

adherents and the adhesive, respectively.

We consider also that the interface S is a plane normal to the third direction

e3. We consider now, the limit problem i.e. the problem obtained when the

thickness tends to zero.
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2.4 Asymptotic analysis

The thickness of the interphase being very small, we seek the solution of the

problem using asymptotic expansions with respect to the parameter ε:

{

uε = u0 + εu1 + o(ε)

σε = σ0 + εσ1 + o(ε)
(2)

We recall the results obtained in elastostatics. At order 0, we obtain



































divσ0 + f = 0 in Ω0
±

σ0n = g on Γ1

u0 = ud on Γ0

σ0 = A±e(u
0) in Ω0

±
[

u0
]

= 0 on S
[

σ0n
]

= 0 on S

(3)

where [ ] is chosen to denote the jump along the surface S, i.e. [f ] = f(0+)−

f(0−).

At order 1, we obtain



































divσ1 = 0 in Ω0
±

σ1n = 0 on Γ1

u1 = ud on Γ0

σ1 = A±e(u
1) in Ω0

±
[

u1
]

= D on S
[

σ1n
]

= G on S

(4)

where D and G are given by















[

u13
]

= D3 =
σ0
33

λ+ 2µ
−

λ

λ+ 2µ

(

u01,1 + u02,2
)

−
⟨

u03,3
⟩

[

u1α
]

= Dα =
u0α3
µ

− u03,α −
⟨

u0α,3
⟩

, α = 1, 2

(5)

with ⟨f⟩ =
1

2
(f(0+) + f(0−))
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[

σ1
13

]

= G1 = −
λ

λ+ 2µ
σ0
33,1 −

4µ(λ+ µ)

λ+ 2µ
u01,11 −

2λµ

λ+ 2µ
u02,21 − µ

(

u01,22 + u02,12
)

−
⟨

σ0
13,3

⟩

[

σ1
23

]

= G2 = −
λ

λ+ 2µ
σ0
33,2 −

4µ(λ+ µ)

λ+ 2µ
u02,22 −

2λµ

λ+ 2µ
u01,12 − µ

(

u01,21 + u02,11
)

−
⟨

σ0
23,3

⟩

[

σ1
33

]

= G3 = −σ0
13,1 − σ0

23,2 −
⟨

σ0
33,3

⟩

(6)

3 A recall of some theoretical results for thin soft

films in elastodynamics

In the sequel, we consider that the glue is isotropic, with Lamé’s coefficients

equal to λ and µ in the interphase Bε. We are interested in the dynamics of

such a structure. The equations of the problem are written as follows:



































divσε + f = ρ±ü
ε in Ωε

±

divσε = ρ̂üε in ∪Bε

σεn = g on Γ1

uε = ud on Γ0

σε = A±e(u
ε) in Ωε

±

σε = Âe(uε) in Bε

(7)

where ρ±, ρ̂ are the densities of the deformable adherents and the adhesive,

respectively. ü denotes the second derivative in time of u. We consider in this

section the case of a soft interface i.e. the stiffness coefficients and the density

of the thin adhesive are small that is mathematically depend on the thickness

of the glue.

In this case, it is proved in (Licht et al., 2008) at order 0 that, using the

Trotter theory of semi-groups,



































divσ0 + f = ρ±ü
0 in Ωε

±

σ0n = g on Γ1

u0 = ud on Γ0

σ0 = A±e(u
0) in Ωε

±
[

σ0n
]

= 0 on S

σ0n = C
[

u0
]

on S

(8)
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where Cij = 0 if i ̸= j, C11 = C22 = µ̄, C33 = λ̄+ 2µ̄, f̄ = lim(f/ε; ε → 0).

Note that the limit case i.e. λ̄ and µ̄ equal to ∞, we obtain
[

u0
]

= 0.

4 Theoretical results for thin stiff films in elastody-

namics

Let us emphasize that in this section the Lamé’s coefficients of the interphase

do not depend on the thickness ε of the interphase (this will be referred as the

case of a stiff interface hereinafter).

At this level, the domain is rescaled using the classical procedure:

• In the glue, we define the following change of variable

(x1, x2, x3) ∈ Bε → (z1, z2, z3) ∈ B,

with (z1, z2, z3) = (x1, x2,
x3
ε
)

and we denote ûε(z1, z2, z3) = uε(x1, x2, x3).

• In the adherent, we define the following change of variable

(x1, x2, x3) ∈ Ωε
± → (z1, z2, z3) ∈ Ω±,

with (z1, z2, z3) = (x1, x2, x3 + 1/2− ε/2)

and we denote ūε(z1, z2, z3) = uε(x1, x2, x3). We suppose that the exter-

nal forces and the prescribed displacement ud are assumed to be inde-

pendent of ε. As a consequence, we define f̄(z1, z2, z3) = f(x1, x2, x3),

ḡ(z1, z2, z3) = g(x1, x2, x3) and ūd(z1, z2, z3) = ud(x1, x2, x3).

4.1 Internal expansions

From the equation

σ̂ij,j = ρ¨̂ui

we obtain at order -1

σ̂0
i3,3 = 0

That leads to
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[[

σ̂0
i3

]]

= 0

and

σ̂0
iα,α + σ̂1

i3,3 = ρ¨̂ui

for i = 1, 2, 3 and α = 1, 2, where [[f ]] = f(z1, z2, 1/2
+)− f(z1, z2, 1/2

−).

The constitutive equation gives

{

(λ+ 2µ)û03,3 = 0

µû0α,3 = 0
(9)

That leads to

[[

û0
]]

= 0

which generalizes the results of (Licht et al., 2008).

At order 0, the constitutive equation is written:

{

(λ+ 2µ)û13,3 + λ
(

û01,1 + û02,2
)

= σ̂0
33

µ
(

û03,α + û1α,3
)

= σ̂0
α3

(10)

That is















[[

û13
]]

=
σ̂0
33

λ+ 2µ
−

λ

λ+ 2µ

(

û01,1 + û02,2
)

[[

û1α
]]

=
σ̂0
α3

µ
− û03,α

(11)

Note that the jump in the displacements is equal to those in the static

case.

We use the three other terms of the constitutive equation











σ̂0
11 = (λ+ 2µ)û01,1 + λ

(

û02,2 + û13,3
)

σ̂0
22 = (λ+ 2µ)û02,2 + λ

(

û01,1 + û13,3
)

σ̂0
12 = µ

(

û01,2 + û02,1
)

(12)

which gives us using (??)
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σ̂0
11 =

4µ(λ+ µ)

λ+ 2µ
û01,1 +

2λµ

λ+ 2µ
û02,2 +

λ

λ+ 2µ
σ̂0
33

σ̂0
22 =

2λµ

λ+ 2µ
û01,1 +

4µ(λ+ µ)

λ+ 2µ
û02,2 +

λ

λ+ 2µ
σ̂0
33

σ̂0
12 = µ

(

û01,2 + û02,1
)

(13)

Introducing (??) in the dynamics equation, we have























4µ(λ+ µ)

λ+ 2µ
û01,11 +

2λµ

λ+ 2µ
û02,21 +

λ

λ+ 2µ
σ̂0
33,1 + µ

(

û01,22 + û02,12
)

+ σ̂1
13,3 = ρ¨̂u01

µ
(

û01,21 + û02,11
)

+
2λµ

λ+ 2µ
û01,12 +

4µ(λ+ µ)

λ+ 2µ
û02,22 +

λ

λ+ 2µ
σ̂0
33,2 + σ̂1

23,3 = ρ¨̂u02

σ̂0
13,1 + σ̂0

23,2 + σ̂1
33,3 = ρ¨̂u03

(14)

That is























[[

σ̂1
13

]]

= ρ¨̂u01 −
λ

λ+ 2µ
σ̂0
33,1 −

4µ(λ+ µ)

λ+ 2µ
û01,11 −

2λµ

λ+ 2µ
û02,21 − µ

(

û01,22 + û02,12
)

[[

σ̂1
23

]]

= ρ¨̂u02 −
λ

λ+ 2µ
σ̂0
33,2 −

4µ(λ+ µ)

λ+ 2µ
û02,22 −

2λµ

λ+ 2µ
û01,12 − µ

(

û01,21 + û02,11
)

[[

σ̂1
33

]]

= ρ¨̂u03 − σ̂0
13,1 − σ̂0

23,2

(15)

Note that the difference with the static case comes from the addition of

inertial terms.

4.2 Matching with external expansions

Using standard arguments (see for example (Lebon et al., 2011)), the jump

[[f ]] along S± can be replaced by the jump [f ] along S up to a term ⟨f,3⟩ at

order one. We obtain at order 0



































divσ0 + f = ρ±ü
0 in Ω0

±

σ0n = g on Γ1

u0 = ud on Γ0

σ0 = A±e(u
0) in Ω0

±
[

u0
]

= 0 on S
[

σ0n
]

= 0 on S

(16)



Modeling of stiff interfaces: from statics to dynamics 9

At order 1, we obtain



































divσ1 = ρ±ü
1 in Ω0

±

σ1n = 0 on Γ1

u1 = 0 on Γ0

σ1 = A±e(u
1) in Ω0

±
[

u1
]

= D on S
[

σ1n
]

= G+Gρ on S

(17)

where Gρ is given by







Gρ
1 = ρ¨̂u01

Gρ
2 = ρ¨̂u02

Gρ
3 = ρ¨̂u03

(18)

and D and G are given in eqs. (5) and (6) respectively.

5 A numerical procedure

In this paragraph, we focus on the numerical method developed to solve the

problem at order 1, the problem at order 0 being very classical. The generic

problem associated to this problem can be written (without exponent 1)



































divσ(u) = ρ±ü in Ω0
±

σ(u)n = 0 on Γ1

u = 0 on Γ0

σ = A±e(u) in Ω0
±

[u] = D on S

[σ(u)n] = G+Gρ on S

(19)

Note that D, G and Gρ are given functions, provided by the solutions u0 and

σ0 of problem at order 0.

In the following, we will denote the restriction of u on Ω0
+ (resp. Ω0

−) by

u+ (resp. u−).

Without loss of generality, an explicit time stepping is introduced i.e. the

term ρ±ü is given. We chose η to denote this term. The indices in time are

omitted.
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The weak symmetrical formulation of the problem is given by
∫

Ω0
+
∪Ω0

−

A±e(u
±) · e(v±)dx+

∫

S

(< Ae(u)n > ·[v] + [u]· < Ae(v)n >) dS =

∫

Ω0
+
∪Ω0

−

ηv±dx−

∫

S

(G+Gρ)· < v > dS +

∫

S

D· < Ae(v)n > dS

(20)

for all v ∈ {H1(Ω) : γ(v) = 0 on ∂Ω\Γ}.

This formulation, which is known as the Nitsche’s method (Nitsche, 1974)

is not stable. It is then necessary to add a stabilization term such as
β

h

∫

S

[u] ·

[v]dS, where h is the size of the smallest element of the finite element dis-

cretization of Ω0
± considered, and β > 0 is a fixed number that must be suffi-

ciently large to ensure the stability of the method (see (Dumont et al, 2006,

Stenberg, 1995) for the complete study of this method and for a priori and a

posteriori error estimates in the case D = 0). Note that this weak formulation

is equivalent to the initial strong formulation.

Unfortunately, this method does not work properly to solve the problem

(??) as soon as D ̸= 0. To overcome this difficulty, we split the problem (??)

into two parts. More precisely, we write u± = w± + z± where the unknowns

z± and w± solve the problems



























div σ(z±) = η in Ω0
±

σ(z±)n = 0 on Γ1

z± = 0 on Γ0

σ(z±) = A±e(z±) in Ω0
±

z± = ±1

2
D on S

(21)



































div σ(w±) = 0 in Ω0
±

σ(w±)n = 0 on Γ1

w± = 0 on Γ0

σ(w±) = A±e(w±) in Ω0
±

[w] = 0 on S

[σ(w)n] = G+Gρ − [σ(z)n] on S

(22)

since [w] = w+ − w− = [u] − z+ + z− = (1 − 1

2
− 1

2
)D = 0. The two first

problems defined in the left of both in Ω0
+ and Ω0

− are standard and can be

solved simultaneously using a standard finite element method. The problem

in (??) is solved using the Nitsche’s method developed above.
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6 Conclusions

In this paper, the asymptotic analysis of a thin elastic layer bonded with two

elastic adherent being a stiffness of the same order as that of the adherents

was studied in dynamics. It is shown that at order zero, the thin layer inertial

terms do not intervene. A problem of elastodynamics with perfect gluing is

obtained, extending the results obtained in (Licht et al, 2008). At order one,

the inertial terms of the thin layer only intervene in the jump in the stress

vector along the interface. The jump in the displacement is not modified.

In a second part of the paper, a numerical method to solve the problem at

order 1 is proposed. This method is closed to the method proposed by the

authors for the elastostatics case (Dumont et al., to appear).

In the future, we intend to implement the numerical schema proposed in the

paper and to extend the methodology to non linear constitutive equations.
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