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Displacements

   

Motivations

The idea of displacement is really to move an object equipped with a structure along an underlying map. For example if we are given a vector space V and a bijection(=symmetry) of sets ε : p(V ) -→ W , then it's easily seen that we can turn W into a vector space and ε lifts to an isomorphism of vector spaces. But if ε is not an isomorphism, things get complicated.

Solving this problem is equivalent to determine the existence of displacement of the forgetful functor p : Vect -→ Set.

A more interesting example is to consider the forgetful functor p : Var(C) -→ Top. Because in this case, given an algebraic variety X and a homeomorphism of its underlying space of complex points ε : X(C) -→ X(C), then ε hardly lifts to an algebraic map X -→ X.

Having a homeomorphism of underlying topological spaces is having a topological symmetry. But we conjectured in [START_REF] Bacard | Symmetries[END_REF], that the raison d'être of the eld C of complex numbers, is precisely the presence of Higgs boson. And if we are given a symmetry that forgets the complex structure, we are given a symmetry that forgets the Higgs eld. And therefore it's not surprising that we cannot always lift the non-Higgs symmetry to a symmetry between complex structures (Higgs symmetry).

However if we are given a symmetry, or in general a morphism, that remembers the presence of the Higgs eld, which is the complex structure, then we should theoretically expect to have a lift, and this is conrmed by Serre's GAGA principle [START_REF] Serre | Géométrie algébrique et géométrie analytique[END_REF].

Our motivation is that things don't work because they work, but there should be a (hidden) reason why things are working. And as for complex structures, we conjectured that the main reason is the presence of the Higgs eld. And as long as we acknowledge its presence by doing operations that preserve it, things should work.

There are many concepts that are used in algebraic geometry such as Lefschetz principle or even classical Spectral sequences, that we always found as `magic' or mysterious.

It's reasonable to believe that the explanation for these mysteries is in set theory and its problems. The foundations of current maths are based on set theory and sets don't have symmetries as already envisioned by Grothendieck. This fact was our motivation for writing [START_REF] Bacard | Symmetries[END_REF]. For example Lefschetz principle is another way of saying that every algebraic closed eld of characteristic 0 is in the connected component of C, if we've started with sets having symmetries.

Another example of displacement comes the functor H 0 : dg-Cat -→ Cat . Toën [START_REF] Toën | The homotopy theory of dg-categories and derived Morita theory[END_REF] considered the analogue of a Gabriel-localization for a dg-category C along subset of maps S ⊂ H 0 (C). And this can be seen as displacement along the usual localization functor L : H 0 (C) -→ S -1 H 0 (C). Displacement of an object

The following denition is weaker notion of a Street opbration. We make no claim of introducing this denition 1 .

Denition 2.1. Let p : E -→ B be a functor and let e be an object of E . Let ε : p(e) -→ b be a morphism in B and let p * be the induced functor between the comma categories:

p * : (e ↓ E ) -→ (p(e) ↓ B).
A displacement of e along p(e) ε -→ b is an object e -→ ∇ ε (e) of (e ↓ E ) that corepresents the functor

Hom(ε, -) : (e ↓ E ) -→ Set .
This functor takes h : e -→ e to the hom-set Hom(ε, p(h)) of (p(e) ↓ B). In other words a displacement is just an adjoint-transpose of ε through p .

In particular a displacement along any ε : p(e) -→ b exists if and only if p * has a left adjoint. Remark 2.2. 1. If a displacement e -→ ∇ ε (e) along p(e) ε -→ b exists, then there is a universal map b -→ p(∇ ε (e)) (the unit of the adjunction), such that the map p(e -→ ∇ ε (e)) is the following composite.

p(e) -→ b -→ p(∇ ε (e)).

(2.1.1) 2. If for every e, there is a displacement along any p(e) -→ b, such that the universal map b -→ p(∇ ε (e)) is an isomorphism; then p is a Street opbration. In that case the map e -→ ∇ ε (e) is a pseudo cocartesian lifting of ε : p(e) -→ b.

3. If both E and B have initial objects e 0 and b 0 , respectively; it's well known that we have an equivalence of categories (e 0 ↓ E ) E and and equivalence (b 0 ↓ B) B. Therefore if p(e 0 ) = b 0 then p has a left adjoint if and only if all displacements of e 0 exists. [START_REF] Serre | Géométrie algébrique et géométrie analytique[END_REF]. Let 1 = {0, Id 0 } be the unit category and let 1 < E be the join category: there is exactly one morphism from 0 to any object in E and no morphism whose target is 0 except the identity Id 0 . So roughly speaking we're adding an initial object 0. Any functor p : E -→ B induces a functor

(1 < p) : (1 < E ) -→ (1 < B)
that restricts to p on E . It's not hard to see that p has a left adjoint if and only if (1 < p) has one. This breaks down problems on an existence of an adjoint to problems on existence of displacements of initial object. 1 After all it's just a denition 3

Join constructions and Pseudopullbacks

Let {p j : E j -→ B} j∈J be a family of functors over the same base B. Let E = × B E j be a pseudopullback (also called 2-pullback) of this family in Cat and let τ j : E -→ E j be the canonical projection. We refer the reader to [START_REF] Joyal | Pullbacks equivalent to pseudopullbacks[END_REF] for the denition of a pseudopullback. We remind the reader that we can take as model for E the category described as follows.

1. The objects of E are cone of isomorphisms {b ∼ = -→ p j (e j ); e j ∈ E j } j∈J ; 2. A morphism σ : {b ∼ = -→ p j (e j ); e j ∈ E j } j∈J -→ {c ∼ = -→ p j (f j ); f j ∈ E j } j∈J consists of a morphism σ : b -→ c and a family of morphisms {σ j ; e j -→ f j } j∈J such that for each j the following commutes.

b p j (e j ) c p j (f j ) ∼ = / / ∼ = / / p j (σ j ) σ
In general there is no canonical map p : E -→ B but a family of naturally isomorphic functors p j • τ j . We will assume that a choice p : E -→ B has been made once and for all. The advantage of working with the above model is that there is a canonical projection

p : E -→ B that takes {b ∼ = -→ p j (e j ); e j ∈ E j } j∈J to b.
Lemma 2.3. Let A be a category and let (1 < B) be the join category described above. Then a functor F : A -→ (1 < B) is completely determined by the following data.

• Two full subcategories A -and A + of A with Ob(A) = Ob(A -) Ob(A + ); and such that there is no morphism a + -→ a -in A with a + ∈ A + and a -∈ A -.

• A functor F + : A + -→ B such that the diagram hereafter is a pseudopullback.

A + A B (1 < B) / / F + F / /
Proof. Given F : A -→ (1 < B), we let A -be the full subcategory whose objects are the elements of F -1 (0). And we let A + be the full subcategory of A whose set of objects is the complementary of Ob(A -) in Ob(A). By construction we have Ob(A) = Ob(A -) Ob(A + ). Furthermore since there are no morphisms in B whose target is 0 except Id 0 , we cannot have a map a + -→ a -because then we will have a function A(a + , a -) -→ ∅ whose target is the empty set but the source is not, which is impossible.

Conversely given , A -, A + and F + we dene F as follows. F is constant of value 0 on A -and is equal to F + on A + . For any map a --→ a + in A we let F (a --→ a + ) be the unique map 0 -→ F + (a + ) in (1 < B). One can check that this denes indeed a functor F : A -→ (1 < B) whose restriction to B is (by construction) F + .

A direct consequence of the lemma is:

Corollary 2.4. The functor (1 < -) : Cat -→ Cat preserves pseudopullbacks. Remark 2.5. 1. According to the notation of the lemma, if we take A = (1 < B) and F = Id then we may write B = (1 < B) + and 1 = (1 < B) -.

2. When we have such functor F : A -→ (1 < B) , we will say that F is a one way bridge from A -to A + .

3. Observe that the homset A(a -, a + ) denes a bimodule A -× A op + -→ Set.

3 Left perfectness and Descent for displacements Crossing Lemma Let B be a category and let λ and κ be two innite regular cardinals with λ < κ. Assume that B has all κ-small colimits2 . Let's start with the following lemma which is a tautology. We mention it because it appears many times in the upcoming constructions. 

C k -→ C k+1 = C k η k -→ D k ε k -→ C k+1 D k -→ D k+1 = D k ε k -→ C k+1 η k+1 --→ D k+1
Then C and D have isomorphic colimits and the maps between the colimits that are induced by ε k and η k are inverse each other. Proof. Let C ∞ and D ∞ be the corresponding colimits and let i k :

C k -→ C ∞ and j k : D k -→ D ∞ be the canonical maps. Denote by ε ∞ : D ∞ -→ C ∞ and η ∞ : C ∞ -→ D ∞
the universal maps induced by the maps ε k and η k .

We have the following equality for each k.

D k ε k -→ C k+1 i k+1 --→ C ∞ = D k j k -→ D ∞ ε∞ -→ C ∞ ; C k η k -→ D k j k -→ D ∞ = C k i k -→ C ∞ η∞ --→ D ∞ .
If we precompose by η k : C k -→ D k in the rst equality and then use the second equality we see that we have

i k = (ε ∞ • η ∞ ) • i k . Similarly if we precompose by ε k-1 : D k-1 -→ C k in the
second equality and then use the rst equality we get

j k-1 = (η ∞ • ε ∞ ) • j k-1 .
But on the other hand, by denition of a colimit, the only endomorphism f ∈ Hom(C ∞ , C ∞ ) such that f • i k = i k for all k is the identity Id C∞ . The same holds for D ∞ with the maps j k . This forces the two equalities η ∞ • ε ∞ = Id and ε ∞ • η ∞ = Id and the lemma follows.

Lemma 3.4. Let κ be a regular cardinal and let {p j : E j -→ B} j∈J be a κ-small family of functors over the same base B. Let E = × B E j be a 2-pullback of this family and let p : E -→ B be `the' canonical projection.

Assume that

• For every e j ∈ E j all displacements of e j exist;

• Every p j creates (and hence preserves) ltered colimits in E j .

• B is closed under κ-small ltered colimits.

• Assume furthermore that B is closed under κ-small wide pushouts.

Then for every e ∈ E , all displacements of e exist. Furthermore if B is a category with two classes of maps called cobrations and trivial cobrations each of them closed under transnite composition and cobase change, and if each p j : E j -→ B is left perfect then p : E -→ B is left perfect. Remark 3.5. In practice we will use the lemma when B and every E j have an initial object and every p j sends initial object to initial object.

Proof. Let τ j : E -→ E j , j ∈ J be the universal family of functors. Let e be an object of E and let ε : p(e) -→ b be a morphism in B. Recall that for every j there is an isomorphism p j τ j ∼ = p; in particular there is a morphism ε j : p j τ j (e) -→ b which is isomorphic to ε as objects of (B ↓ b).

Let λ be another regular cardinal with λ < κ. We are going to construct inductively and simultaneously for all j, a family λ-directed diagrams {e • j : λ -→ E j } j∈J and b • : λ -→ B.

1. Let b 0 = b, e 0 j = τ j (e) and let ε 0 j : p j (e 0 j ) -→ b 0 be the above map ε j : p j τ j (e) -→ b (that is isomorphic to ε).

2. For each j, we dene the structure map η k j : e k j -→ e k+1 j of the diagram e • j : λ -→ E j as the displacement of e k j along the (already existing) map

ε k j : p j (e k j ) -→ b k .
This means that e k+1 j ∼ = ∇ ε k j (e k j ).

3. Following Remark 2.2, there is a universal map δ k j : b k -→ p j (e k+1 j

) such that we have an equality p j (e k j )

p j (η k j ) ---→ p j (e k+1 j ) = p j (e k ) ε k j -→ b k δ k j -→ p j (e k+1 j
). 

k ι k -→ b k+1 = b k δ k j -→ p j (e k+1 j ) ε k+1 j --→ b k+1 .
7. Let b ∞ be the colimit of the (b k ) and let e ∞ j be the colimit of the (e k j ). Note that e ∞ j exists since p j creates ltered colimits and B is closed under ltered colimits.

It's clear from the construction that for every j the two directed diagrams {b k ι k -→ b k+1 } and {p j (e k j )

p j (η k j )
---→ p j (e k+1 j )} are crossing. It follows from our Crossing lemma (Lemma 3.3) that they have isomorphic colimits i.e., colim{p j (e k j )

p j (η k j ) ---→ p j (e k+1 j )} ∼ = b ∞ , ∀j ∈ J.
On the other hand, we know by assumptions that p j creates and thus preserves ltered colimits. It turns out that we have b ∞ ∼ = colim{p j (e k j )

p j (η k j ) ---→ p j (e k+1 j )} ∼ = p j [colim{e k j η k j -→ e k+1 j }] = p j (e ∞ j ).
It follows that for every i, j ∈ J we have p j (e ∞ j ) ∼ = p i (e ∞ i ) in B. Note already that these isomorphisms determine an object in the pseudopullback.

Let us regard each canonical map τ j (e) -→ e ∞ j as a functor α j : [START_REF] Bacard | Symmetries[END_REF] -→ E j . From the previous discussion we have a natural isomorphism p j α j ∼ = p i α i , ∀i, j ∈ J.

The universal property of the 2-pullback implies that there exist a map 3 α : [START_REF] Bacard | Symmetries[END_REF] -→ E such that for every j we have α j ∼ = τ j α. Let us regard e ∈ E as given by the family functor e j = τ j (e) : 1 -→ E j satisfying p j (e j ) ∼ = p i (e i ) (here 1 is the unit category).

Then α : [START_REF] Bacard | Symmetries[END_REF] -→ E denes a map e -→ ∇ ε (e) in E with ∇ ε (e) = α(1). The isomorphism (3.0.1) says that for every j the morphism τ j [e -→ ∇ ε (e)] is isomorphic in E

[1] j to the morphism τ j (e) -→ e ∞ j . This implies in particular that for every j there is an isomorphism

p j [∇ ε (e)] ∼ = e ∞ j . Note that the universal map b -→ p[∇ ε (e)] is essentially (=isomorphic to) the map b -→ b ∞ .
Checking the universal property We are going to show that α : e -→ ∇ ε (e) satises the universal property of a displacement of e along ε.

Let h : e -→ d be a morphism in E such that p(h) factors through ε : p(e) -→ b as p(e)

p(h) --→ p(d) = p(e) ε - → b q - → p(d); (3.0.2)
for some map q : b -→ p(d). We wish to show that there exists a unique map ξ : ∇ ε (e) -→ d such that h = ξα.

Recall that for every j, we have e 0 j = τ j (e), b 0 = b and ε 0 j : p j (e 0 j ) -→ b 0 is the map ε precomposed with the isomorphism p j τ j (e) ∼ = p(e). Let h j : e 0 j -→ d j be the image of h by τ j . Thanks to the isomorphism p ∼ = p j τ j we have for every j: p j (h j ) ∼ = p(h).

(3.0.3) It's not hard to see that from (3.0.2) we have an equality for every j: p j (e 0 j )

p j (h j ) ---→ p j (d j ) = p j (e 0 j ) ε 0 j -→ b 0 q j -→ p j (d j ); (3.0.4)
where q j is the map q composed with the isomorphism p(d) ∼ = p j (d j ). Let's denote by ψ j : p(d)

∼ = -→ p j (d j ) this isomorphism so that q = ψ -1 j q j .
Inductive factorization For k = 0 we have the following data.

1. A map h k j : e k j -→ d j in E j , for all j;

2. A map q k : b k -→ p(d) in B; 3. A map ε k j : p j (e k j ) -→ b k ; 4. A map q k j : b k -→ p j (d j ) in B such that q k = ψ -1 j q k j , where ψ j : p(d) ∼ = -→ p j (d j ) is a xed isomorphism.
3 essentially unique map 8 5. For every j we have an equality p j (e k j )

p j (h k j ) ---→ p j (d j ) = p j (e k j ) ε k j -→ b k q k j -→ p j (d j ); (3.0.5)
We construct the data for k + 1 as follows.

For every j, η k j : e k j -→ e k+1 j is a displacement of e k j along ε k j , therefore with Equation (3.0.5), the universal property of the displacement gives a unique map h k+1 j : e k+1 j -→ d j such that the following equalities hold.

h k j = h k+1 j η k j (3.0.6) b k q k j -→ p j (d j ) = b k δ k j -→ p j (e k+1 j ) p j (h k+1 j )
-----→ p j (d j ).

(3.0.7)

Applying ψ -1 j to Equation (3.0.7) gives a factorization of q k for every j as: )} j∈J . Therefore by (3.0.8) there exists a unique map q k+1 : b k+1 -→ p(d) such that the equalities below hold.

q k = b k q k j -→ p j (d j ) ψ -1 j --→ p(d) = b k δ k j -→ p j (e k+1 j ) p j (h k+1 j ) -----→ p j (d j ) ψ -1 j --→ p(d).
b k q k -→ p(d) = b k ι k -→ b k+1 q k+1 --→ p(d) i.e. q k = q k+1 ι k ;
(3.0.9) p j (e k+1 j )

p j (h k+1 j ) -----→ p j (d j ) ψ -1 j --→ p(d) = p j (e k+1 j ) ε k+1 j --→ b k+1 q k+1 --→ p(d).
(3.0.10)

If we let q k+1 j = ψ j q k+1 , and compose with ψ j in the equality (3.0.10) we get:

p j (e k+1 j ) p j (h k+1 j ) -----→ p j (d j ) = p j (e k+1 j ) ε k+1 j --→ b k+1 q k+1 j --→ p j (d j ).
(3.0.11)

The above maps and equations give the data for k + 1. And by induction, we see that the relations (3.0.6) determine a compatible diagram ending at d j . Therefore from the universal property of e ∞ j there is a unique map h ∞ j : e ∞ j -→ d j such that for every k we have

h k j = h ∞ j • η k j .
In particular for k = 0 we get:

e j h j -→ d j = e j α j -→ e ∞ j h ∞ j --→ d j (3.0.12)
The family {e j h j -→ d j } j∈J determines a morphism in the pullback E , that is unique up-to an isomorphism in E [1] . And a morphism in a pseudopullback is unique if we x the source and target and the comparison maps p j (e j ) ∼ = p i (e i ), p j (d j ) ∼ = p i (d i ). This means that h : e -→ d is the unique morphism in the pullback whose source is e and target is d and such that for every j: τ j (h) = h j . ) is trivial cobration since δ 0 j is. Remark 3.6. In the previous proof the map η : e -→ ∇ ε (e) is induced by the family of maps α j : e j -→ e ∞ j as j varies. In particular we have an isomorphism τ j (η) ∼ = α j in E

[1] j .

Now recall that for each j the map α j : e j -→ e ∞ j is the transnite composite of the structure map η k j : e k j -→ e k+1 j ; and this structure map is, by construction, the displacement of e k j along ε k j : p j (e k j ) -→ b k .

A direct consequence of this remark is the following: Corollary 3.7. Let D j be a category containing a class of maps Z j that is closed under transnite composition, and let χ j : E j -→ D j be a functor. Then with the previous notation and assumptions, if for every k the map χ j (η k j ) is in Z j then the map

χ j (τ j (η))
is also in Z j .

In practice the class Z j is the class of trivial cobrations in the model category D j . And in most cases D j will be the category Arr(A j ) = A If we regard this last equality in the comma category p(e) ↓ B, we see that h determines a map [h] : ε -→ p(ι e ). The displacement along ε is the adjoint transpose of ε and so there is a unique map ξ : ∇ ε (e) -→ d such that the equalities below hold. But since trivial cobration are closed under cobase change, we get the result.

  ... Je m'y adresse à toi qui me lis comme à une personne, et à une personne seule. C'est à celui en toi qui sait être seul, à l'enfant, que je voudrais parler, et à personne d'autre. Il est loin souvent l'enfant, je le sais bien. Il en a vu de toutes les couleurs et depuis belle lurette. Il s'est planqué Dieu sait où, et c'est pas facile, souvent, d'arriver jusqu'à lui. On jurerait qu'il est mort depuis toujours, qu'il n'a jamais existé plutôt -et pourtant, je suis sûr qu'il est là quelque part, et bien en vie. Et je sais aussi quel est le signe que je suis entendu. C'est quand, au delà de toutes les diérences de culture et de destin, ce que je dis de ma personne et de ma vie trouve en toi écho et résonance ; quand tu y retrouves aussi ta propre vie, ta propre expérience de toi-même, sous un jour peut-être auquel tu n'avais pas accordé attention jusque là. L'importance d'être seul, Récoltes et Semailles Alexander Grothendieck 2 Denition and properties 2.1

Denition 3 . 1 .

 31 Let B be a category containing two classes of morphisms called cobrations and trivial cobrations, each of them closed under transnite composition and cobase change. Let p : E -→ B be as above and let e be an object of E .1. Say that p is left perfect at e if for any (trivial) cobration ε : p(e) -→ b in B, the universal map b -→ p(∇ ε (e)) is also a (trivial) cobration for a displacement e -→ ∇ ε (e) of e along ε.

Lemma 3 . 3 (

 33 Crossing lemma). Let C : λ -→ B and D : λ -→ B be two directed diagrams in B. Assume that for every k ∈ λ there exists two maps η k : C k -→ D k and ε k : D k -→ C k+1 such that the structure maps of C and D are respectively the composite below.

4 .

 4 Let b k+1 ∈ B be the colimit of the wide pushout data {b k δ k j -→ p j (e k+1 j )}.5. We dene the structure map ι k : b k -→ b k+1 of the diagram b • : λ -→ B as the canonical map going to the of the wide pushout data. 6. By construction, for every j there is also a canonical map ε k+1 j : p j (e k+1 j ) -→ b k+1 and we have the following equality.

  b

( 3 .

 3 0.8) Now b k+1 together with the maps {p j (e k+1 j ) b k+1 } is dened as the wide pushout of the maps {b k δ k j -→ p j (e k+1 j

  ∞ j } j∈J determine our map α : e -→ ∇ ε (e) and {e ∞ j α j -→ d j } j∈J determine uniquely a map ξ : ∇ ε (e) -→ d. Note that by construction we have a comparison isomorphism e j [∇ ε (e)] and we have also a factorization of h j :e j h j -→ d j = e j s j α j --→ τ j [∇ ε (e)]both h : e -→ d and ξα : e -→ d have the same domain and codomain. Furthermore thanks to (3.0.13) they have same projections τ j (h) = τ j (ξα). By uniqueness of map in the pullback with same (co)domain and same projections we have an equality h = ξα as desired. Left perfectness By construction the universal map b -→ p[∇ ε (e)] is essentially the canonical map b 0 -→ b ∞ which is just the transnite composite of the maps ι k : b k -→ b k+1 . Now ι k : b k -→ b k+1 is the canonical map that comes when forming the wide pushout of the maps {b k δ k j -→ p j (e k+1 j )} j∈J . Therefore if each b k δ k j -→ p j (e k+1 j ) is a trivial cobration, then so is ι k : b k -→ b k+1 as well as every canonical map p j (e k+1 j ) ε k+1 j --→ b k+1 . Now by assumption each p j is left perfect, therefore by induction each map b k δ k j -→ p j (e k+1 j

[ 1 ]

 1 j of morphisms of a model category A j , and the model structure on D j is the Reedy (=projective) model structure.

3.0. 1 Γf

 1 Intersection of adjoint functors Lemma 3.8. Let κ be a regular cardinal and let {p j : E j -→ B} j∈J be a κ-small family of functors over the same base B. Let E = × B E j be a 2-pullback of this family and let p : E -→ B be `the' canonical projection.Assume thatUsing the map α, we can extend the universal square obtained from the pushout c f ←b -→ p(e) to get the following commutative diagram. p(∇ ε (e)) corresponds by adjointness to a unique map θ : Γc -→ ∇ ε (e) in E . Again by adjointness, the above commutative square is equivalent to the (unique) commutative square below; and we are going to show that this is the universal pushout square.Let d be an object of E equipped with a co-pushout data Γc ιc a commutative square. By adjointness there is a unique co-pushout data c ιc -→ p(d) p(ιe) ←--p(e) that completes the diagram c f of the later pushout data says that there is a unique map h : [c ∪ b p(e)] -→ p(d) such that the equalities hereafter hold.

  c ιc -→ p(d) = c τc -→ [c ∪ b p(e)] h -→ p(d); p(e) p(ιe) --→ p(d) = p(e) ε -→ [c ∪ b p(e)] h -→ p(d).

2 .

 2 [c ∪ b p(e)] h -→ p(d) = [c ∪ b p(e)] α -→ p(∇ ε (e)) p(ξ) --→ p(d).

  The last equality is a factorization of h, and we get out of it another equality c ιc -→ p(d) = c ατc --→ p(∇ ε (e)) p(ξ) --→ p(d). Now ι c is the adjoint-transpose map of ι c and ατ c is the adjoint-transpose map of θ. The naturality of the adjunction Γ p and the uniqueness of the adjoint transpose map say that since we have an equality ι c = p(ξ) • (ατ c ) we must have ι c = ξθ. Summing up the above discussion, we nd a unique map ξ : e -→ d such that Γc ιc This means that the co-pushout data Γc θ -→ ∇ ε (e) η ← -e satises the universal property of the pushout of Γc Γf ← -Γb σ -→ e as claimed. As a corollary we get the following result which is a consequence of the well known transfer result [2, Theorem 11.3.2]. Theorem 4.2. Let p : E -→ B be a right adjoint between locally presentable categories whose coecient category B is a model category. Then the right-induced model structure exists on E if and only if the displacement of any object e ∈ E along a trivial cobration ε : p(e) -→ b, is a p-equivalence. Proof. The if part follows directly from [2, Theorem 11.3.2] and Lemma 4.1. To get the only if part we proceed as follows. First observe that if the projective model structure exists then p is right Quillen by denition. Equivalently, any left adjoint Γ is automatically left Quillen, and therefore preserves trivial cobrations. And trivial cobrations are closed under cobase change in the model category E . Given a trivial cobration ε : p(e) -→ b, the displacement of e along ε is computed thanks to Lemma 4.1, as the following pushout where the attaching map is the co-unit of the adjunction: Γb Γε ← -Γp(e) -→ e.

In most cases we will assume also that B is locally λ-presentable (hence locally κ-presentable)

• Every p j has a left adjoint Γ j : E j -→ B and all displacements of every e j ∈ E j exist;

• Every p j creates (and hence preserves) ltered colimits in E j ;

• B is closed under κ-small ltered colimits.

• Assume furthermore that B is closed under κ-small wide pushouts and coproducts.

Then there is a left adjoint Γ : E -→ B to p.

Proof. This is a corollary of Lemma 3.4, as we are going to explain. Let E j = (1 < E j ) be the join category described in Remark 2.2. Let B = (1 < B) and let p j : E j -→ B be the functor induced by p j . Note that p j sends the initial object 0 of E j to the initial object 0 of B . Now as we mentioned in Remark 2.2, the existence of the left adjoint Γ j is equivalent to the existence of all displacements of the initial object 0 ∈ E j along any map 0 -→ b in B . Now it's not hard to see that p j also creates (and thus preserves) ltered colimits. The existence of coproduct in B is equivalent to the existence of pushouts of maps {0 -→ b i } in B . And B inherits every pushout that exists in B (not involving the new object 0); therefore B has all κ-small pushouts. Now thanks to Corollary 2.4, we know that (1 < E ) is equivalent to the pseudopullback of the p i .

We see that we are in the situation of Lemma 3.4, and we get that all displacements of every object e ∈ (1 < E ) exist. Taking e = 0 we nd a left adjoint to p : E -→ B as claimed.

Pushout, Adjunction and Displacement

The following lemma will be used to calculate some pushouts in adjunction situations.