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Pointwise estimates and existence of solutions of porous medium

and p-Laplace evolution equations with absorption and measure

data

Marie-Françoise Bidaut-Véron∗ Quoc-Hung Nguyen†

Abstract

Let Ω be a bounded domain of RN (N ≥ 2). We obtain a necessary and a sufficient condition,
expressed in terms of capacities, for existence of a solution to the porous medium equation with
absorption







ut −∆(|u|m−1u) + |u|q−1u = µ in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(0) = σ,

where σ and µ are bounded Radon measures, q > max(m, 1), m > N−2
N . We also obtain a

sufficient condition for existence of a solution to the p-Laplace evolution equation







ut −∆pu+ |u|q−1u = µ in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(0) = σ.

where q > p− 1 and p > 2.
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1 Introduction and main results

Let Ω be a bounded domain of RN , N ≥ 2 and T > 0, and ΩT = Ω × (0, T ). In this paper we study the
existence of solutions to the following two types of evolution problems: the porous medium problem with
absorption







ut −∆(|u|m−1u) + |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ,

(1.1)

where m > N−2
N and q > max(1,m), and the p-Laplace evolution problem with absorption







ut −∆pu+ |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ,

(1.2)

where q > p − 1 > 1, and µ and σ are bounded Radon measures respectively on ΩT and Ω. In the sequel,

for any bounded domain O of Rl(l ≥ 1), we denote by Mb(O) the set of bounded Radon measures in O,

and by M+
b (O) its positive cone. For any ν ∈ Mb(O), we denote by ν+ and ν− respectively its positive and

negative part.

When m = 1, p = 2 and q > 1 the problem has been studied by Brezis and Friedman [12] with µ = 0. It
is shown that in the subcritical case q < 1 + 2/N , the problem can be solved for any σ ∈ Mb(Ω), and it has
no solution when q ≥ 1+ 2/N and σ is a Dirac mass. The general case has been solved by Baras and Pierre
[5] and their results are expressed in terms of capacities. For s > 1, α > 0, the capacity CapGα,s of a Borel

set E ⊂ R
N , defined by

Cap
Gα,s(E) = inf{||g||sLs(RN ) : g ∈ Ls

+(R
N ),Gα ∗ g ≥ 1 on E},

where Gα is the Bessel kernel of order α and the capacity Cap2,1,s of a compact set K ⊂ R
N+1 is defined by

Cap2,1,s(K) = inf
{

||ϕ||s
W 2,1

s (RN+1)
: ϕ ∈ S(RN+1), ϕ ≥ 1 in a neighborhood of K

}

,

where

||ϕ||W 2,1
s (RN+1) = ||ϕ||Ls(RN+1) + ||ϕt||Ls(RN+1) + || |∇ϕ| ||Ls(RN+1) +

∑

i,j=1,2,...,N

||ϕxixj ||Ls(RN+1).

The capacity Cap2,1,s is extended to Borel sets by the usual method. Note the relation between the two
capacities:

C−1CapG
2− 2

s
,s(E) ≤ Cap2,1,s(E × {0}) ≤ CCapG

2− 2
s
,s(E)
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for any Borel set E ⊂ R
N , see [34, Corollary 4.21]. In particular, for any ω ∈ Mb(R

N ) and a ∈ R, the
measure ω⊗ δ{t=a} in R

N+1 is absolutely continuous with respect to the capacity Cap2,1,s ( in R
N+1) if and

only if ω is absolutely continuous with respect to the capacity Cap
G

2− 2
s
,s (in R

N ).

From [5], the problem






ut −∆u + |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ,

has a solution if and only if the measures µ and σ are absolutely continuous with respect to the capacities

Cap2,1,q′ in ΩT and Cap
G 2

q
,q′ in Ω respectively, where q′ = q

q−1 .

In Section 2 we study problem (1.1).

For m > 1, Chasseigne [14] has extended the results of [12] for µ = 0 in the new subcritical range
m < q < m + 2

N . The supercritical case q ≥ m + 2
N with µ = 0 and σ is positive is studied in [13]. He has

essentially proved that if problem (1.1) has a solution, then σ⊗ δ{t=0} is absolutely continuous with respect
to the capacity Cap2,1, q

q−m ,q′ , defined for anycompact set K ⊂ R
N+1 by

Cap2,1, q
q−m ,q′(K) = inf

{

||ϕ||
q

q−m

W 2,1
q

q−m
,q′

(RN+1)
: ϕ ∈ S(RN ), ϕ ≥ 1 in a neighborhood of E

}

,

where

||ϕ||W 2,1
q

q−m
,q′

(RN+1) = ||ϕ||
L

q
q−m (RN+1)

+ ||ϕt||Lq′ (RN+1)+ || |∇ϕ| ||
L

q
q−m (RN+1)

+
∑

i,j=1,2,...,N

||ϕxixj ||L
q

q−m (RN+1)
.

In this Section, we first give necessary conditions on the measures µ and σ for existence, which cover the

results mentioned above.

Theorem 1.1 Let q > max(1,m) and µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω). If problem (1.1) has a very weak

solution then µ and σ ⊗ δ{t=0} are absolutely continuous with respect to the capacity Cap2,1, q
q−m , q

q−1
.

Remark 1.2 It is easy to see that the capacity Cap2,1, q
q−m , q

q−1
is absolutely continuous with respect to the

capacity Cap2,1, q
q−max{m,1}

. Therefore µ and σ⊗δ{t=0} are absolutely continuous with respect to the capacities

Cap2,1, q
q−max{m,1}

.In particular σ is absolutely continuous with respect to the capacity CapG 2max{m,1}
q

, q
q−max{m,1}

.

The main result of this Section is the following sufficient condition for existence, where we use the notion
of R-truncated Riesz parabolic potential I2 on R

N+1 of a measure µ ∈ M+
b (ΩT ) , defined by

I
R
2 [µ](x, t) =

∫ R

0

µ(Q̃ρ(x, t))

ρN
dρ

ρ
for any (x, t) ∈ R

N+1,

with R ∈ (0,∞], and Q̃ρ(x, t) = Bρ(x)× (t− ρ2, t+ ρ2).
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Theorem 1.3 Let m > N−2
N , q > max(1,m), µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω).

i. If m > 1 and µ and σ are absolutely continuous with respect to the capacities Cap2,1,q′ in ΩT and CapG 2
q
,q′

in Ω, then there exists a very weak solution u of (1.1), satisfying for a.e.(x, t) ∈ ΩT

|u(x, t)| ≤ C

((

|σ|(Ω) + |µ|(ΩT )

dN

)m1

+ |σ|(Ω) + |µ|(ΩT ) + 1 + I
2d
2 [|σ| ⊗ δ{t=0} + |µ|](x, t)

)

, (1.3)

where C = C(N,m) > 0 and

m1 =
(N + 2)(2mN + 1)

m(mN + 2)(1 + 2N)
, d = diam(Ω) + T 1/2.

ii. If N−2
N < m ≤ 1, and µ and σ are absolutely continuous with respect to the capacities Cap2,1, 2q

2(q−1)+N(1−m)

in ΩT and Cap
G 2−N(1−m)

q

, 2q
2(q−1)+N(1−m)

in Ω, there exists a very weak solution u of (1.1), such that

for a.e.(x, t) ∈ ΩT

|u(x, t)| ≤ C

((

|σ|(Ω) + |µ|(ΩT )

dN

)m2

+ 1 +
(

I
2d
2 [|σ| ⊗ δ{t=0} + |µ|](x, t)

)
2

2−N(1−m)

)

, (1.4)

where C = C(N,m) > 0 and

m2 =
2N(N + 2)(m+ 1)

(2 +Nm)(2−N(1−m))(2 +N(1 +m))
.

.

Remark 1.4 These estimates are not homogeneous in u. In particular if µ ≡ 0, u satisfies the decay

estimates, for a.e. (x, t) ∈ ΩT ,

i. if m > 1,

|u(x, t)| ≤ C

((

|σ|(Ω)

dN

)m1

+ |σ|(Ω) + 1 +
|σ|(Ω)

NtN/2

)

,

ii. if m < 1,

|u(x, t)| ≤ C

(

(

|σ|(Ω)

dN

)m2

+ 1 +

(

|σ|(Ω)

NtN/2

)
2

2−N(m−1)

)

.

We also give other types of sufficient conditions for measures which are good in time, that means such
that

σ ∈ L1(Ω) and |µ| ≤ f + ω ⊗ F, where f ∈ L1
+(ΩT ), F ∈ L1

+((0, T )), (1.5)

see Theorem 2.10. The proof is based on estimates for the stationary problem in terms of elliptic Riesz

potential.
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In Section 3, we consider problem (1.2). Let us recall some former results about it.

For q > p− 1 > 0, Pettitta, Ponce and Porretta [36] have proved that it admits a (unique renormalized)
solution provided σ ∈ L1(Ω) and µ ∈ Mb(ΩT ) is a diffuse measure, i.e. absolutely continuous with respect
to Cp-capacity in ΩT , defined on a compact set K ⊂ ΩT by

Cp(K,ΩT ) = inf {||ϕ||W : ϕ ∈ C∞
c (ΩT )ϕ ≥ 1 on K} , (1.6)

where
W = {z : z ∈ Lp(0, T,W 1,p

0 (Ω) ∩ L2(Ω)), zt ∈ Lp′

(0, T,W−1,p′

(Ω) + L2(Ω))}.

In the recent work [7], we have proved a stability result for the p-Laplace parabolic equation, see Theorem
3.5, for p > 2N+1

N+1 . As a first consequence, in the new subcritical range

q < p− 1 +
p

N
,

problem (1.2) admits a renormalized solution for any measures µ ∈ Mb(ΩT ) and σ ∈ L1(Ω). Moreover,

we have obtained sufficient conditions for existence, for measures that have a good behavior in time, of the

form (1.5). It is shown that (1.2) has a renormalized solution if ω ∈ M+
b (Ω) is absolutely continuous with

respect to CapGp,
q

q−p+1
. The proof is based on estimates of [8] for the stationary problem which involve

Wolff potentials.

Here we give new sufficient conditions when p > 2. The next Theorem is our second main result:

Theorem 1.5 Let q > p− 1 > 1 and µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω). If µ and σ are absolutely continuous
with respect to the capacities Cap2,1,q′ in ΩT and CapG 2

q
,q′ in Ω, then there exists a distribution solution of

problem (1.2) which satisfies the pointwise estimate

|u(x, t)| ≤ C

(

1 +D +

(

|σ|(Ω) + |µ|(ΩT )

DN

)m3

+ I
2D
2

[

|σ| ⊗ δ{t=0} + |µ|
]

(x, t)

)

(1.7)

for a.e (x, t) ∈ ΩT with C = C(N, p) and

m3 =
(N + p)(λ + 1)(p− 1)

((p− 1)N + p)(1 + λ(p− 1))
, λ = min{1/(p− 1), 1/N}, D = diam(Ω) + T 1/p. (1.8)

Moreover, if σ ∈ L1(Ω), u is a renormalized solution.

2 Porous medium equation

For k > 0 and s ∈ R we set Tk(s) = max{min{s, k},−k}. The solutions of (1.1) are considered in a weak

sense:

5



Definition 2.1 Let µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω) and g ∈ C(R).
i. A function u is a weak solution of problem







ut −∆(|u|m−1u) + g(u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω.

(2.1)

if u ∈ C([0, T ] ;L2(Ω)), |u|m ∈ L2((0, T );H1
0 (Ω)) and g(u) ∈ L1(ΩT ), and for any ϕ ∈ C2,1

c (Ω× [0, T )),

−

∫

ΩT

uϕtdxdt+

∫

ΩT

∇(|u|
m−1

u).∇ϕdxdt+

∫

ΩT

g(u)ϕdxdt =

∫

ΩT

ϕdµ+

∫

Ω

ϕ(0)dσ.

ii. A function u is a very weak solution of (2.1) if u ∈ Lmax{m,1}(ΩT ) and g(u) ∈ L1(ΩT ), and for any
ϕ ∈ C2,1

c (Ω× [0, T )),

−

∫

ΩT

uϕtdxdt −

∫

ΩT

|u|m−1u∆ϕdxdt+

∫

ΩT

g(u)ϕdxdt =

∫

ΩT

ϕdµ+

∫

Ω

ϕ(0)dσ.

First we give a priori estimates for the problem without perturbation term:

Proposition 2.2 Let u ∈ L∞(ΩT ) with |u|m ∈ L2((0, T );H1
0 (Ω)) be a weak solution to problem







ut −∆(|u|m−1u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(2.2)

with σ ∈ Cb(Ω) and µ ∈ Cb(ΩT ). Then,

||u||L∞((0,T );L1(Ω)) ≤ |σ|(Ω) + |µ|(ΩT ), (2.3)

||u||Lm+2/N,∞(ΩT ) ≤ C1(|σ|(Ω) + |µ|(ΩT ))
N+2

mN+2 , (2.4)

|||∇(|u|m−1u)|||
L

mN+2
mN+1

,∞
(ΩT )

≤ C2(|σ|(Ω) + |µ|(ΩT ))
m(N+1)+1

mN+2 , (2.5)

where C1 = C1(N,m), C2 = C2(N,m).

Proof of Proposition 2.2. For any τ ∈ (0, T ), and k > 0 we have

∫

Ωτ

(Hk(u))tdxdt+

∫

Ωτ

|∇Tk(|u|
m−1u)|2dxdt =

∫

Ωτ

Tk(|u|
m−1u)dµ(x, t),

where H(a) =
∫ a

0 Tk(|y|
m−1y)dy. This leads to

∫

ΩT

|∇Tk(|u|
m−1u)|2dxdt ≤ k(|σ|(Ω) + |µ|(ΩT )) and (2.6)

∫

Ω

(Hk(u))(τ)dx ≤ k(|σ|(Ω) + |µ|(ΩT )), ∀τ ∈ (0, T ).
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Since Hk(a) ≥ k(|a| − k) for any a and k > 0, we find
∫

Ω

(|u|(τ)− k)dx ≤ |σ|(Ω) + |µ|(ΩT ), ∀τ ∈ (0, T ).

Letting k → 0, we get (2.3).

Next we prove (2.4). By the Gagliardo-Nirenberg embedding theorem, there holds
∫

ΩT

|Tk(|u|
m−1u)|

2(N+1)
N dxdt ≤ C1||Tk(|u|

m−1u)||
2/N
L∞((0,T );L1(Ω))

∫

ΩT

|∇Tk(|u|
m−1u)|2dxdt

≤ C1k
2(m−1)

mN ||u||
2/N
L∞((0,T );L1(Ω))

∫

ΩT

|∇Tk(|u|
m−1u)|2dxdt.

Thus, from (2.6) and (2.3) we get

k
2(N+1)

N |{|u|m > k}| ≤

∫

ΩT

|Tk(|u|
m−1u)|

2(N+1)
N dxdt ≤ c1k

2(m−1)
mN +1(|σ|(Ω) + |µ|(ΩT ))

N+2
N ,

which implies (2.4). Finally, we prove (2.5). Thanks to (2.6) and (2.4) we have for k, k0 > 0

|{|∇(|u|m−1u)| > k}| ≤
1

k2

∫ k2

0

|{|∇(|u|m−1u)| > ℓ}|dℓ

≤ |{|u|m > k0}|+
1

k2

∫

ΩT

|∇Tk0(|u|
m−1u)|2dxdt

≤ C1k
− 2

mN −1
0 (|σ|(Ω) + |µ|(ΩT ))

N+2
N + k0k

−2(|σ|(Ω) + |µ|(ΩT )).

Choosing k0 = k
Nm

Nm+1 (|σ|(Ω) + |µ|(ΩT ))
m

Nm+1 , we get (2.5).

Next we show the necessary conditions given at Theorem 1.1.

Proof of Theorem 1.1. As in [5, Proof of Proposition 3.1], it is enough to claim that for any compact
K ⊂ Ω× [0, T ) such that µ−(K) = 0, (σ− ⊗ δ{t=0})(K) = 0 and Cap2,1, q

q−m ,q′(K) = 0 then µ+(K) = 0 and

(σ+ ⊗ δ{t=0})(K) = 0. Let ε > 0 and choose an open set O such that (|µ| + |σ| ⊗ δ{t=0})(O\K) < ε and
K ⊂ O ⊂ Ω× (−T, T ). One can find a sequence {ϕn} ⊂ C∞

c (O) which satisfies 0 ≤ ϕn ≤ 1, ϕn|K = 1 and

ϕn → 0 in W 2,1
q

q−m ,q′
(RN+1) and almost everywhere in O (see [5, Proposition 2.2]). We get

∫

ΩT

ϕndµ+

∫

Ω

ϕn(0)dσ = −

∫

ΩT

u(ϕn)tdxdt−

∫

ΩT

|u|m−1u∆ϕndxdt+

∫

ΩT

|u|q−1uϕndxdt

≤ (||u||Lq(ΩT ) + ||u||mLq(ΩT ))||ϕn||W 2,1
q

q−m
,

q
q−1

(RN+1) +

∫

ΩT

|u|qϕndxdt.

Note that
∫

ΩT

ϕndµ+

∫

Ω

ϕn(0)dσ ≥ µ+(K) + (σ+ ⊗ δ{t=0})(K)− (|µ|+ |σ| ⊗ δ{t=0})(O\K)

≥ µ+(K) + (σ+ ⊗ δ{t=0})(K)− ε.
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This implies

µ+(K) + (σ+ ⊗ δ{t=0})(K) ≤ (||u||Lq(ΩT ) + ||u||mLq(ΩT ))||ϕn||W 2,1
q

q−m
,

q
q−1

(RN+1) +

∫

ΩT

|u|qϕndxdt + ε.

Letting the limit we get µ+(K) + (σ+ ⊗ δ{t=0})(K) ≤ ε. Therefore, µ+(K) = (σ+ ⊗ δ{t=0})(K) = 0.

Next we look for sufficient conditions of existence. The crucial result used to establish Theorem 1.3 is

the following a priori estimates, due to of Liskevich and Skrypnik [31] for m ≥ 1 and Bogelein, Duzaar and

Gianazza [11] for m ≤ 1.

Theorem 2.3 Let m > N−2
N and µ ∈ (Cb(ΩT ))

+. Let u ∈ L∞
+ (ΩT ) with um ∈ L2(0, T,H1

loc(Ω)) be a weak
solution to equation

ut −∆(um) = µ in ΩT .

Then there exists C = C(N,m) such that, for almost all (y, τ) ∈ ΩT and any cylinder Q̃r(y, τ) ⊂⊂ ΩT , there

holds

i. if m > 1

u(y, τ) ≤ C





(

1

rN+2

∫

Q̃r(y,τ)

|u|m+ 1
2N dxdt

)
2N

1+2N

+ ||u||L∞((τ−r2,τ+r2);L1(Br(y))) + 1 + I
2r
2 [µ](y, τ)



 ,

ii. if m ≤ 1,

u(y, τ) ≤ C





(

1

rN+2

∫

Q̃r(y,s)

|u|
2(1+mN)
N(1+m) dxdt

)

2N(m+1)
(2−N(1−m))(2+N(1+m))

+ 1 +
(

I
2r
2 [µ](y, τ)

)
2

2−N(1−m)



 .

As a consequence we get a new a priori estimate for the porous medium equation:

Corollary 2.4 Let m > N−2
N and µ ∈ Cb(ΩT ). Let u ∈ L∞(ΩT ) with |u|m ∈ L2(0, T,H1

0 (Ω)) be the weak
solution of problem







ut −∆(|u|m−1u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω.

Then there exists C = C(N,m) such that, for a.e. (y, τ) ∈ ΩT ,

i. if m > 1,

|u(y, τ)| ≤ C

((

|µ|(ΩT )

dN

)m1

+ |µ|(ΩT ) + 1 + I
2d
2 [|µ|](y, τ)

)

, (2.7)
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ii. if m ≤ 1,

|u(y, τ)| ≤ C

((

|µ|(ΩT )

dN

)m2

+ 1 +
(

I
2d1
2 [|µ|](y, τ)

)
2

2−N(1−m)

)

, (2.8)

where m1,m2 and d are defined in Theorem 1.3.

Proof. Let x0 ∈ Ω, and Q = B2d(x0) × (−(2d)2, (2d)2). Consider the function U ∈ (Cb(Q))+, with
Um ∈ Lp((−(2d)2, (2d)2);H1

0 (B2d(x0))) such that U is weak solution of






Ut −∆(Um) = χΩT |µ| in B2d(x0)× (−(2d)2, (2d)2),
U = 0 on ∂B2d(x0)× (−(2d)2, (2d)2),
U(−(2d)2) = 0 in B2d(x0).

(2.9)

From Theorem 2.3, we get, for a.e (y, τ) ∈ ΩT ,

U(y, τ) ≤ c1





(

1

dN+2

∫

Q̃d(y,τ)

|U |m+ 1
2N dxdt

)
2N

1+2N

+ ||U ||L∞((τ−d2,τ+d2);L1(Bd(y))) + 1 + I
2d
2 [|µ|](y, τ)





if m > 1 and

U(y, τ) ≤ C





(

1

dN+2

∫

Q̃d(y,s)

|u|
2(1+mN)
N(1+m) dxdt

)

2N(m+1)
(2−N(1−m))(2+N(1+m))

+ 1 +
(

I
2r
2 [µ](y, τ)

)
2

2−N(1−m)





if m ≤ 1. By Proposition 2.2, we have

||U ||L∞((τ−d2,τ+d2);L1(Bd(y))) ≤ |µ|(ΩT ),

|{|U | > ℓ}| ≤ c2(|µ|(ΩT ))
2+N
N ℓ−

2
N −m, ∀ℓ > 0.

Thus, for any ℓ0 > 0,
∫

Q

Um+ 1
2N dxdt = (m+

1

2N
)

∫ ∞

0

ℓm+ 1
2N −1|{U > ℓ}|dℓ

= (m+
1

2N
)

∫ ℓ0

0

ℓm+ 1
2N −1|{U > ℓ}|dℓ+ (m+

1

2N
)

∫ ∞

ℓ0

ℓm+ 1
2N −1|{U > ℓ}|dℓ

≤ c3d
N+2ℓ

m+ 1
2N

0 + c4ℓ
1

2N − 2
N

0 (|µ|(ΩT ))
2+N
N .

Choosing ℓ0 =
(

|µ|(ΩT )
dN

)
N+2

mN+2

, we get

∫

Q

U (λ+1)(p−1)dxdt ≤ c5d
N+2

(

|µ|(ΩT )

dN

)

(N+2)(2mN+1)
2mN(mN+2)

.

Thus, for a.e (y, τ) ∈ ΩT ,

U(y, τ) ≤ c6

((

|µ|(ΩT )

dN

)m1

+ |µ|(ΩT ) + 1 + I
2d
2 [|µ|](y, τ)

)
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if m > 1. Similarly, we also obtain for a.e (y, τ) ∈ ΩT ,

U(y, τ) ≤ c7

((

|µ|(ΩT )

dN

)m2

+ 1 +
(

I
2d1
2 [|µ|](y, τ)

)
2

2−N(1−m)

)

.

if m ≤ 1. By the comparison principle we get |u| ≤ U in ΩT , and (2.7)-(2.8) follow.

Lemma 2.5 Let g ∈ Cb(R) be nondecreasing with g(0) = 0, and µ ∈ Cb(ΩT ). There exists a weak solution
u ∈ L∞(ΩT ) with |u|m ∈ L2(0, T,H1

0 (Ω)) of problem







ut −∆(|u|m−1u) + g(u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω.

(2.10)

Moreover, the comparison principle holds for these solutions: if u1, u2 are weak solutions of (2.10) when

(µ, g) is replaced by (µ1, g1) and (µ2, g2), where µ1, µ2 ∈ Cb(ΩT ) with µ1 ≥ µ2 and g1, g2 have the same

properties as g with g1 ≤ g2 in R then u1 ≥ u2 in ΩT .

As a consequence, if µ ≥ 0 then u ≥ 0.

Proof of Lemma 2.5. Set an(s) = m|s|m−1 if 1/n ≤ |s| ≤ n and an(s) = m|n|m−1 if |s| ≥ n,
an(s) = m(1/n)m−1 if |s| ≤ 1/n. Also An(τ) =

∫ τ

0 an(s)ds. Then one can find un being a weak solution to
the following equation







(un)t − div(an(un)∇un) + g(un) = µ in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = 0 in Ω.

(2.11)

It is easy to see that |un(x, t)| ≤ t||µ||L∞(ΩT ) for all (x, t) ∈ ΩT . Thus, choosing An(un) as a test function,
we obtain

∫

ΩT

|∇An(un)|
2dxdt ≤ C1(T, ||µ||L∞(ΩT )). (2.12)

Now set Φn(τ) =
∫ τ

0 |An(s)|ds. Choosing |An(un)|ϕ as a test function in (2.11), where ϕ ∈ C2,1
c (ΩT ), we

get the relation in D′(ΩT ) :

(Φn(un))t − div(|An(un)|∇An(un)) +∇An(un).∇|An(un)|+ |An(un)|g(un) = |An(un)|µ.

Hence,

||(Φn(un))t||L1(ΩT )+L2((0,T );H−1(Ω)) ≤ ||An(un)∇An(un)||L2(ΩT ) + ||∇An(un)|||
2
L2(ΩT )

+ ||An(un)g(un)||L1(ΩT ) + ||An(un)µ||L1(ΩT ).

Combining this with (2.12) and the estimate |An(un)| ≤ C2(T, ||µ||L∞(Ω)), we deduce that

sup
n

||(Φn(un))t||L1(ΩT )+L2(0,T,H−1(Ω)) < ∞.
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On the other hand, since |An(un)| ≤ |un|an(un) ≤ T ||µ||L∞(Ω)an(un), there holds

∫

ΩT

|∇Φn(un)|
2dxdt =

∫

ΩT

|An(un)|
2|∇un|

2dxdt ≤ T ||µ||L∞(Ω)

∫

ΩT

|an(un)|
2|∇un|

2dxdt

≤ T ||µ||L∞(Ω)

∫

ΩT

|∇An(un)|
2dxdt ≤ C3(T, ||µ||L∞(Ω)).

Therefore, Φn(un) is relatively compact in L1(ΩT ). Note that

Φn(s) =

{

m
2

(

1
n

)m
|s|2sign(s) if |s| ≤ 1

n

(m− 1)
(

1
n

)m (
|s| − 1

n

)

sign(s) + 1
m+1

(

|s|m+1 −
(

1
n

)m+1
)

sign(s) if 1
n ≤ |s| ≤ n.

So, for every n1, n2 ≥ n and |s1|, |s2| ≤ T ||µ||L∞(Ω),

1

m+ 1
||s1|

ms1 − |s2|
ms2| ≤ C4(m,T ||µ||L∞(Ω))

(

1

n

)m

+ |Φn1(s1)− Φn2(s2)|.

Hence, for any ε > 0,
∣

∣

∣

∣

{

1

m+ 1
||un1 |

mun1 − |un1 |
mun1 | > 2ε

}∣

∣

∣

∣

≤ | {|Φn1(un1)− Φn2(un2)| > ε} |,

for all n1, n2 ≥
(

C4(m,T ||µ||L∞(Ω))/ε
)1/m

. Thus, up to a subsequence {un} converges a.e in ΩT to a function
u. From (2.11) we can write

−

∫

ΩT

unϕtdxdt−

∫

ΩT

An(un)∆ϕdxdt +

∫

ΩT

g(un)ϕdxdt =

∫

ΩT

ϕdµ,

for any ϕ ∈ C2,1
c (ΩT ). Thanks to the dominated convergence Theorem we deduce that

−

∫

ΩT

uϕtdxdt−

∫

ΩT

|u|m−1u∆ϕdxdt+

∫

ΩT

g(u)ϕdxdt =

∫

ΩT

ϕdµ.

By Fatou’s lemma and (2.12) we also get |u|m ∈ L2((0, T );H1
0 (Ω)).

Furthermore, by the classic maximum principle, see [29, Theorem 9.7], if {ũn} is a sequence of solutions to

equations (2.11) where (g, µ) is replaced by (h, ν) such that ν ∈ Cb(ΩT ) with ν ≥ µ and h has the same

properties as g satisfying h ≤ g in R, then, un ≤ ũn. As n → ∞, we get u ≤ ũ. This achieves the proof.

Lemma 2.6 Let m > N−2
N and g : R → R be a nondecreasing function, such that g ∈ Cb(R), g(0) = 0,

and let µ ∈ Mb(ΩT ). There exists a very weak solution u of equation (2.10) which satisfies (2.7)-(2.8) and
∫

ΩT

|g(u)|dxdt ≤ |µ|(ΩT ), ||u||Lm+2/N,∞(ΩT ) ≤ C(|µ|(ΩT ))
N+2

mN+2 . (2.13)

where C = C(m,N) > 0. Moreover, the comparison principle holds for these solutions: if u1, u2 are very

weak solutions of (2.10) when (µ, g) is replaced by (µ1, g1) and (µ2, g2), where µ1, µ2 ∈ Mb(ΩT ) with µ1 ≥ µ2

and g1, g2 have the same properties as g with g1 ≤ g2 in R then u1 ≥ u2 in ΩT .
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Proof. Let {µn} be a sequence in C∞
c (ΩT ) converging to µ in Mb(ΩT ), such that |µn| ≤ ϕn ∗ |µ| and

|µn|(ΩT ) ≤ |µ|(ΩT ) for any n ∈ N where {ϕn} is a sequence of mollifiers in R
N+1. By Lemma 2.5 there

exists a very weak solution un of problem






(un)t −∆(|un|
m−1un) + g(un) = µn in ΩT ,

un = 0 on ∂Ω× (0, T ),
un(0) = 0 in Ω,

which satisfies for a.e (y, τ) ∈ ΩT ,

|un(y, τ)| ≤ C

((

|µ|(ΩT )

dN

)m1

+ |µ|(ΩT ) + 1 + ϕn ∗ I2d2 [|µ|](y, τ)

)

if m > 1,

|un(y, τ)| ≤ C

((

|µ|(ΩT )

dN

)m2

+ 1 +
(

ϕn ∗ I2d1
2 [|µ|](y, τ)

)
2

2−N(1−m)

)

if m ≤ 1,

and
∫

ΩT

|∇Tk(|un|
m−1un)|

2dxdt ≤ k|µ|(ΩT ), ∀k > 0, (2.14)

|{|un| > ℓ}| ≤ C1ℓ
− 2

N −m|µ|(ΩT )
N+2
N , ∀ℓ > 0, (2.15)

∫

ΩT

|g(un)|dxdt ≤ |µ|(ΩT ).

For l > 0, we consider Sl ∈ C2
c (R) such that

Sl(a) = |a|ma, for |a| ≤ l, and Sl(a) = (2l)m+1sign(a), for |a| ≥ 2l.

Then we find the relation in D
′

(ΩT ) :

(Sl(un))t − div
(

S
′

l (un)∇(|un|
m−1un)

)

+m|un|
m−1|∇un|

2S
′′

l (un) + g(un)S
′

l (un) = S
′

l (un)µn.

It leads to

||(Sl(un))t||L1(ΩT )+L2(0,T,H−1(Ω)) ≤ ||S
′

l (un)∇(|un|
m−1un)||L2(ΩT ) +m|||un|

m−1|∇un|
2S

′′

l (un)||L1(ΩT )

+ ||g(un)S
′

l (un)||L1(ΩT ) + ||S
′

l (un)µn||L1(ΩT ).

Since |S
′

l (un)| ≤ C2χ[−2l,2l](un) and |S
′′

l (un)| ≤ C3|un|
m−1χ[−2l,2l](un), we obtain

||(Sl(un))t||L1(ΩT )+L2(0,T,H−1(Ω)) ≤ C4

(

||∇T(2l)m(|un|
m−1un)||L2(ΩT ) + ||g||L∞(R)|ΩT |+ |µn|(ΩT )

)

.

So from (2.14) we deduce that {(Sl(un))t} is bounded in L1(ΩT ) + L2((0, T );H−1(Ω)) and for any n ∈ N,

||(Sl(un))t||L1(ΩT )+L2((0,T );H−1(Ω)) ≤ C4

(

(2l)m/2(|µ|(ΩT ))
1/2 + ||g||L∞(R)|ΩT |+ |µ|(ΩT )

)

.

Moreover, {Sl(un)} is bounded in L2(0, T,H1
0 (Ω)). Hence, {Sl(un)} is relatively compact in L1(ΩT ) for any

l > 0. Thanks to (2.15) we find

|{||un1 |
mun1 − |un1 |

mun1 | > ℓ}| ≤ |{|un1| > l}|+ |{|un2| > l}|+ |{|Sl(un1)− Sl(un2)| > ℓ}|

≤ 2C2l
− 2

N −m|µ|(ΩT )
N+2
N + |{|Sl(un1)− Sl(un2)| > ℓ}|.
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Thus, up to a subsequence {un} converges a.e in ΩT to a function u. Consequently, u is a very weak solution

of equation (2.10) and satisfies (2.13) and (2.7)-(2.8). The other conclusions follow in the same way.

Remark 2.7 If supp(µ) ⊂ Ω × [a, T ] for a > 0, then the solution u in Lemma 2.6 satisfies u = 0 in

Ω× [0, a).

Now we recall the important property of Radon measures which was proved in [6] and [34].

Proposition 2.8 Let s > 1 and µ ∈ M+
b (ΩT ). If µ is absolutely continuous with respect to Cap2,1,s′ in

ΩT , there exists a nondecreasing sequence {µn} ⊂ M+
b (ΩT ), with compact support in ΩT which converges to

µ weakly in Mb(ΩT ) and satisfies I
R
2 [µn] ∈ Ls

loc(R
N+1) for all R > 0.

Next we prove Theorem 1.3 in several steps of approximation:

Proof of Theorem 1.3. First suppose m > 1. Assume that µ, σ are absolutely continuous with
respect to the capacities Cap2,1,q′ in ΩT and CapG 2

q
,q′ in Ω. Then σ+ ⊗ δ{t=0} + µ+, σ− ⊗ δ{t=0} + µ− are

absolutely continuous with respect to the capacities Cap2,1,q′ in Ω × (−T, T ). Applying Proposition 2.8 to
σ+ ⊗ δ{t=0} + µ+, σ− ⊗ δ{t=0} + µ−, there exist two nondecreasing sequences {υ1,n} and {υ2,n} of positive
bounded measures with compact support in Ω × (−T, T ) which converge respectively to σ+ ⊗ δ{t=0} + µ+

and σ−⊗δ{t=0}+µ− in Mb(Ω× (−T, T )) and such that I2d1
2 [υ1,n], I

2d1
2 [υ2,n] ∈ Lq(Ω× (−T, T )) for all n ∈ N.

By Lemma 2.6, there exists a sequence {un1,n2,k1,k2} of of weak solution of the problems















(un1,n2,k1,k2)t −∆(|un1,n2,k1,k2 |
m−1un1,n2,k1,k2) + Tk1((u

+
n1,n2,k1,k2

)q)

− Tk2((u
−
n1,n2,k1,k2

)q) = υ1,n1 − υ2,n2 in Ω× (−T, T ),

un1,n2,k1,k2 = 0 on ∂Ω× (−T, T ),
un1,n2,k1,k2(−T ) = 0 in Ω,

which satisfy

|un1,n2,k1,k2 | ≤ C

((

|σ|(Ω) + |µ|(ΩT )

dN

)m1

+ |σ|(Ω) + |µ|(ΩT ) + 1 + I
2d
2 [υ1,n1 + υ2,n2 ]

)

, (2.16)

and
∫

ΩT

Tk1((u
+
n1,n2,k1,k2

)q)dxdt+

∫

ΩT

Tk2((u
−
n1,n2,k1,k2

)q)dxdt ≤ |µ|(ΩT ).

Moreover, for any n1 ∈ N, k2 > 0, {un1,n2,k1,k2}n2,k1 is non-increasing and for any n2 ∈ N, k1 > 0,

{un1,n2,k1,k2}n1,k2 is non-decreasing. Therefore, thanks to the fact that I
2d1
2 [υ1,n], I

2d1
2 [υ2,n] ∈ Lq(Ω ×

(−T, T )) and from (2.16) and the dominated convergence Theorem, we deduce that un1,n2 = lim
k1→∞

lim
k2→∞

un1,n2,k1,k2

is a very weak solution of







(un1,n2)t −∆(|un1,n2 |
m−1un1,n2) + |un1,n2 |

q−1un1,n2 = υ1,n1 − υ2,n2 in Ω× (−T, T ),
un1,n2 = 0 on ∂Ω× (−T, T ),
un1,n2(−T ) = 0 in Ω.
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And (2.16) is true when un1,n2,k1,k2 is replaced by un1,n2 . Note that {un1,n2}n1 is non-increasing, {un1,n2}n2

is non-decreasing and
∫

ΩT

|un1,n2 |
qdxdt ≤ |µ|(ΩT ) ∀ n1, n2 ∈ N.

From the monotone convergence Theorem we obtain that u = lim
n2→∞

lim
n1→∞

un1,n2 is a very weak solution of







ut −∆(|u|m−1u) + |u|q−1u = σ ⊗ δ{t=0} + χΩT µ in Ω× (−T, T ),
u = 0 on ∂Ω× (−T, T ),
u(−T ) = 0 in Ω.

which u = 0 in Ω× (−T, 0) and u satisfies (1.3). Clearly, u is a very weak solution of equation (1.1).

Next suppose m ≤ 1. The proof is similar, with the new capacitary assumptions and (1.3) is replaced by

(1.4).

We also obtain the subcritical case.

Theorem 2.9 Let m > N−2
N and 0 < q < m + 2

N . Then problem (1.1) has a very weak solution for any

µ ∈ Mb(ΩT ) and σ ∈ Mb(Ω).

Proof. As the proof of Theorem 1.3, we can reduce to the case σ = 0. By Lemma 2.6, there exists a
very weak solution uk1,k2 of







(uk1,k2)t −∆(|uk1,k2 |
m−1uk1,k2) + Tk1((u

+
k1,k2

)q)− Tk2((u
−
k1,k2

)q) = µ in ΩT ,

un = 0 on ∂Ω× (0, T ),
un(0) = 0 in Ω.

such that {uk1,k2}k1 and {uk1,k2}k2 are monotone sequences and

||uk1,k2 ||Lm+2/N,∞(ΩT ) ≤ C(|µ|(ΩT ))
N+2

mN+2 .

In particular, {uk1,k2} is a uniformly bounded in Ls(ΩT ) for any 0 < s < m+ 2
N .

Therefore, we get that u = lim
k2→∞

lim
k1→∞

uk1,k2 is a very weak solution of (1.1). This completes the proof.

Next, from an idea of [7, Theorem 2.3], we obtain an existence result for measures which present a good

behaviour in time:

Theorem 2.10 Let m > N−2
N , q > max(1,m) and f ∈ L1(ΩT ), µ ∈ Mb(ΩT ), such that

|µ| ≤ ω ⊗ F for some ω ∈ M+
b (Ω) and F ∈ L1

+((0, T )).

If ω is absolutely continuous with respect to the capacity CapG2,
q

q−m
in Ω, then there exists a very weak

solution to problem






ut −∆(|u|m−1u) + |u|q−1u = f + µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0.

(2.17)
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Proof. For R ∈ (0,∞], we define the R-truncated Riesz elliptic potential of a measure ν ∈ M+
b (Ω) by

IR2 [ν](x) =

∫ R

0

ν(Bρ(x))

ρN−2

dρ

ρ
∀x ∈ Ω.

By [8, Theorem 2.6],there exists sequence {ωn} ⊂ M+
b (Ω) with compact support in Ω which converges to ω

in Mb(Ω) and such that I
2diam(Ω)
2 [ωn] ∈ Lq/m(Ω) for any n ∈ N. We can write

f + µ = µ1 − µ2, µ1 = f+ + µ+, µ2 = f− + µ−,

and µ+, µ− ≦ ω ⊗ F. We set

µ1,n = Tn(f
+) + inf{µ+, ωn ⊗ Tn(F )}, µ2,n = Tn(f

−) + inf{µ−, ωn ⊗ Tn(F )}.

Then {µ1,n} , {µ2,n} are nondecreasing sequences converging to µ1, µ2 respectively inMb(ΩT ) and µ1,n, µ2,n ≤

ω̃n ⊗ χ(0,T ), with ω̃n = n(χΩ + ωn) and I
2diam(Ω)
2 [ω̃n] ∈ Lq/m(Ω). As in the proof of Theorem 1.3, there

exists a sequence of weak solution {un1,n2,k1,k2} of equations















(un1,n2,k1,k2)t −∆(|un1,n2,k1,k2 |
m−1un1,n2,k1,k2) + Tk1((u

+
n1,n2,k1,k2

)q)

− Tk2((u
−
n1,n2,k1,k2

)q) = µ1,n1 − µ2,n2 in ΩT ,

un1,n2,k1,k2 = 0 on ∂Ω× (0, T ),
un1,n2,k1,k2(0) = 0 in Ω.

(2.18)

Using the comparison principle as in [7], we can assume that

−vn2 ≤ |un1,n2,k1,k2 |
m−1un1,n2,k1,k2 ≤ vn1 ,

where for any n ∈ N, vn is a nonnegative weak solution of

{

−∆vn = ω̃n in Ω,
un = 0 on ∂Ω,

such that
vn ≤ c1I

2diam(Ω)
2 [ω̃n] ∀ n ∈ N.

Hence, utilizing the arguments in the proof of Theorem 1.3, it is easy to obtain the result as desired.

It is easy to show that ω ⊗χ[0,T ] is absolutely continuous with respect to the capacities Cap2,1, q
q−m ,q′ in

ΩT if any only if ω is absolutely continuous with respect to the capacities CapG2,
q

q−m
in Ω. Consequently,

we obtain the following:

Corollary 2.11 Let m > N−2
N , q > max(1,m) and ω ∈ Mb(Ω). Then, ω is absolutely continuous with

respect to the capacities CapG2,
q

q−m
in Ω if and only if there exists a very weak solution of problem







ut −∆(|u|m−1u) + |u|q−1u = ω ⊗ χ[0,T ] in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω.

(2.19)
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3 p−Laplacian evolution equation

Here we consider solutions in the week sense of distributions, or in the renormalized sense,.

3.1 Distribution solutions

Definition 3.1 Let µ ∈ Mb(ΩT ), σ ∈ Mb(Ω) and B ∈ C(R). A measurable function u is a distribution

solution to problem (3.1) if u ∈ Ls(0, T,W 1,s
0 (Ω)) for any s ∈

[

1, p− N
N+1

)

, and B(u) ∈ L1(ΩT ), such that

−

∫

ΩT

uϕtdxdt+

∫

ΩT

|∇u|p−2∇u.∇ϕdxdt+

∫

ΩT

B(u)ϕdxdt =

∫

ΩT

ϕdµ+

∫

Ω

ϕ(0)dσ,

for every ϕ ∈ C1
c (Ω× [0, T )).

Remark 3.2 Let σ′ ∈ Mb(Ω) and a′ ∈ (0, T ), set ω = µ+ σ′ ⊗ δ{t=a′}. Let u is a distribution solution to

problem (3.1) with data ω and σ = 0, such that supp(µ) ⊂ Ω × [a′, T ], and u = 0, B(u) = 0 in Ω × (0, a′).

Then ũ := u|Ω×[a′,T ) is a distribution solution to problem (3.1) in Ω× (a′, T ) with data µ and σ′.

3.2 Renormalized solutions

The notion of renormalized solution is stronger. It was first introduced by Blanchard and Murat [10] to

obtain uniqueness results for the p-Laplace evolution problem for L1 data µ and σ, and developed by Petitta

[35] for measure data µ. It requires a decomposition of the measure µ, that we recall now.

Let M0(ΩT ) be the space of Radon measures in ΩT which are absolutely continuous with respect to the
Cp-capacity, defined at (1.6), and Ms(ΩT ) be the space of measures in ΩT with support on a set of zero
Cp-capacity. Classically, any µ ∈ Mb(ΩT ) can be written in a unique way under the form µ = µ0+µs where
µ0 ∈ M0(ΩT ) ∩Mb(ΩT ) and µs ∈ Ms(ΩT ). In turn µ0 can be decomposed under the form

µ0 = f − div g + ht,

where f ∈ L1(ΩT ), g ∈ (Lp′

(ΩT ))
N and h ∈ Lp(0, T ;W 1,p

0 (Ω)), see [20]; and we say that (f, g, h) is a
decomposition of µ0. We say that a sequence of {µn} in Mb(ΩT ) converges to µ ∈ Mb(ΩT ) in the narrow
topology of measures if

lim
n→∞

∫

ΩT

ϕdµn =

∫

ΩT

ϕdµ ∀ϕ ∈ C(ΩT ) ∩ L∞(ΩT ).

We recall that if u is a measurable function defined and finite a.e. in ΩT , such that Tk(u) ∈ Lp(0, T,W 1,p
0 (Ω))

for any k > 0, there exists a measurable function v : ΩT → R
N such that ∇Tk(u) = χ|u|≤kv a.e. in ΩT and

for all k > 0. We define the gradient ∇u of u by v = ∇u.
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Definition 3.3 Let p > 2N+1
N+1 and µ = µ0 + µs ∈ Mb(ΩT ), σ ∈ L1(Ω) and B ∈ C(R). A measurable

function u is a renormalized solution of






ut −∆pu+B(u) = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

(3.1)

if there exists a decomposition (f, g, h) of µ0 such that

v = u− h ∈ Ls((0, T );W 1,s
0 (Ω)) ∩ L∞((0, T );L1(Ω)), ∀s ∈

[

1, p−
N

N + 1

)

,

Tk(v) ∈ Lp((0, T );W 1,p
0 (Ω)) ∀k > 0, B(u) ∈ L1(ΩT ), (3.2)

and:

(i) for any S ∈ W 2,∞(R) such that S′ has compact support on R, and S(0) = 0,

−

∫

Ω

S(σ)ϕ(0)dx −

∫

ΩT

ϕtS(v)dxdt +

∫

ΩT

S′(v)|∇u|p−2∇u∇ϕdxdt

+

∫

ΩT

S′′(v)ϕ|∇u|p−2∇u∇vdxdt+

∫

ΩT

S′(v)ϕB(u)dxdt =

∫

ΩT

(fS′(v)ϕ+ g.∇(S′(v)ϕ)dxdt (3.3)

for any ϕ ∈ Lp((0, T );W 1,p
0 (Ω)) ∩ L∞(ΩT ) such that ϕt ∈ Lp′

((0, T );W−1,p′

(Ω)) + L1(ΩT ) and ϕ(., T ) = 0;

(ii) for any φ ∈ C(ΩT ),

lim
m→∞

1

m

∫

{m≤v<2m}

φ|∇u|p−2∇u∇vdxdt =

∫

ΩT

φdµ+
s and (3.4)

lim
m→∞

1

m

∫

{−m≥v>−2m}

φ|∇u|p−2∇u∇vdxdt =

∫

ΩT

φdµ−
s . (3.5)

We first mention a convergence result of [7].

Proposition 3.4 Let {µn} be bounded in Mb(ΩT ) and {σn} be bounded in L1(Ω), and B ≡ 0. Let un be

a renormalized solution of (3.1) with data µn = µn,0 + µn,s relative to a decomposition (fn, gn, hn) of µn,0

and initial data σn. If {fn} is bounded in L1(ΩT ), {gn} bounded in (Lp′

(ΩT ))
N and {hn} convergent in

Lp(0, T,W 1,p
0 (Ω)), then, up to a subsequence, {un} converges to a function u in L1(ΩT ). Moreover, if {µn}

is bounded in L1(ΩT ) then {un} is convergent in Ls(0, T,W 1,s
0 (Ω)) for any s ∈

[

1, p− N
N+1

)

.

Next we recall the fundamental stability result of [7].

Theorem 3.5 Suppose that p > 2N+1
N+1 and B ≡ 0. Let σ ∈ L1(Ω) and

µ = f − divg + ht + µ+
s − µ−

s ∈ Mb(ΩT ),
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with f ∈ L1(ΩT ), g ∈ (Lp′

(ΩT ))
N , h ∈ Lp((0, T );W 1,p

0 (Ω)) and µ+
s , µ

−
s ∈ M+

s (ΩT ). Let σn ∈ L1(Ω) and

µn = fn − divgn + (hn)t + ρn − ηn ∈ Mb(ΩT ),

with fn ∈ L1(ΩT ), gn ∈ (Lp′

(ΩT ))
N , hn ∈ Lp((0, T );W 1,p

0 (Ω)), and ρn, ηn ∈ M+
b (ΩT ), such that

ρn = ρ1n − div ρ2n + ρn,s, ηn = η1n − div η2n + ηn,s,

with ρ1n, η
1
n ∈ L1(ΩT ), ρ

2
n, η

2
n ∈ (Lp′

(ΩT ))
N and ρn,s, ηn,s ∈ M+

s (ΩT ).

Assume that {µn} is bounded in Mb(ΩT ), {σn}, {fn}, {gn}, {hn} converge to σ, f, g, h in L1(Ω), weakly
in L1(ΩT ), in (Lp′

(ΩT ))
N ,in Lp(0, T,W 1,p

0 (Ω)) respectively and {ρn}, {ηn} converge to µ+
s , µ

−
s in the narrow

topology of measures; and
{

ρ1n
}

,
{

η1n
}

are bounded in L1(ΩT ), and
{

ρ2n
}

,
{

η2n
}

bounded in (Lp′

(ΩT ))
N .

Let {un} be a sequence of renormalized solutions of







(un)t −∆pun = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn in Ω,

(3.6)

relative to the decomposition (fn + ρ1n − η1n, gn + ρ2n − η2n, hn) of µn,0. Let vn = un − hn.

Then up to a subsequence, {un} converges a.e. in ΩT to a renormalized solution u of (3.1), and {vn}

converges a.e. in ΩT to v = u − h. Moreover, {∇vn} converge to ∇v a.e in ΩT , and {Tk(vn)} converges to

Tk(v) strongly in Lp(0, T,W 1,p
0 (Ω)) for any k > 0.

In order to apply this Theorem, we need some the following properties concerning approximate measures

of µ ∈ M+
b (ΩT ), see also [7].

Proposition 3.6 Let µ = µ0 + µs ∈ M+
b (ΩT ), µ0 ∈ M0(ΩT ) ∩ M+

b (ΩT ) and µs ∈ Ms(ΩT ). Let
{ϕ1,n} , {ϕ2,n} be sequences of mollifiers in R

N ,R respectively. There exists a sequence of measures µn,0 =

(fn, gn, hn), such that fn, gn, hn, µn,s ∈ C∞
c (ΩT ) and strongly converge to f, g, h in L1(ΩT ), (L

p′

(ΩT ))
N and

Lp((0, T );W 1,p
0 (Ω)) respectively, µn,s converges to µs ∈ M+

s (ΩT ), and µn = µn,0 + µn,s converges to µ, in
the narrow topology, and satisfying 0 ≤ µn ≤ (ϕ1,nϕ2,n) ∗ µ, and

||fn||L1(ΩT ) + ‖gn‖(Lp′(ΩT ))N + ||hn||Lp(0,T,W 1,p
0 (Ω)) + µn,s(ΩT ) ≤ 2µ(ΩT ) for any n ∈ N.

Proposition 3.7 Let µ = µ0 + µs, µn = µn,0 + µn,s ∈ M+
b (ΩT ) with µ0, µn,0 ∈ M0(ΩT ) ∩ M+

b (ΩT )
and µn,s, µs ∈ M+

s (ΩT ) such that {µn} is nondecreasing and converges to µ in Mb(ΩT ). Then, {µn,s} is
nondecreasing and converging to µs in Mb(ΩT ); and there exist decompositions (f, g, h) of µ0, (fn, gn, hn) of
µn,0 such that {fn} , {gn} , {hn} strongly converge to f, g, h in L1(ΩT ), (L

p′

(ΩT ))
N and Lp((0, T );W 1,p

0 (Ω))
respectively, satisfying

||fn||L1(ΩT ) + ‖gn‖(Lp′(ΩT ))N + ||hn||Lp((0,T );W 1,p
0 (Ω)) + µn,s(ΩT ) ≤ 2µ(ΩT ) for any n ∈ N.
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3.3 Proof of Theorem 1.5

Here the crucial point is a result of Liskevich, Skrypnik and Sobol [30] for the p-Laplace evolution problem

without absorption:

Theorem 3.8 Let p > 2, and µ ∈ Mb(ΩT ). If u ∈ C([0, T ];L2
loc(Ω))∩Lp

loc(0, T,W
1,p
loc (Ω)) is a distribution

solution to equation
ut −∆pu = µ in ΩT ,

then there exists C = C(N, p) such that, for every Lebesgue point (x, t) ∈ ΩT of u and any ρ > 0 such that
Qρ,ρp(x, t) := Bρ(x) × (t− ρp, t+ ρp) ⊂ ΩT one has

|u(x, t)| ≤ C



1 +

(

1

ρN+p

∫

Qρ,ρp (x,t)

|u|(λ+1)(p−1)

)
1

1+λ(p−1)

+Pρ
p[µ](x, t)



 , (3.7)

where λ = min{1/(p− 1), 1/N} and

Pρ
p[µ](x, t) =

∞
∑

i=0

Dp(ρi)(x, t),

Dp(ρi)(x, t) = inf
τ>0

{

(p− 2)τ−
1

p−2 +
1

2(p− 1)p−1

|µ|(Qρi,τρ
p
i
(x, t))

ρNi

}

,

with ρi = 2−iρ, Qρ,τρp(x, t) = Bρ(x) × (t− τρp, t+ τρp).

As a consequence, we deduce the following estimate:

Proposition 3.9 If u is a distribution solution of problem







ut −∆pu = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = 0 in Ω,

with data µ ∈ Cb(ΩT ). Then there exists C = C(N, p) such that for a.e. (x, t) ∈ ΩT ,

|u(x, t)| ≤ C

(

1 +D +

(

|µ|(ΩT )

DN

)m3

+ I
2D
2 [|µ|](x, t)

)

, (3.8)

where m3 and D are defined at (1.8).

Proof. Let x0 ∈ Ω andQ = B2D(x0)×(−(2D)p, (2D)p). Let U ∈ C(Q)∩Lp((−(2D)p, (2D)p);W 1,p
0 (B2D(x0)))

be the distribution solution of






Ut −∆pU = χΩT |µ| in Q,
u = 0 on ∂B2D(x0)× (−(2D)p, (2D)p),
u(−(2D)p) = 0 in B2D(x0),

(3.9)
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where for x0 ∈ Ω. Thus, by Theorem 3.8 we have, for any (x, t) ∈ ΩT ,

U(x, t) ≤ c1



1 +

(

1

DN+p

∫

QD,Dp (x,t)

|U |(λ+1)(p−1)

)
1

1+λ(p−1)

+PD
p [µ](x, t)



 , (3.10)

where QD,Dp(x, t) = BD(x) × (t−Dp, t+Dp).

According to Proposition 4.8 and Remark 4.9 of [7], there exists a constant C2 > 0 such that

|{|U | > ℓ}| ≤ c2(|µ|(ΩT ))
p+N
N ℓ−p+1− p

N ∀ℓ > 0.

Thus, for any ℓ0 > 0,

∫

Q

|U |(λ+1)(p−1)dxdt = (λ+ 1)(p− 1)

∫ ∞

0

ℓ(λ+1)(p−1)−1|{|U | > ℓ}|dℓ

= (λ+ 1)(p− 1)

∫ ℓ0

0

ℓ(λ+1)(p−1)−1|{|U | > ℓ}|dℓ+ (λ+ 1)(p− 1)

∫ ∞

ℓ0

ℓ(λ+1)(p−1)−1|{|U | > ℓ}|dℓ

≤ c3D
N+pℓ

(λ+1)(p−1)
0 + c4ℓ

(λ+1)(p−1)−p+1− p
N

0 (|µ|(ΩT ))
p+N
N .

Choosing ℓ0 =
(

|µ|(ΩT )
DN

)
N+p

(p−1)N+p

, we get

∫

Q

|U |(λ+1)(p−1)dxdt ≤ c5D
N+p

(

|µ|(ΩT )

DN

)

(N+p)(λ+1)(p−1)
(p−1)N+p

. (3.11)

Next we show that
Pd2

p [µ](x, t) ≤ (p− 2)D + c6I
2D
2 [|µ|](x, t). (3.12)

Indeed, we have

Dp(ρi)(x, t) ≤ (p− 2)ρi +
1

2(p− 1)p−1

|µ|(Q̃ρi(x, t))

ρNi
,

where ρi = 2−iD. Thus,

PD
p [µ](x, t) ≤ (p− 2)D +

1

2(p− 1)p−1

∞
∑

i=0

|µ|(Q̃ρi(x, t))

ρNi

≤ (p− 2)D + C5

∫ 2D

0

|µ|(Q̃ρ(x, t))

ρN
dρ

ρ
.

So from (3.11), (3.12) and (3.10) we get, for any (x, t) ∈ ΩT ,

|U(x, t)| ≤ C

(

1 +D +

(

|µ|(ΩT )

DN

)m3

+ I
2D
2 [|µ|](x, t)

)

.

By the comparison principle we get |u| ≤ U in ΩT , thus (3.8) follows.
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Proposition 3.10 Let p > 2, and µ ∈ Mb(ΩT ), σ ∈ Mb(Ω). There exists a distribution solution u of
problem







ut −∆pu = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ.

(3.13)

which satisfies for any (x, t) ∈ ΩT

|u(x, t)| ≤ C

(

1 +D +

(

|σ|(Ω) + |µ|(ΩT )

DN

)m3

+ I
2D
2

[

|σ| ⊗ δ{t=0} + |µ|
]

(x, t)

)

, (3.14)

where C = C(N, p). Moreover, if σ ∈ L1(Ω), u is a renormalized solution.

Proof. Let {ϕ1,n}, {ϕ2,n} be sequences of standard mollifiers in R
N and R. Let µ = µ0+µs ∈ Mb(ΩT ),

with µ0 ∈ M0(ΩT ), µs ∈ Ms(ΩT ). By Lemma 3.6, there exist sequences of nonnegative measures µn,0,i =
(fn,i, gn,i, hn,i) and µn,s,i such that fn,i, gn,i, hn,i ∈ C∞

c (ΩT ) and strongly converge to some fi, gi, hi in

L1(ΩT ), (L
p′

(ΩT ))
N and Lp((0, T );W 1,p

0 (Ω)) respectively, and µn,1, µn,2, µn,s,1, µn,s,2 ∈ C∞
c (ΩT ) converge

to µ+, µ−, µ+
s , µ

−
s in the narrow topology, with µn,i = µn,0,i + µn,s,i, for i = 1, 2, and satisfying

µ+
0 = (f1, g1, h1), µ

−
0 = (f2, g2, h2) and 0 ≤ µn,1 ≤ (ϕ1,nϕ2,n) ∗ µ

+, 0 ≤ µn,2 ≤ (ϕ1,nϕ2,n) ∗ µ
−.

Let σ1,n, σ2,n ∈ C∞
c (Ω), converging to σ+ and σ− in the narrow topology, and in L1(Ω) if σ ∈ L1(Ω), such

that
0 ≤ σ1,n ≤ ϕ1,n ∗ σ+, 0 ≤ σ2,n ≤ ϕ1,n ∗ σ−.

Set µn = µn,1 − µn,2 and σn = σ1,n − σ2,n.
Let un be solution of the approximate problem







(un)t −∆pun = µn in ΩT ,
un = 0 on ∂Ω× (0, T ),
un(0) = σn on Ω.

(3.15)

Let gn,m(x, t) = σn(x)
∫ t

−T ϕ2,m(s)ds. As in proof of Theorem 2.1 in [34], by Theorem 3.5, there exists a
sequence {un,m}m of solutions of the problem







(un,m)t −∆pun,1,m = (gn,m)t + χΩT µn in Ω× (−T, T ),
un,1,m = 0 on ∂Ω× (−T, T ),
un,m(−T ) = 0 on Ω,

(3.16)

which converges to un in Ω× (0, T ). By Proposition 3.9, there holds, for any (x, t) ∈ ΩT ,

|un,m(x, t)| ≤ C

(

1 +D +

(

|µn|(ΩT ) + (|σn| ⊗ ϕ2,m)(Ω× (−T, T ))

DN

)m3

+ I
2D
2 [|µn|+ |σn| ⊗ ϕ2,m](x, t)

)

.

Therefore

|un,m(x, t)| ≤ C

(

1 +D +

(

|µn|(ΩT ) + (|σn| ⊗ ϕ2,m)(Ω× (−T, T ))

DN

)m3
)

+ C(ϕ1,nϕ2,m) ∗ I2D2 [|µ|+ |σ| ⊗ δ{t=0}](x, t).
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Letting m → ∞, we get

|un(x, t)| ≤ C

(

1 +D +

(

|µn|(ΩT ) + |σn|(Ω)

DN

)m3
)

+ c1(ϕ1,n) ∗ (I
2D
2 [|µ|+ |σ| ⊗ δ{t=0}](., t))(x).

Therefore, by Proposition 3.4 and Theorem 3.5 , up to a subsequence, {un} converges to a distribution

solution u of (3.13) (a renormalized solution if σ ∈ L1(Ω)), and satisfying (3.14).
Proof of Theorem 1.5. Step 1. First, assume that σ ∈ L1(Ω). Because µ is absolutely continuous

with respect to the capacity Cap2,1,q′ , so are µ+ and µ−. Applying Proposition 2.8 to µ+, µ−, there exist
two nondecreasing sequences {µ1,n} and {µ2,n} of positive bounded measures with compact support in ΩT

which converge to µ+ and µ− in Mb(ΩT ) respectively and such that I
2D
2 [µ1,n], I

2D
2 [µ2,n] ∈ Lq(ΩT ) for all

n ∈ N.
For i = 1, 2, set µ̃i,1 = µi,1 and µ̃i,j = µi,j − µi,j−1 ≥ 0, so µi,n =

∑n
j=1 µ̃i,j . We write

µi,n = µi,n,0 + µi,n,s, µ̃i,j = µ̃i,j,0 + µ̃i,j,s, with µi,n,0, µ̃i,n,0 ∈ M0(ΩT ), µi,n,s, µ̃i,n,s ∈ Ms(ΩT ).

Let {ϕm} be a sequence of mollifiers in R
N+1. As in the proof of Proposition 3.10, for any j ∈ N and

i = 1, 2, there exist sequences of nonnegative measures µ̃m,i,j,0 = (fm,i,j , gm,i,j, hm,i,j) and µ̃m,i,j,s such

that fm,i,j, gm,i,j , hm,i,j ∈ C∞
c (ΩT ) strongly converge to some fi,j , gi,j , hi,j in L1(ΩT ), (L

p′

(ΩT ))
N and

Lp(0, T,W 1,p
0 (Ω)) respectively; and µ̃m,i,j , µ̃m,i,j,s ∈ C∞

c (ΩT ) converge to µ̃i,j , µ̃i,j,s in the narrow topol-
ogy with µ̃m,i,j = µ̃m,i,j,0 + µ̃m,i,j,s, which satisfy µ̃i,j,0 = (fi,j , gi,j, hi,j), and

0 ≤ µ̃m,i,j ≤ ϕm ∗ µ̃i,j , µ̃m,i,j(ΩT ) ≤ µ̃i,j(ΩT ),

||fm,i,j ||L1(ΩT ) + ‖gm,i,j‖(Lp′(ΩT ))N + ||hm,i,j ||Lp(0,T,W 1,p
0 (Ω)) + µm,i,j,s(ΩT ) ≤ 2µ̃i,j(ΩT ). (3.17)

Note that, for any n,m ∈ N,

n
∑

j=1

(µ̃m,1,j + µ̃m,2,j) ≤ ϕm ∗ (µ1,n + µ2,n) and

n
∑

j=1

(µ̃m,1,j(ΩT ) + µ̃m,2,j(ΩT )) ≤ |µ|(ΩT ).

For any n, k,m ∈ N, let un,k,m, vn,k,m ∈ W be solutions of problems







(un,k,m)t −∆pun,k,m + Tk(|un,k,m|q−1un,k,m) =
∑n

j=1(µ̃m,1,j − µ̃m,2,j) in ΩT ,

un,k,m = 0 on ∂Ω× (0, T ),
un,k,m(0) = Tn(σ

+)− Tn(σ
−) on Ω,

(3.18)

and






(vn,k,m)t −∆pvn,k,m + Tk(v
q
n,k,m) =

∑n
j=1(µ̃m,1,j + µ̃m,2,j) in ΩT ,

vn,k,m = 0 on ∂Ω× (0, T ),
vn,k,m(0) = Tn(|σ|) on Ω.

(3.19)

By the comparison principle and Proposition 2.8 we have for any m, k the sequences {vn,k,m}n is increasing
and

|un,k,m| ≤ vn,k,m ≤ c1

(

1 +D +

(

|σ|(Ω) + |µ|(ΩT )

DN

)m3

+ I
2D
2

[

Tn(|σ|)⊗ δ{t=0}

]

)

+ c1ϕm ∗ I2D2 [µ1,n + µ2,n] .
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Moreover,
∫

ΩT

Tk(v
q
n,k,m)dxdt ≤ |µ|(ΩT ) + |σ|(Ω).

As in [7, Proof of Lemma 6.4], thanks to Proposition 3.4 and Theorem 3.5, up to subsequences, {un,k,m}m
converge to a renormalized solutions un,k of problem







(un,k)t −∆pun,k + Tk(|un,k|
q−1un,k) = µ1,n − µ2,n in ΩT ,

un,k = 0 on ∂Ω× (0, T ),
un,k(0) = Tn(σ

+)− Tn(σ
−) on Ω,

relative to the decomposition (
∑n

j=1 f1,j−
∑n

j=1 f2,j ,
∑n

j=1 g1,j−
∑n

j=1 g2,j ,
∑n

j=1 h1,j−
∑n

j=1 h2,j) of µ1,n,0−
µ2,n,0; and {vn,k,m}m converge to a solution vn,k of







(vn,k)t −∆pvn,k + Tk(v
q
n,k) = µ1,n + µ2,n in ΩT ,

vn,k = 0 on ∂Ω× (0, T ),
vn,k(0) = Tn(|σ|) on Ω.

relative to the decomposition (
∑n

j=1 f1,j+
∑n

j=1 f2,j ,
∑n

j=1 g1,j+
∑n

j=1 g2,j ,
∑n

j=1 h1,j+
∑n

j=1 h2,j) of µ1,n,0+
µ2,n,0. And there holds

|un,k| ≤ vn,k ≤ C

(

1 +D +

(

|σ|(Ω) + |µ|(ΩT )

DN

)m3

+ I
2D
2

[

Tn(|σ|)⊗ δ{t=0}

]

)

+ CI
2D
2 [µ1,n + µ2,n] .

Observe that I
2D
2 [µ1,n + µ2,n] ∈ Lq(ΩT ) for any n ∈ N. Then, as in [7, Proof of Lemma 6.5], thanks to

Proposition 3.4 and Theorem 3.5, up to a subsequence, {un,k}k {vn,k}k converge to renormalized solutions
un, vn of problems







(un)t −∆pun + |un|
q−1un = µ1,n − µ2,n in ΩT ,

un = 0 on ∂Ω× (0, T ),
un(0) = Tn(σ

+)− Tn(σ
−) in Ω,

(3.20)







(vn)t −∆pvn + vqn = µ1,n + µ2,n in ΩT ,
vn = 0 on ∂Ω× (0, T ),
vn(0) = Tn(|σ|) in Ω,

(3.21)

which still satisfy

|un| ≤ vn ≤ C

(

1 +D +

(

|σ|(Ω) + |µ|(ΩT )

DN

)m3

+ I
2D
2

[

Tn(|σ|) ⊗ δ{t=0}

]

)

+ CI
2D
2 [µ1,n + µ2,n] .

and the sequence {vn}n is increasing and

∫

ΩT

vqndxdt ≤ |µ|(ΩT ) + |σ|(Ω).

Note that from (3.17) we have

||fi,j ||L1(ΩT ) + ‖gi,j‖(Lp′(ΩT ))N + ||hi,j ||Lp(0,T,W 1,p
0 (Ω)) ≤ 2µ̃i,j(ΩT ),
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which implies

||

n
∑

j=1

fi,j ||L1(ΩT ) + ||

n
∑

j=1

gi,j ||(Lp′(ΩT ))N + ||

n
∑

j=1

hi,j ||Lp(0,T,W 1,p
0 (Ω)) ≤ 2µ̃i,n(ΩT ) ≤ 2|µ|(ΩT ).

Finally, as in [7, Proof of Theorem 6.3], from Proposition 3.4, Theorem 3.5 and the monotone convergence
Theorem, up to subsequences {un}n, {vn}n converge to a renormalized solutions u, v of problem







ut −∆pu+ |u|q−1u = µ in ΩT ,
u = 0 on ∂Ω× (0, T ),
u(0) = σ in Ω,

relative to the decomposition (
∑∞

j=1 f1,j −
∑∞

j=1 f2,j ,
∑∞

j=1 g1,j −
∑∞

j=1 g2,j,
∑∞

j=1 h1,j −
∑∞

j=1 h2,j) of µ0.
And







vt −∆pv + vq = |µ| in ΩT ,
v = 0 on ∂Ω× (0, T ),
v(0) = |σ| in Ω,

relative to the decomposition (
∑∞

j=1 f1,j +
∑∞

j=1 f2,j,
∑∞

j=1 g1,j +
∑∞

j=1 g2,j ,
∑∞

j=1 h1,j +
∑∞

j=1 h2,j) of |µ0|
respectively; and

|u| ≤ v ≤ C

(

1 +D +

(

|σ|(Ω) + |µ|(ΩT )

DN

)m3

+ I
2D
2

[

|σ| ⊗ δ{t=0} + |µ|
]

)

Remark that, if σ ≡ 0 and supp(µ) ⊂ Ω× [a, T ], a > 0, then u = v = 0in Ω× (0, a), since un,k = vn,k = 0 in
Ω× (0, a).

Step 2. We consider any σ ∈ Mb(Ω) such that σ is absolutely continuous with respect to the capacity
CapG 2

q
,q′ in Ω. So, µ+σ⊗δ{t=0} is absolutely continuous with respect to the capacity Cap2,1,q′ in Ω×(−T, T ).

As above, we verify that there exists a renormalized solution u of






ut −∆pu+ |u|q−1u = χΩT µ+ σ ⊗ δ{t=0} in Ω× (−T, T )
u = 0 on ∂Ω× (−T, T ),
u(−T ) = 0 on Ω,

satisfying u = 0 in Ω × (−T, 0) and (1.7). Finally, from Remark 3.2 we get the result. This completes the

proof of the Theorem.
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18, 111-149 (1984).

[6] P. Baras, M. Pierre, Critère d’existence des solutions positives pour des équations semi-linéaires non
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[7] M. F. Bidaut-Véron, Q.H. Nguyen, Stability properties for quasilinear parabolic equations with measure

data and applications. Submitted.
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[33] Q.H. Nguyen , L. Véron Quasilinear and Hessian type equations with exponential reaction and measure

data, to appear in Arch. for Rat. Mech. Anal. (2014).

[34] Q.H. Nguyen, Potential estimates and quasilinear equations with measure data, arXiv:1405.2587v1.

[35] F. Petitta, Renormalized solutions of nonlinear parabolic equations with general measure data, Ann.

Math. Pura Appl., 187, 563-604 (2008).

26



[36] F. Petitta, A. Ponce and A. Porretta, Diffuse measures and nonlinear parabolic equations, J. Evol. Equ.,

11, 861-905 (2011).

[37] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailiov, Blow-up in Quasilinear

Parabolic Equations, Walter de Gruyter, Berlin and New York (1995).

[38] J.L. Vazquez, Smoothing and decay estimates for nonlinear diffusion equations. Equations if porous

medium type, Oxford lecture series in mathematics ans its applications, 33, Oxford University Press,

Oxford (2006).

[39] J.L.Vazquez, The porous medium equation. Mathematical theory Oxford Mathematical monographs,

the clarendon, Oxford University Press, Oxford (2007).

27


