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AFM Tip Effect on a Thin Liquid Film
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ABSTRACT: We study the interaction between an AFM
probe and a liquid film deposited over a flat substrate. We
investigate the effects of the physical and geometrical
parameters, with a special focus on the film thickness E, the
probe radius R, and the distance D between the probe and the
free surface. Deformation profiles have been calculated from
the numerical simulations of the Young−Laplace equation by
taking into account the probe/liquid and the liquid/substrate
interactions, characterized by the Hamaker constants, Hpl and
Hls. We demonstrate that the deformation of a shallow film is
determined by a particular characteristic length λF = (2πγE4/
Hls)

1/2, resulting from the balance between the capillary force
(γ is the surface tension) and the van der Waals liquid/
substrate attraction. For the case of a bulk liquid, the extent of the interface deformation is simply controlled by the capillary
length λC = (γ/Δρg)1/2. These trends point out two asymptotic regimes, which in turn are bounded by two characteristic film
thicknesses Eg = (Hls/2πΔρg)

1/4 and Eγ = (R2Hls/2πγ)
1/4. For E > Eg, the bulk behavior is recovered, and for E < Eγ, we show the

existence of a particular shallow film regime in which a localized tip effect is observed. This tip effect is characterized by the small
magnitude of the deformation and an important restriction of its radial extent λF localized below the probe. In addition, we have
found that the film thickness has a significant effect on the threshold separation distance Dmin below which the irreversible jump-
to-contact process occurs: Dmin is probe radius-dependent for the bulk whereas it is film-thickness-dependent for shallow films.
These results have an important impact on the optimal AFM scanning conditions.

1. INTRODUCTION

The current development of nanotechnology is responsible for
the emergence of micro- and nanofluidic systems.1 A large
number of these systems are based on the flow of very thin
liquid films in confined geometries.2 Under these conditions,
capillary and van der Waals forces are dominant, and as a
consequence, the behavior of liquids is strongly dependent on
the film thickness. For instance, the flow relaxation time,3,4 the
slip length,5 and the glass-transition temperature,6,7 among
other properties, are controlled by the characteristic length of
confinement.
The properties of a liquid film as function of its thickness,

from the molecular to the macroscopic scale, can be studied by
means of atomic force microscopy (AFM) as a result of the
recent progress of this technique.8,9 Indeed, noncontact AFM is
a useful method for quantifying the local properties of liquid
films,10 identifying the local positions of interfaces, and
detecting liquid-phase domains and studying their rheology.
In such experiments, the study of the probe/liquid film
interaction is fundamental to understanding the behavior of
liquids of different thicknesses. With respect to the extensive
work done by means of the surface force apparatus (SFA), we
recall that the thickness has been shown to be a fundamental
parameter in determining the stability of the film.11 In addition,
it has been proposed, for a liquid nanofilm,12 that the film

thickness should have a significant effect on AFM measure-
ments and also promising applications.
In our previous studies,13,14 the surface deformation of a bulk

liquid in interaction with an AFM tip has been modeled, solved
numerically, and validated with experiments. We have shown
that the magnitude of the bulk liquid surface deformation and
its curvature are functions of the probe/liquid separation
distance. When a probe is approached towards the liquid
surface below a threshold separation distance, we have found
that the liquid undergoes a jump-to-contact phenomenon,
which triggers probe wetting. Knowledge of this critical
distance, called Dmin, is essential to determining the
experimental optimal conditions for noncontact AFM measure-
ments over liquids. We have demonstrated that a combined
approach, based on theory and experiments, leads to a better
understanding of the whole phenomenon. In particular, a fine
prediction of the Hamaker interaction constant has been
deduced from AFM force/distance curves.13

The aim of this Article is to analyze the effect of the film
thickness on the surface deformation. For this purpose, the
Young−Laplace equation has been generalized to include the
interaction between the liquid film and the underlaying



substrate. The present communication is organized as follows:
in section 2, we describe briefly the system configuration,
together with the corresponding theoretical model, in which
molecular interactions and capillarity are included. Section 3
discusses the general surface deformation and the jump-to-
contact phenomenon and their dependency on the involved
dimensionless parameters in which some of them are thickness-
dependent. Several characteristic length scales, naturally arising
in the model, are introduced and employed to describe the
surface shape. The theoretical analysis allows us to define two
critical film thicknesses, marking the boundaries of a shallow
film regime and the bulk behavior, which are presented in
section 4 and discussed in section 5. Finally, in section 6 the
effects of the probe radius and the film thickness are studied
quantitatively in order to apply the results when performing
AFM measurements.

2. PROBLEM FORMULATION

Consider a stable liquid film of thickness E deposited over a flat
substrate, as shown in Figure 1. When a spherical probe of

radius R is placed at a distance D from the liquid free surface, a
bump-like shape is observed. Because of the system geometry,
the deformation is described by an axisymmetric profile z =
η(r), where r and z are the radial and axial coordinates.
On the basis of the Hamaker theory,15 the attractive

interaction potential or pressure field Πpl exerted by the
probe over the liquid film is
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where Hpl is the Hamaker constant of the probe/air/liquid
system. Equation 1 is obtained from integrating the London−
van der Waals interaction potential of the spherical probe over
a differential volume of liquid, anywhere outside the probe.
Only the nonretarded interactions are considered in view of the
dimensions of common AFM setups.
The presence of the substrate provokes, over the liquid film,

the potential field Πls given by
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where Hls is the Hamaker constant of the air/liquid/substrate
system. This potential is the difference between the so-called
disjoining pressure16 of the initial state and that of the
perturbed state (by the approach of the probe). Furthermore,
the capillary pressure difference and the hydrostatic pressure

appear in the pressure balance so that the surface shape of the
film is described by the generalized Young−Laplace equation

ρ η κγΠ − Δ = + Πg 2pl ls (3)

where Δρ is the liquid/air density difference, g is the
gravitational acceleration, γ is the liquid surface tension, η is
the local surface position, and κ is the local mean curvature,
which, expressed in axisymmetric cylindrical coordinates, takes
the form
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Using R as the characteristic length scale, we introduce
dimensionless variables: D* = D/R the distance from the center
of the probe to the originally undeformed free surface, E* = E/R
the film relative thickness, r* = r/R and z* = z/R the horizontal
and vertical coordinates; and η* = η/R and κ* = κR, the
interface position and mean curvature. From eqs 1−4, the
dimensionless nonlinear ordinary differential equation describ-
ing the free surface position results in

κ η* − Π* + * − Π* =
AH

B H2
8

0a
ls o a pl (5)
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Three dimensionless parameters are present in eq 5: the
Hamaker constant ratio A = Hls/Hpl, the modified Hamaker
number Ha = 4Hpl/(3πγR

2), and the Bond number Bo =
ΔρgR2/γ.
In AFM setups, the probe radius R is within the range [10−9,

10−7] m, and the probe/liquid and liquid/substrate interactions
are characterized by Hamaker constants Hpl and Hls within
[10−21, 10−19] J.17−20 For air/liquid interfaces, one usually has γ
∈ [10−2, 10−1] N/m and Δρ ∈ [102, 104] kg/m3.
Consequently, for a film thickness E spanning [10−10, ∞] m,
the dimensionless parameters are normally found to satisfy A ∈
[10−2, 102], Ha ∈ [10−7, 100], and Bo ∈ [10−13, 10−8].
In particular, considering a PDMS film deposited over a

silicon wafer and in interaction with an R = 1 × 10−8 m silicon
AFM probe, the system is characterized by γ = 3.1 × 10−2 N/m,
Δρ = 9.7 × 102 kg/m3, and Hls = Hpl = 4 × 10−20 J.13 The
nondimensional numbers are then A = 1, Ha = 5.48 × 10−3, and
Bo = 3.07 × 10−11, and the film relative thickness should span
E* ∈ [10−2, ∞].
Equation 5 was solved numerically following a previously

developed method14 in which the supplementary term given by
eq 6a, arising from the liquid/substrate interaction, has been
introduced. The symmetry condition [η*]′ = 0 at r* = 0, a
nearly flat surface profile [η*]′ ≪ 1, and a negligible probe/
liquid interaction potential Πpl* ≈ 0 far from the symmetry axis
were maintained as boundary conditions.
To calculate the film deformation analytically, we can write

the separation distance D* as a function of the apex position η0*
and the curvature κ0* at r* = 0 as follows

η η κ* = * + + * * −D f1 [ ( , )]0 0 0
1/3

(7)

Figure 1. Surface deformation of the liquid film interacting with a
spherical probe.



where the function f(η0*, κ0*) is defined as
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D* can also be expressed by introducing ε0*, the
dimensionless gap between the probe surface and the deformed
liquid interface inferred from Figure 1:

η ε* = + * + *D 1 0 0 (9)

In dimensional terms, D − R represents the gap between the
probe and the nondeformed film surface. Comparing eq 9 with
an expansion of eq 7 gives
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which allows us to calculate the magnitude of the gap if f(η0*,
κ0*) is known.
In previous studies,12−14,21 it has been stated that no solution

of the problem can be found for distances below the threshold
distance Dmin* because the jump-to-contact phenomenon takes
place. This minimum separation distance also marks the critical
point at which the maximum apex deformation η0,max* and the
maximum curvature κ0,max* occur. Dmin* is obtained directly when
dD*/dη0* = 0, which applied to eq 7 gives

η η η′ * = * + * −f f f
1

36
{ ( )} [ ( )] {1 [ ( )] }0,max

2
0,max

8/3
0,max

1/3

(11)

An expression f(η0*), which must be used in eq 11 to obtain
η0,max* , exists when it is possible to express the curvature in terms
of the apex deformation, κ0*(η0*). Afterward, once η0,max* is
known, Dmin* is determined using eq 7.
In the following section, this approach is applied to generate

analytical expressions of the maximum deformation η0,max* and
the minimum distance Dmin* in the asymptotic cases
corresponding to E* → 0 (shallow-film limit) and E* → ∞
(thick-film limit).

3. SURFACE SHAPE

3.1. General Description. Some typical surface profiles
obtained numerically are shown in Figure 2 for a radial
extension of about 10 times the probe radius. Note that the

presented window is much smaller than the capillary length so
that the entire interface deformation is not shown. The profiles
are reported for a single separation distance of D* = 1.29 and
for Ha = 5.48 × 10−3, Bo = 3.07 × 10−11, and A = 1. The relative
thickness E* varies over several orders of magnitude in the
range of [10−10,∞]. We observe that all of the profiles exhibit a
bump-like shape that is roughly parabolic around r* = 0,
followed by an exponential-like decay. The profiles obtained for
E* > 102 are overlapped, indicating the existence of an
asymptotic bulk regime. The vertical displacement of the
surface weakens in magnitude, and the deformation seems to be
confined to a shorter radial extent as E* is reduced. In addition,
the curvature of the surface at r* = 0 lowers with decreasing E*.
The corresponding behavior of apex deformation η0* at r* =

0 is shown in Figure 3 as a function of the separation distance

D*. As observed for infinite film thickness,14,22 we found a
stable and an unstable position of the interface for any film
thickness. In Figure 3, we present the stable deformation,
corresponding to the minimal free energy of the system, that is
present when experiments are performed. Similar hyperbolic
evolutions for η0* are observed for the different values of E*.
When sweeping from right to left, as the curve approaches the
threshold distance Dmin* , the slope increases dramatically until a
vertical asymptote is reached. At Dmin* , the maximum possible
apex position η0,max* is attained. For shorter separation distances,
the probe/liquid attraction becomes unconstrained and the so-
called jump to contact is observed, which provokes the wetting
of the probe in a real situation. Consistent with expectations on
physical grounds, a decrease in E* leads to a decrease of Dmin*

along with a shrinkage of η0,max* as the attractive liquid/substrate
potential pulls the liquid film uniformly downward, therefore
inhibiting its upward displacement. In other words, when the
film thickness is decreased, the jump to contact is shifted to
separation distances shorter than that observed for a bulk
liquid. Additionally, it is relevant to remark that a reduction of
E* provokes a similar effect to that induced by a diminution of
Ha for the bulk.14

The corresponding evolution of the apex curvature κ0* as a
function of the surface deformation η0* is shown in Figure 4 for
different values of the relative thickness E*. As a general trend,
for a given E*, the apex curvature increases along with the
associated deformation, showing a nearly constant slope on the
presented logarithmic scale. Nevertheless, mainly observed for
the curves belonging to E* ≤ 10−1, the slope gradually becomes

Figure 2. Surface profiles of the film η* obtained from solving eq 5, at
a constant D* = 1.29, for different values of E* and for Ha = 5.48 ×

10−3, Bo = 3.07 × 10−11, and A = 1.

Figure 3. Apex position η0* of the air/liquid interface as a function of
D* for different values of E* and for Ha = 5.48 × 10−3, Bo = 3.07 ×

10−11, and A = 1. (•) Numerical solutions of eq 5 and (---) extreme
values Dmin* and η0,max* .



steeper as η0* increases and approaches the value of η0,max* . In
most cases, the behavior of each curve seems to be properly
described by a power law. For relatively thick films, an
exponent of 3/2 has been found,12,13 whereas for shallow films
and small deformations an exponent of 4/3 is discerned. The
theoretical analysis of these two particular power laws is given
in section 4.
3.2. Jump to Contact. Now the effect of the film thickness

on the jump-to-contact condition is discussed. Figure 5 reports
the evolution of the maximum apex position η0,max* and the
minimum separation distance Dmin* as function of the film
relative thickness. Both Dmin* and η0,max* show analogous trends.
The bulk behavior is characterized by a plateau, which in the

presented case takes the values Dmin* ≈ 1.29 and η0,max* ≈ 0.09
for thicknesses E* > 102. However, Dmin* → 1 and η0,max* → 0
when the limit of E*→ 0 is approached. These two asymptotic
behaviors are associated with two characteristic film thicknesses
that will be discussed in more detail in the following section.
For intermediate thicknesses typically varying from 10−1 to 102,
Dmin* and η0,max* go through a transition regime associated with
noticeable variations due to the film thickness. It is interesting
that for the nondimensional parameters considered here η0,max*

never takes larger values than the film relative thickness E*. In
other words, η0,max* /E* < 1.
In Figure 6, interface shape η* at D* = Dmin* is shown as a

function of the radial position r* for different values of E*. As

previously discussed, the maximum apex position η0,max* and the
radial extent of the deformation diminish when E* is reduced.
As a consequence, the surface profile sharpens, which provokes
a dilatation of the curvature at the surface apex. Indeed, as
observed in Figure 4, for a fixed value of η0*, the apex curvature
κ0* grows significantly by orders of magnitude when the film
relative thickness E* decreases.
On the basis of these results, we can define two behaviors

depending on the film thickness. For thin films, the amplitude
of the surface deformation is small and restricted to a length
scale significantly shorter than the capillary length, clearly
indicating the appearance of a localized tip effect. This
phenomenon is characterized by a deformation profile of
confined radial extent, specifically restricted to the near-field
underneath the probe. In contrast, for thick films, the surface
deformation of large magnitude is observed up to the capillary
length. Hence, the tip effect is not observed for thicknesses
above a characteristic value, which is found within E* ∈ [102,
103], and as a consequence, the deformation corresponds to
that of the bulk.14

3.3. Deformation Length Scales. To understand the
localized tip effect and to identify the different length scales
arising in this problem, we linearize normalized eq 5 for small
surface deformations. Far from the axis, where r* → ∞, the
surface is nearly flat, [η*]′ ≪ 1, the probe/liquid interaction
potential is negligible, Πpl* ≈ 0, and the liquid/substrate
interaction potential, Πls*, is approximated by the first-order
term in eq 6a for [η*] ≪ E*. Therefore, the surface profile in
this region is obtained from
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Figure 4. Apex mean curvature κ0* as a function of η0* obtained for
different values of E* and for Ha = 5.48 × 10−3, Bo = 3.07 × 10−11, and
A = 1. (•) Numerical solution of eq 5 and (---) extreme values κ0,max*

and η0,max* .

Figure 5. (a) η0,max* and (b) Dmin* , as functions of E*, for Ha = 5.48 ×

10−3, Bo = 3.07 × 10−11, and A = 1. (•) Numerical solution of eq 5 and
asymptotic approximations for (---) E* > Eg* and (−) E* < Eγ*, with Eg*
= 9.05 × 101 and Eγ* = 2.13 × 10−1. The approximations are obtained
by applying eqs 19 and 20 for thick films and eq 23 for shallow films to
eqs 11 and 7 in sequence. The characteristic thicknesses, Eg* and Eγ*,
are defined in eqs 14 and 15, respectively.

Figure 6. Surface profiles of the film η* obtained from solving eq 5 at
D* = Dmin* for different values of E* and for Ha = 5.48 × 10−3, Bo =
3.07 × 10−11, and A = 1.



where the dimensionless capillary length λC* = λC/R = (γ/
ΔρgR2)1/2 and a dimensionless film characteristic length λF* =
λF/R = (8(E*)4/(3AHa))

1/2 appear. λF = (2πγE4/Hls)
1/2

corresponds to the radial distance beyond which the liquid/
substrate interaction contributes to the flattening of the liquid
surface. A condition for observing the localized tip effect is thus
given by λF ≪ λC, which is satisfied in the shallow film limit E
→ 0. As clearly revealed in eq 12, these two length scales are
compared through an effective capillary length, λCF* = 1/((λC*)

−2

+ (λF*)
−2)1/2, that indicates which one of the two mechanisms,

gravity or the liquid/substrate interaction, prevails and controls
the radial extent of the deformation. In the literature,12 the
inverse of λCF* has been introduced as an effective Bond
number, which indicates when the effect of the substrate is
negligible. Indeed, the exact solution of eq 12 is given by
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where K0 is a zeroth-order modified Bessel function of the
second kind and G = ηCF* /K0(1), with ηCF* being the surface
deformation at r* = ηCF* . For the studied range of parameters, G
≲ 10−2 and K0(1) ≈ 0.42. Thus, for r* ≥ ηCF* , η* ≲ 10−2 and
[η*]′ ≲ 10−3, demonstrating the validity of the small
deformation hypothesis.
In the particular case of an R = 1 × 10−8 m silicon AFM

probe interacting with a PDMS film of thickness E ≈ R
deposited over a silicon wafer, the film characteristic length λF
≈ 2.2 × 101R is much smaller than the corresponding capillary
length λC ≈ 1.8 × 105R.

4. CHARACTERISTIC FILM THICKNESSES

The characteristic radial length scales are now used to highlight
the existence of two characteristic film thicknesses. When the
capillary length λC and the film characteristic length λF are of
the same order of magnitude, film thickness effects are expected
to be observed. The first critical film thickness Eg is obtained
from λF* ≈ λC*
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Eg is a constant of the system, independent of the probe radius
R, and Eg* = Eg/R depends on dimensionless parameters A, Ha,
and Bo. The value of this critical thickness in common AFM
setups is Eg ∈ [10−7, 10−6] m, corresponding to Eg* ∈ [100,
103].
When the film characteristic length λF is on the order of the

probe radius, the probe/liquid attraction is opposed only by the
liquid/substrate attraction. Hence, from λF* ≈ 1, we find a
second critical film thickness Eγ that is given by
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Eγ is a function of the probe radius, scaling as R
1/2, and Eγ* = Eγ/

R changes with the product of Ha and A. Within common AFM
setups, this critical thickness is on the order of Eγ ∈ [10−10,
10−8] m, corresponding to Eγ* ∈ [10−2, 100].
We expect to observe different behaviors depending on the

film thickness, relative to the aforementioned critical values.
They might be useful for marking the boundaries of the arising

regimes in which the involved mechanisms alternate their
contributions.
In Figure 7, the terms in eq 5 are shown as function of the

film thickness E* under the jump-to-contact condition. The

presented curves correspond to our reference case for which A
= 1, Ha = 5.48 × 10−3, and Bo = 3.07 × 10−11. In addition,
hydrostatic term Boη* is not shown because its magnitude is
very small compared to that of the other terms.
As can be seen on the right-hand side of Figure 7, where E*

> Eg*, the curvature and the probe/liquid interaction terms are
nearly constant. The presence of the substrate can be
disregarded because the liquid/substrate interaction term in
eq 5 is negligible. Consequently, the deformation of the liquid
surface results from the equilibrium between the surface
tension and the probe/liquid interaction, and in dimensionless
terms, it is determined only by the values of Ha and Bo, as
described in previous studies.14 Moreover, the minimum
separation distance Dmin* and the maximum apex position
η0,max* do not vary with the film relative thickness E*, as
depicted in Figure 5. The surface deformation spreads to the
effective capillary length, which is essentially given by the usual
capillary length λCF* ≈ λC*, because in this case λF* ≫ λC*. We
shall name this regime the asymptotic “thick-film” behavior.
For a film with an intermediate thickness Eγ* < E* < Eg*,

though the liquid/substrate term continues to be negligible, the
curvature term and the probe/liquid interaction are not
constant anymore. These two terms increase slowly and
simultaneously, remaining in balance, when reducing the film
relative thickness E*, as can be discerned from Figure 7. In this
case, the deformed surface shape stretches out to the effective
capillary length λCF* , which takes values between the capillary
length λC* and the film characteristic length λF*. This constraint
forces the surface to recover from its deformation, getting back
to a flat profile at a radial distance shorter than the capillary
length. The resulting restrained interface shape shows a
curvature that is greater than that of the deformed bulk.
Hence, the surface position results from the interplay of the
three involved physical mechanisms: surface tension and
probe/liquid interaction forces act directly, whereas liquid/
substrate interaction force appears by means of an implicit
modification of the curvature.
On the left-hand side of Figure 7, where E* < Eγ*, the

curvature term seems to reach a saturated state. Meanwhile, the
probe/liquid and the liquid/substrate attraction terms increase

Figure 7. Absolute value of the different terms Yj from eq 5 for which
∑ Yj = 0 as functions of E* at D* = Dmin* and for A = 1, Ha = 5.48 ×

10−3, and Bo = 3.07 × 10−11. The hydrostatic term Boη*, which is not
represented herein, remains on the order of 10−11. The critical film
thicknesses are Eγ* = 2.13 × 10−1 and Eg* = 9.05 × 101.



monotonically, approaching each other in magnitude as E*
decreases from Eγ* toward smaller values. Hence, the effect of
the proximity of the substrate dominates over that of the
surface tension, and the position of the film free surface is
retrieved from the equilibrium of the probe/liquid and the
liquid/substrate attractive interactions. Dmin* and η0,max* change
significantly with the film relative thickness E*, as shown in
Figure 5. A direct effect of the substrate attraction is observed
on the radial span of the surface deformation λCF* . In this case,
λF*≪ λC*; therefore, the effective capillary length is mainly given
by the film characteristic length λCF* ≈ λF*. Hence, the
deformation profiles are sharp, and they are restrained to a
very narrow zone around r* = 0. We name this regime the
asymptotic “shallow-film” behavior, where the localized tip
effect is observed.

5. FILM THICKNESS ASYMPTOTIC BEHAVIORS

5.1. Thick Film. Considering the limit of a thick film E* >
Eg*, the surface deformation is controlled by the capillary force
and the probe/liquid interaction. The force due to the surface
deformation can be taken as

πγ η≈ *
γF R 0 (16)

Also, the force mutually exerted between the probe and the
liquid surface can also be approximated by the force between a
sphere and a flat surface:17

ε
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*
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pl

pl

0
2
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Therefore, when the equilibrium between these two forces is
attained, the surface deformation is described by

η
ε
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*

H

8( )0
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0
2

(18)

In the limit E*→∞, with the dominant term in eq 8 being the
one containing the curvature, the function f(η0*, κ0*) is given by

η κ
κ

* * ≃
*

f
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2

0 0
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which, combined with the first-order approximation of eq 10,
results in an expression for ε0* in terms of κ0*. Taking this within
eq 18, one obtains the power law relation of the curvature in
terms of the apex deformation
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which is in agreement with that observed in Figure 4 for large
values of E* and has been previously found for the bulk.12,13

For this case, where Ha = 5.48 × 10−3 and Bo = 3.07 × 10−11,
coefficient C takes a value of 6.37 × 10−2. The employment of
eqs 19 and 20 in eqs 11 and 7 allows us to forecast the
asymptotic bulk behavior shown in Figure 5.
5.2. Shallow Film. We now focus on the particular

evolution observed in Figure 4 for shallow films, E* < Eγ*,
and small deformations. Consequently, according to the relative
contributions shown in Figure 7, the first-order surface
deformation results from the balance between the probe/liquid
and the liquid/substrate interactions. The force due to the
liquid/substrate interaction can be taken as

η
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ls

ls 0
4

(21)

Equilibrium between this expression and the probe/liquid
interaction force, given by eq 17, yields
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Now, the dominant term in eq 8 comes from the liquid/
substrate interaction, and the function f(η0*, κ0*) for η0*/E*→ 0
is given by
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The asymptotic shallow film behavior is obtained when
combining eq 23 with eqs 11 and 7, which is a good
approximation of the numerical results displayed in Figure 5.
From the first-order approximation of eq 10, we find an
expression for ε0* in terms of η0*, which when substituted into
eq 22 gives

η* ≈
∗E

A

( )

240

4

(24)

Moreover, from the balance between the two interaction terms
in eq 5

− Π* = Π*AH H
1

8
a ls a pl (25)

the free surface shape of the thin film is given by
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from which, at r* = 0 and considering D* ≫ η0*, we obtain
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Differentiating eq 26 and evaluating at r* = 0 gives
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Finally, by combining the last two relations in order to
eliminate D*, we find that
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which is in agreement with the trend observed in Figure 4 for
shallow films and small deformations. Within this regime, the
minimum separation distance Dmin* and the maximum apex
position η0,max* are significantly modified by the film relative
thickness E*, in contrast to the thick-film case. Note also that
the deformation is dependent on the Hamaker constant ratio,
A, but not on the modified Hamaker and Bond numbers.

6. PROBE SIZE EFFECT

With the purpose of determining the experimental parameters
for AFM measurements, the probe size and the film thickness
effects are quantitatively studied. Therefore, the dimensional
jump-to-contact threshold is analyzed, considering the constant
physical properties of the system. The combined effect of Ha



and E* on the deformation for a given value of Hls = Hpl is
equivalent to studying the effects of R and E on the free surface
displacement. The dimensionless representation depicted in
Figure 5a corresponds to the evolution of η0,max* in terms of E*
for a single value Ha = 5.48 × 10−3. As a consequence, it is
possible to reconstruct the dimensional dependency of the
maximum apex displacement η0,max on the film thickness E, but
only for R = R3 = 10−8 m with parameters γ = 3.1 × 10−2 N/m
and Hpl = 4 × 10−20 J. Additionally, considering the same
physical parameters, we solved eq 5 numerically for different
values of E and for R2 = 10−6 m and R1 = 10−4 m. In Figure 8,

the maximum apex displacement η0,max is displayed as a
function of the film thickness E for the three probe radii. One
notes that the evolution of η0,max(E) follows similar tendencies:
for E < Eγ, η0,max increases linearly with E; for Eγ < E < Eg, η0,max

grows monotonically as E increases with a slowly declining
slope; and finally for E > Eg, η0,max reaches a plateau.
Figure 8 points out that for a shallow film E < Eγ the

maximum apex displacement η0,max is independent of the probe
radius R. A linear dependency of the displacement on the
thickness, η0,max = α0E with α0 ≃ 0.33, is found. Because Eγ
grows as R1/2, the linear regime is extended to a larger range of
E. Furthermore, the value of η0,max at the plateau, characteristic
of bulk behavior E > Eg, increases with the value of R. As
depicted in eq 14, Eg is constant for a given set of physical
parameters, whatever the value of R. In Figure 8, the free
surface displacement of a bulk liquid due to its interaction with
a probe of millimetric size, R0 = 10−3 m ≈ λC, is also
represented. In the theoretical case in which R = λC, the two
critical film thicknesses collapse into a single value, Eg = Eγ. As a

consequence, the value of η0,max obtained with R = R0 in the
bulk regime corresponds to the maximum displacement that
the liquid surface can attain by increasing the probe radius, even
for R > λC. Hence, for probes of larger radius, the system can be
modeled as a film interacting with a flat, solid surface for which
the maximum apex displacement is approximately the same as
for R ≈ λC and completely independent of R. Table 1 reports
the characteristic parameters computed for the different values
of R.
The combined analysis of Figures 6 and 8 shows that the

localized tip effect is observed only for shallow films for which E
< Eγ. As a consequence, when R increases, the localized tip
effect is observed at larger thicknesses as a result of the relation
between Eγ and R. Within this regime, the linear dependency of
η0,max on E can be understood by considering that the confined
liquid behaves as a linearly elastic solid. This is in agreement
with the linear relationship observed between the displacement
and the thickness of confined materials undergoing a constant
force test.23 In conclusion, the localized tip effect is
characterized by a constant deformation η0,max/E = α0. In the
particular case of A = 1, the value α0 ≈ 0.33 is found.
A film with a very small thickness compared to the size of the

probe (R ≫ E) corresponds to E < Eγ, so the surface
deformation at the jump-to-contact results from the balance
between the probe/liquid and the liquid/substrate interactions.
Considering the geometric decomposition, Dmin = R + η0,max +
ε0,min, we can deduce from Figure 5 that the surface
displacement and the gap are comparable in magnitude, η0,max

≈ ε0,max. Thus, taking into account the dependency η0,max = α0E,
we find that the gap is much smaller than the probe radius,
ε0,min ≪ R. Therefore, eq 1 can be condensed to
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In addition, eq 2 is also reduced to
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where α1 = 1 − (1 + α0)
−3. The balance between these two

simplified potentials gives

ε α≃
−A E[ ]0,min 1
1/3

(32)

Using this result, a linear evolution of the gap between the
probe surface and the originally flat surface is yielded:

α α− ≃ +
−D R A E{ [ ] }min 0 1
1/3

(33)

In Figure 9, Dmin − R is shown as a function of E for different
values of R. Dmin − R behaves essentially the same way as η0,max,
shown in Figure 8. The only difference is that the magnitude of
Dmin − R is slightly superior to that of η0,max, for the same value

Figure 8. Maximum apex displacement η0,max as a function of the film
thickness E for Hls = Hpl = 4 × 10−20 J and different values of the probe
radius R (R1 = 10−4 m, R2 = 10−6 m, and R3 = 10−8 m). The values of
Eγ, corresponding to the different values of R, are summarized in Table
1, as is the value of Eg. The horizontal line (---) is the solution of eq 11,
considering the thick-film approximation given by eqs 19 and 20 for R0

≳ λC ≈ 10−3 m.

Table 1. Values of the Dimensionless Parameters, the Characteristic Film Thicknesses, and the Bulk Apex Displacement for the
Different Probe Radii and for the Given Physical Propertiesa

R [m] R0 ≈ λC (10−3) R1 (10
−4) R2 (10

−6) R3 (10
−8)

Ha [1] 5.48 × 10−13 5.48 × 10−11 5.48 × 10−7 5.48 × 10−3

Bo [1] 3.07 × 101 3.07 × 103 3.07 × 107 3.07 × 1011

Eg [m] 9.05 × 10−7

Eγ
R [m] 6.73 × 10−7 2.13 × 10−7 2.13 × 10−8 2.13 × 10−9

η0,max (bulk) [m] 2.83 × 10−8 1.72 × 10−8 4.31 × 10−9 9.18 × 10−10

a
γ = 3.1 × 10−2 N/m, Δρ = 9.7 × 102 kg/m3, and Hpl = Hls = 4 × 10−20 J.



of E. The linear dependency described by eq 33 is verified in
Figure 9 for small values of E.
The value of gap Dmin − R should be respected when

performing AFM measurements because it indicates the
experimental set point needed to avoid the jump to contact
and the wetting of the probe. For example, colloidal AFM
probes, with a radius of R = R2 = 10−6 m, must be used at a
distance of Dmin − R ≳ 10−8 m when scanning, whereas for
common AFM probes with R = R3 = 10−8 m, we should use
Dmin − R ≳ 10−9 m, which is 1 order of magnitude closer to the
interface.

7. CONCLUSIONS

We have studied the interaction between an AFM probe and a
liquid film deposited over a flat substrate. The competition
between probe/liquid and liquid/substrate attraction deter-
mines the equilibrium position of the liquid surface. The radial
extent of the deformation reaches the effective capillary length
λCF, which takes values between the capillary length λC and the
film characteristic length λF. When the deformation extends up
to λCF ≈ λC, gravity is responsible for the flattening of the
surface. However, when λCF ≈ λF, the liquid/substrate
attraction is the mechanism that restrains the deformation.
From these two characteristic length scales, the existence of

two characteristic film thicknesses, Eγ and Eg, is pointed out. Eγ

depends on the liquid/substrate interaction constant and the
liquid surface tension, also scaling as R1/2. In contrast, Eg is
independent of the probe radius R, taking a constant value for a
given set of physical properties of the system.
For shallow films (i.e., E < Eγ), the maximum apex

displacement varies linearly with the film thickness η0,max =
α0(A)E and is independent of R. In addition, a localized tip
effect is revealed, which is characterized by a deformation of
localized radial extent λCF ≈ λF and small amplitude. For thick
films (i.e., E > Eg), no tip effect is observed, and η0,max takes a
fixed value independent of the film thickness E but given by the
probe radius R.
From a practical point of view with the aim of performing

AFM experiments, Eγ emerges as the relevant characteristic
thickness, which can be used to separate two regimes: a linear
regime for E < Eγ where η0,max and Dmin are controlled by film
thickness E and a plateau regime for E > Eγ where η0,max and
Dmin are mainly determined by probe radius R.
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