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a b s t r a c t

A new method based on the thermal quadrupoles technique for heat transfer modelling in multilayered
slabs with heat sources is proposed. Classical thermal quadrupoles use hyperbolic functions and
numerical problems occur according to the argument value that depends on thermophysical and
geometrical properties as well as characteristics times. We propose a new formulation based on expo-
nential function with negative argument. Using this formulation in the classical equivalent impedance
network allows to compute efficiently the thermal behaviour of multilayered slabs with internal heat
sources whatever the time and the thermophysical properties. This approach is applied in order to
simulate heat transfer in three different multilayered materials with heat sources. These simulations
show the capability of such a methodology to simulate time and space multiscale heat diffusion
problems.

1. Introduction

The quadrupole method is a well known analytical tool in heat
transfer modelling. It is an exact method to predict temperature in
time-varying linear systems [1]. This method allows to assemble
multilayered slabs with different geometrical and thermophysical
properties. The integral transforms are at the basis of the method.
Laplace or Fourier transforms are used depending on the transient
regime. However, it is always possible to switch from one to the
other by only replacing the Laplace variable with ju, where u if the
frequency and j ¼

ffiffiffiffiffiffiffi
�1

p
is the complex argument. Additional

integral transforms, as the Fourier or Hankel ones, can also be
efficiently used in case of multidimensional heat transfer [2]. The
only constraint relates to symmetry considerations. The quadrupole
method has found several applications in the field of thermal
properties measurement in one-dimensional transfer [3e6] as well
as in multidimensional one [7e9]. A lot of studies use the quad-
rupole formalism in order to estimate the thermal diffusivity and
effusivity of single layer [10e13] or multilayered [14]. It has been
used also to obtain simplified solution for heat transfer in material
forming processes [15]. This technique was used to estimate pho-
nonic thermal properties in semi transparent medium with heat
source [16]. Several applications where heat source occurred inside
the medium have been presented [17,18] .

Even if this technique received a lot of attention in the past,
some practical aspects remained unsolved. This paper aims to

focus on two specific cases. The first one concerns practical
computation of the quadrupole components when the argument
in the hyperbolic function becomes too high. As a consequence,
the numerical computation of the function is impossible. This
configuration comes to investigate the solution of heat transfer
at small times in a thick material (without making the
assumption of the semi-infinite behaviour). The second case
concerns the processing of a heat source term in the material
and the way to take it into account in the quadrupole formalism.
The solution presented in the literature [1], although it is exact,
presents numerical drawbacks especially in case of a multilay-
ered media.

For both cases, it is presented a solution that allows keeping the
meaningful simplicity of the quadrupole method. An application on
multilayermaterials is presented. Thickness and thermal properties
as well as heat source location lead to difficult numerical imple-
mentation in case of the use of the classical quadrupole method. It
is shown that the new formulation presented in this paper allows to
overcome these difficulties.

2. General solution for multilayered samples with internal
heat sources

Let us consider one-dimensional heat transfer in a wall, of
thickness e, thermal conductivity l and thermal diffusivity a. It is
also considered an internal heat source function g(z, t) as well as
a prescribed heat flux density and heat exchange, characterized by
the thermal exchange coefficient h, at both sides of the wall.
Thereby, heat transfer is mathematically described as:
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8>>>>>>>>>>>><
>>>>>>>>>>>>:

v2Tðz; tÞ
vz2

þ 1
l
gðz; tÞ ¼ 1

a
vTðz; tÞ

vt
; for 0 < z < e and t>0

Tðz; t ¼ 0Þ ¼ 0

�l
vTðz; tÞ

vz

����z¼0
¼ 40ðtÞ � hFTðz ¼ 0; tÞ

�l
vTðz; tÞ

vz

����z¼e
¼ 4eðtÞ þ hRTðz ¼ e; tÞ

(1)

As it is reported in [1], the Laplace integral transform is applied
on the time variable for both temperature and heat flux. In case of
the temperature as the considered quantity, it is written as:

qðz; pÞ ¼ L½Tðz; tÞ� ¼
ZþN

t¼0

Tðz; tÞexpð�ptÞdt (2)

Considering G and j as the Laplace transform of g and 4

respectively and applying the Laplace transform upon the set of
equations in (1), it is obtained:

8>>>>>>>>><
>>>>>>>>>:

d2qðz; pÞ
dz2

þ 1
l
Gðz;pÞ ¼ p

a
qðz; pÞ for 0 < z < e ðaÞ

�l
dqðz;pÞ

dz

����z¼0
¼ J0ðpÞ � hFqðz ¼ 0;pÞ ¼ F0ðpÞ ðbÞ

�l
dqðz;pÞ

dz

����z¼e
¼ JeðpÞ þ hRqðz ¼ e; pÞ ¼ FeðpÞ ðcÞ

(3)

The general solution of (3). (a) is of the following form:

qðz;pÞ ¼ K1coshðbzÞþK2sinhðbzÞþyðz;pÞ; with b ¼
ffiffiffi
p
a

r
(4)

Constants K1 and K2 are determined from boundary conditions
(3).(b) and (3) .(c) and the particular solution y(z, p) is deduced from
the expression of the source term G. Using the quadrupole
formalism developed in [1] from relation (4), the transformed heat
flux F0 ¼ F(z ¼ 0, p) and temperature q0 ¼ q(z ¼ 0, p) can be
expressed according to the quantities Fe ¼ F(z ¼ e, p) and
qe ¼ q(z ¼ e, p), as:

�
q0
F0

�
¼
�
A B
C D

��
qe
Fe

�
�
�
X
Y

�
; (5)

with:

A ¼ D ¼ coshðbeÞ; B ¼ sinhðbeÞ
lb

; C ¼ lbsinhðbeÞ; (6)

and:

X ¼
Ze
0

�
1
l
Gðz; pÞ

	
sinhðbzÞ

b
dz; Y ¼

Ze
0

Gðz;pÞcoshðbzÞdz (7)

A, B, C and D are the components of the thermal quadrupole for
a passive wall whereas the internal source is involved in X and Y
terms. It is largely used with the classical equivalent electrical
network represented in Fig. 1, where X and Y are respectively
a voltage generator and a current generator. The analytical
expressions of the thermal impedances are:

Z1 ¼ A� 1
C

; Z2 ¼ D� 1
C

; Z3 ¼ 1
C

(8)

For practical reasons, we will consider only the case where G(z,
p) is not depending on z. Nevertheless, it is possible to approximate
a z-continuous function G(z, p) by a discrete layered distribution.
G(z, p) can be considered constant for each layer i and with this
assumption we obtain :

Xi ¼ Ai � 1
Ci

!
Yi (9)

An additional Laplace inverse transform is also required to
retrieve the temperature field in the real space.

One of the most interesting features of the quadrupoles method
is its direct application to multilayered materials as a composite
material. The solution formultilayeredmaterials is detailed in [1,19].

Nomenclature

T Temperature (K)
a Thermal diffusivity (m2 s�1)
r Density (kg m�3)
c Heat capacity (W s kg�1 K�1)
l Thermal conductivity (W m�1 K�1)
g Heat source (W m�3)
G Laplace transform of the heat source (W m�3)
t Time (s)
z Space location (1D) (m)
40(t) Front heat flux density (W m�2)
4e(t) Rear heat flux density (W m�2)
j0(p) Laplace transform of Front Heat Flux density (W m�2)
je(p) Laplace transform of Rear Heat Flux density (W m�2)
HF Front heat losses (W m�2 K�1)

HR Rear heat losses (W m�2 K�1)
e Thickness (m)
q Laplace transform of the temperature (K)
p Laplace variable (s�1)
K1, K2 Constants (No dimension)
y(z, p) Particular solution (K)
F Laplace transform of the heat flux density (W m�2)
A Quadrupole Coefficient (No dimension)
B Quadrupole Coefficient (K m2 W�1)
C Quadrupole Coefficient (W m�2 K�1)
D Quadrupole Coefficient (No dimension)
X Voltage generator for the quadrupole (K)
Y Current source for the quadrupole (W m�2)
Z1, Z2 Thermal Impedance (No dimension)
Z3 Thermal Impedance (K m2 W�1)

Fig. 1. Wall with internal source [1].



A generalization of this solution is obtained in 3D and 2D
axisymmetric heat transfer geometrical configurations using the
Fourier and Hankel transforms respectively (see reference [2,19]).
In such configurations, relations (5)e(7) remain unchanged but b is
modified [1,2,20].

As it is viewed in relation (6) the quadrupoles terms are defined
from hyperbolic functions. However, numerical problems occur
using his formulation according to the argument value, namely be.
In order to avoid such problems we propose to use an original
formulation of these terms.

3. The use of the exponential formulation in quadrupole
formalism

3.1. Drawback with hyperbolic functions

Numerical computation of the quadrupole terms from relations
(6) and (7) rests on the use of hyperbolic functions that are
calculated using their general expressions with the exponential

function (cosh(x) ¼ (exp(x) þ exp(�x))/2, sinh(x) ¼ (exp(x)�
exp(�x))/2). The validity domain for the argument in double
precision must not be greater than 700. It means that one must
verify e

ffiffiffiffiffiffiffiffi
p=a

p
< 700 for each considered value of the Laplace

variable p. As an example, let us consider material with
a ¼ 10�7 m2 s�1 and t ¼ 1 s. It appears that the thickness must not
be greater that some millimetres in order to compute exp½e ffiffiffiffiffiffiffiffi

p=a
p �.

These computations appear when problems are not well posed in
the sense of Hadamard [21].

3.2. Use of another exponential formulation e application to the
wall

It has been viewed in the previous section the general solution
for the one-dimensional heat transfer diffusion problem in a wall
with heat source on the form of the relation (5). Drawback on the
exponential computationwhen the argument is more than 700 can
be overcome by rewriting the hyperbolic functions as follow:

coshðbeÞ ¼ expðbeÞ
�
1þ expð�2beÞ

2

	

sinhðbeÞ ¼ expðbeÞ
�
1� expð�2beÞ

2

	 (10)

By substituting these expressions in components A, B and C of
the quadrupole in the relation (5), it is obtained:

�
q0

J0ðpÞ�hFq0

�
¼
�
expðbeÞ
expðbeÞ

�0@�~A ~B
~C ~D

��
qe

JeðpÞþhRqe

�

�
2
4~A�expð�beÞ

~C
Yexpð�beÞ

Yexpð�beÞ

3
5
1
A (11)

With:

~A ¼ 1þ expð�2beÞ
2

¼ ~D

~B ¼ 1� expð�2beÞ
2lb

~C ¼ lb
1� expð�2beÞ

2

(12)

The numerical computation of ð~A; ~B; ~C; ~DÞ is suitable whatever
the value of a, t and e. As an example, this allows the calculation of
the temperature at the front face (z ¼ 0) as:

Whereas, the solution at the rear face (z ¼ e) is given by:

There is no exponential function with positive argument be in
relation (13) and (14). Although the computation of qe and q0 from
relations (13) or (14) does not involve any problems considering
a uniform heat source G, the generalization for multilayered
configurations starting from relation (11) will not lead to
a comparable analytical formalism. Therefore, A new impedance
network representation for heat sources is proposed.

4. Use of exponential and impedance formulation in
quadrupole problem with heat sources

4.1. Impedance formulation for heat sources

An equivalent electrical network to that represented in Fig. 1 is
presented in Fig. 2. In this new representation the voltage generator
disappears and the heat source G is represented as a current source
Y0 located at the node of the cell constituted from the three
impedances Z01; Z

0
2 et Z03. Since G is uniform, this symmetrical

representation seems natural but we demonstrate right now that it
is fully exact. Indeed, one has:

F0 þ Y 0 ¼ 1
Z03

qi þ Fe (15)

Furthermore:

F0 ¼ 1
Z01



q0 � qi

�
; (16)

q0 ¼



~Aþ hR~B

�
J0ðpÞ �JeðpÞexpð�beÞ þ Yexpð�beÞ 1þ hR

~A� expð�beÞ
~C

!

hF


~Aþ hR~B

�
þ ~C þ hR~A

(13)

qe ¼
�


~Aþ hF ~B

�
JeðpÞ þJ0ðpÞexpð�beÞ þ Yexpð�beÞ 1þ hF

~A� expð�beÞ
~C

!

hF


~Aþ HR

~B
�
þ ~C þ hR~A

(14)



and:

Fe ¼ 1
Z02



qi � qe

�
(17)

By using relations (15)e(17) it is finally obtained:8>>><
>>>:

q0 ¼ Z03 þ Z01
Z03

qe þ
�
Z02Z

0
3 þ Z01Z

0
2 þ Z01Z

0
3

Z03

	
Fe � Z01Y

0

F0 ¼ 1
Z03

qe þ
�
Z02 þ Z03

Z03

	
Fe � Y 0

(18)

By comparing relation (18) with relation (5), we are able to
express the quadrupole terms as:

A ¼ Z03þZ01
Z03

;B ¼ Z02Z
0
3þZ01Z

0
2þZ01Z

0
3

Z03
; C ¼ 1

Z03
; D ¼ Z02þZ03

Z03
Y 0 ¼ Y ;X ¼ Z01Y

0
(19)

Since the determinant of the quadrupole is equal to 1
(AD � BC ¼ 1), it is thus possible to express Z01; Z

0
2 etZ

0
3 and current

source Y 0 as:

Z01 ¼ Z02 ¼ A� 1
C

¼ Z1 ¼ Z2; Z
0
3 ¼ 1

C
¼ Z3; Y

0 ¼ X
Z01

(20)

Using the quadrupole formalism the relation (5) becomes with
the new network:

�
q0
F0

�
¼
�
A B
C D

��
qe
Fe

�
�
"�A� 1

C

	
Y

Y

#
(21)

As argued before, it is thus found that thermal impedances
values remain exactly the same for the two electrical networks
represented in Figs. 1 and 2 respectively. For the current source
term Y 0 ¼ Y if G does not vary according to z, this condition is
always satisfied. However, this condition is not absolutely restric-
tive. Indeed, in case of a z-dependent heat source, it is always
possible to slip the layer as many times as required in order to
reconstruct the heat source term in a discrete way (heat source in
each layers being uniform).

4.2. Application to multilayered systems

Let us consider a composite material constituted from N
successive layers whose thermal properties are known. A heat
source is defined in each layer. It is admitted here that the contact is
perfect. However, a thermal boundary resistance could have been
taken into account within this formalism on the form of a pure
resistance between each cell. From Fig. 3, it can be expressed the
current conservation law at the central node for layer i as:

1
ðZ1Þi



qi � qi

�
þ Yi ¼

1
ðZ3Þi

qi þ 1
ðZ2Þi



qi � qiþ1

�
(22)

It must be emphasized (see Fig. 4) that qi has no physical
meaning: it is not the temperature qi at interface i nor the average
temperature of layer i. To reduce the number of equations, it is only
applied on temperatures at central nodes (Fig. 4). Thereby, relation
(22) becomes:

1
Zi�


qi�1 � qi

�
þ Yi ¼

1
ðZ3Þi

qi þ 1
Ziþ


qi � qiþ1

�
(23)

With:

Zi� ¼ ðZ2Þi�1þðZ1Þi and Ziþ ¼ ðZ2ÞiþðZ1Þiþ1 (24)

Considering the discussion about the hyperbolic functions
calculation according to the exponential function argument in
section 2, relation (23) is written on the following equivalent form:
expð�bieiÞ

Zi�


qi�1 � qi

�
þ Yi expð�bieiÞ

¼ 1

~Z
3

�
i

qi þ expð�bieiÞ
Ziþ



qi � qiþ1

�
(25)

With:

~Z
i� ¼ Zi� ¼

~Di�1 � expð � bi�1ei�1Þ
~Ci�1

þ
~Ai � expð�bieiÞ

~Ci
;

~Z
iþ ¼ Ziþ ¼

~Di � expð�bieiÞ
~Ci

þ
~Aiþ1 � expð � biþ1eiþ1Þ

~Ciþ1
;



~Z3
�
i
¼ ðZ3ÞiexpðbieiÞ

(26)

Using boundary conditions at both sides of the composite layer,
relation (25) leads to a linear system whose unknowns are the qi

(i ¼ 1,., þN):

ðCþMÞQ ¼ J (27)

With:

Fig. 2. Wall with internal source with the new formalism.

Fig. 3. Multilayer with internal sources.

Fig. 4. Wall with multilayer and internal sources (simplified formalism).



With: Ei ¼ expð�bi eiÞ and:

QT ¼
h
q0 q1 : : qi : : : qN qe

i
(29)

C ¼

2
6666666666666666664

hF
1

~Z3
�
1

1
1

~Z3
�
i

1
1

~Z3
�
n

hR

3
7777777777777777775

(30)

J ¼

2
6666666664

J0ðpÞE1
«
«

YiðpÞEi
«
«
«

JeðpÞEN

3
7777777775

(31)

This formulation allows solving easily anymultilayered problem
whatever the heat source location. Nevertheless, even if the
formulation of the mathematical problem is a tridiagonal linear
system, such system is exactly solved by a Gauss method. Then, this
solution is strictly explicit as classical analytic formulation. The
main drawback comes when the number of layer increases so that
the expression becomes very long and difficult to write.

5. Application on two multilayered materials

The application of this formalism is proposed with three
examples of multilayered materials whose sketches are defined in
Figs. 5e7 respectively. The representation with impedances is also
used to illustrate the proposed decomposition. Thermophysical
properties and geometric characteristics are given in Table 1.

5.1. Example 1: two layers with internal source and adiabatic
conditions

Let us consider a multilayered wall with two layers of different
thickness and materials. An internal heating characterized by
a volume heat source g that can vary only in time is located on the
first layer and no flux are considered on the rear and front faces
(insulated wall). The temperatures at the front face, the rear face
and at the interface between the two materials are calculated
considering the heat source as a Dirac function. In that case, the
analytical expression for each is:

q0 ¼
Yexpð�b1e1Þ



expð�b2e2Þ þ ~Z

1þ~C2

�
~C1



expð�b2e2Þ þ ~Z

1þ~C2

�
þ ~C2expð�b1e1Þ

q1 ¼
Yexpð�b1e1Þ



expð�b2e2Þ þ



~Z2
�
1
~C2

�
~C1



expð�b2e2Þ þ ~Z

1þ~C2

�
þ ~C2expð�b1e1Þ

qe ¼ Y expð�b1e1Þexpð�b2e2Þ
~C1



expð�b2e2Þ þ ~Z

1þ~C2

�
þ ~C2 expð�b1e1Þ

(32)

Fig. 5. Example 1 - Multilayered material (two layers) and zero exit fluxes (insulated
wall).

M ¼

2
66666666666666666666666666666664

E1
Z11

�E1
Z11

� E1
Z1�1

E1

�
1

Z1�
þ 1
Z1þ

	
� E1
Z1þ

1 1 1

� Ei
Zi�1

Ei

�
1
Zi�

þ 1
Ziþ

	
� Ei
Ziþ

1 1 1

� EN
Zn�1

EN

�
1

ZN�
þ 1
ZNþ

	
� EN
ZNþ

�EN
ZN1

EN
ZN1

3
77777777777777777777777777777775

(28)



It is used the Den Iseger algorithm for the Laplace numerical
inversion [21]. CPU times do not exceed 40 s. Solution is repre-
sented in Fig. 8 in a logelog scale. It is obtained a satisfying result
with regards to the asymptotic behaviours considering six decades
for the time. Indeed, at the small times, the heat source term is
equivalent to an initial temperature field in the layer 1 that is:

T1init ¼ Y
r1c1e1

(33)

Moreover, at the small times, the temperature T1 at the interface
is the contact temperature of two walls with two different initial
temperatures:

T1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1r1c1

p
T1init þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2r2c2

p
T2initffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l1r1c1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2r2c2

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2r2c2

p Y
l1r1c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l1r1c1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2r2c2

p
(34)

The comparison between this value and the simulation shows
a good agreement for small times range.

At the long times, all temperatures in the multilayeredmaterials
tend towards the same constant temperature:

T1zT0zTez
Y

l1r1c1 þ l2r2c2
(35)

It is also well retrieved the �1/2 slope (in logelog) for the
temperature at the front face and at the interface between the 2
layers for intermediate times. It is consistent with the semi-infinite
behaviour.

5.2. Example 2: two layers with internal source and imposed
temperature

Let us consider an identicalmultilayeredmaterial as in example 1,
butwithdifferent boundaryconditions. Temperature Te ismaintained
to a constant value equal to 0 �C. Equivalent thermal impedances
network presented in Fig. 6 allow obtaining analytical expressions of
temperature at every location. The result is presented in Fig. 9 for
temperatures T0 and T1 (at the front and rear faces respectively) along
with their asymptotic behaviours. It is obviously obtained the same
behaviour at the small times than that presented in previous
example. When time increases, temperatures decrease to reach the
prescribed temperature in stationary configuration. It is verified that
the slope is still equal to �1/2. As previously, the numerical compu-
tation remains efficiently whatever the time range.

5.3. Example 3: multilayer with internal source

Let us consider a multilayered material constituted from four
layers of different thickness and thermophysical properties. A
source term on a form of a Dirac function is located in the third

Fig. 6. Example 2-Multilayered material (two layers) and fixed temperature (qe ¼ 0).

Fig. 7. Example 3 Multilayered materials (four layers) with internal source.

Table 1
Definition of the three examples.

Layer Y (W m�2) 1 2 3 4

e (m) rc (J m�3 K�1) l (W m�1 K�1) e rc l e rc l e rc l

Example1 10 10�5 106 0.1 10�1 106 100
Example2 10 10�5 106 0.1 10�1 106 100
Example3 106 10�2 106 0.1 10�3 106 1 10�9 106 100 10�2 106 0.1

Fig. 8. Time representation of temperatures for example 1.



layer. In this case and with this newmethod, the analytical solution
of temperatures in Laplace domain is easy to calculate but the
explicit expression is quite difficult to write due to the number of
layers. Nevertheless, as represented in Fig. 10, the interfacial
temperatures can be efficiently calculated at the small times as well
as the long times (Fig. 10).

A very interesting use can be the determination of thermo-
physical properties coupling this formalism with experimental
devices and inverse methodologies.

6. Conclusion

An improvement of the thermal quadrupoles method for
multilayered with and without heat sources has been presented in
this paper. Numerical problems occur when using the classical
thermal quadrupoles based on the use of hyperbolic functions.
These problems depend on thermophysical and geometrical
properties and observation times. It is proposed a new mathe-
matical formulation based on the exclusive use of the exponential
function with negative argument. As a consequence, the thermal
impedances representation is also updated and lead to a very

efficient tool to model heat transfer in mulilayered with heat
sources located in one or several layers. These applications
demonstrate the ability of the technique to deal with broad ranges
of time and thicknesses of the layers. Our methodology presents
a real advantage considering what could have happened with
a classical finite elements simulation because we can model prob-
lems with different scales. This accurate formulation has been
already applied in thermal characterization problems even if it is
tricky to have an explicit analytical solution when the number of
layers becomes very important.
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Fig. 9. Time representation of temperatures for example 2.

Fig. 10. Time representation of temperatures for example 3.
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