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a b s t r a c t

Engineering design in mechanics is a complex activity taking into account both objective modeling pro-
cesses derived from physical analysis and designers’ subjective reasoning. This paper introduces arc-elas-
tic dominance as a suitable concept for ranking design solutions according to a combination of objective
and subjective models. Objective models lead to the aggregation of information derived from physics,
economics or eco-environmental analysis into a performance indicator. Subjective models result in a con-
fidence indicator for the solutions’ feasibility. Arc-elastic dominant design solutions achieve an optimal
compromise between gain in performance and degradation in confidence. Due to the definition of arc-
elasticity, this compromise value is expressive and easy for designers to interpret despite the difference
in the nature of the objective and subjective models. From the investigation of arc-elasticity mathemat-
ical properties, a filtering algorithm of Pareto-efficient solutions is proposed and illustrated through a
design knowledge modeling framework. This framework notably takes into account Harrington’s desir-
ability functions and Derringer’s aggregation method. It is carried out through the re-design of a geother-
mal air conditioning system.

1. Introduction

Bantayan and Bishop have proposed the term physico-subjective
modeling (Bantayan & Bishop, 1998) for modeling procedures
combining both objective models (chiefly related to physical
phenomena analysis) and subjective models in a single paradigm.
Design processes in industrial design departments must simulta-
neously take into account data resulting from complex phenomena
analysis and subjective or incomplete information. Like Wang
(2001), we believe that most research assumes a perfect compensa-
tion between subjective and objective models, which means that it
should always be possible to make a trade-off among subjective and
objective criteria. The incomparability, in practice, between alterna-
tives is generally completely ignored.

The purpose of engineering design problem modeling (EDPM) is
to analyse design problems into elements or principles and trans-
late them into mathematical models related to computing environ-
ments. If necessary, these models must be related to operators,
algorithms or particular methods to be solved efficiently. EDPM
deals with the cognitive aspects of engineering design. Designers
always work in a bounded rationality context (Simon, 1982) be-
cause they have to deal with many sources of variability and epi-
stemic uncertainty (Ben-Haim, 2000). Due to the complexity and

difficulties inherent in their activities, designers are always coping
with a lack of information and knowledge, limitations of delays
and means, multiplicity and distribution of resources. However,
as they are the first actors intervening in the life cycle of industrial
products (Pahl & Beitz, 1996), their decisions determine the feasi-
bility of industrial products and highly influence future perfor-
mances (Berliner & Brimson, 1988). As a result, EDPM must rise
to the challenge of modeling cognitive aspects of designers’ reason-
ing to produce optimal design solutions from the points of view
both of the physical knowledge carried out through the design pro-
cess and designers’ interpretations.

Much scientific effort has been put into multi-criteria decision
analysis (MCDA) in developing fuzzy logic-based or rough
set-based methods resulting in outranking preference models
(Greco, Matarazzo, & Słowiński, 2001; Perny, 1998), namely models
expressing preference/indifference relations between pairs of solu-
tions. These approaches are focused on fuzziness of subjective
knowledge and aim at translating fuzzy knowledge into mathemat-
ical rules suitable for integrating into the digital processing loops of
design departments. However, since knowledge taken into account
in these rules remains subjective, designers may be reluctant to
integrate physical behavior models based on an impersonal com-
prehension of the world, with such uncertain and subjective mod-
els. The subjective/objective antagonism remains an open
problem in engineering design because there is a lack of systematic
methods to support designers in the process of organizing and
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structuring different levels of knowledge through the design pro-
cess. Multi-criteria decision analysis tools and methods must be re-
lated to an EDPM framework to resolve this antagonism.

This issue can be tackled by taking a systematic approach to the
hierarchy of decisional criteria of design problems. Analytic Hierar-
chy Processes (AHP) have been extensively studied to tackle this
difficulty and applied to a wide range of scientific fields such as
economics, medical sciences and engineering (Nepal, Yadav, &
Murat, 2010; Saaty, 2001). Using this method we propose to build
dominance indicators by defining partial order relations from the
observation variables of models. Partial order relations are based
on pairwise comparisons performed between the values of the
indicators, leading to the parameterization of weighting parameter
matrices. From linguistic interpretations related to numerical
scales, deciders must appreciate the comparison between pairs of
selection criteria. In this paper, a similar approach dedicated to
engineering design modeling is proposed aimed at structuring
knowledge from the definition of design variables to a global dom-
inance indicator called arc-elasticity. From this dominance indica-
tor designers are able to rank design solutions using two
preference indicators related to objective and subjective models.
Objective physical or economical models and designers’ subjective
reasoning models are distinct but they result from equivalent pro-
cesses of observation, interpretation and aggregation. It must be
noted that, in what follows, an engineering design model is defined
as a sequence of observation, interpretation and aggregation mod-
els. A model is regarded as being objective once the observation
model contributing to its definition is based on physical phenom-
ena or economic analysis. Interpretation and aggregation functions
are at least partially related to subjective knowledge.

Solution dominance is computed from an algorithm based on
the calculation of an arc-elasticity value, namely a ratio of non-
dimensional deviations defined according to the gain in value of
one preference indicator and the degradation in the other. Origi-
nally, the concept of arc-elasticity was introduced through the
works of Cournot (1838) and Marshall (1920) and was applied to
micro-economic analysis. Marshall investigated the adequacy be-
tween the demand relating to a product and its price (price elastic-
ity of demand) by comparing two distinct states 1 and 2 of a
product. Elasticity e1,2 is defined through demands (x1 and x2)
and prices (y1 and y2) related to the two states:

d�x ¼ x2 � x1

ðx2 þ x1Þ=2
; d�y ¼ y2 � y1

ðy2 þ y1Þ=2
; e1;2 ¼

d�y
d�x

ð1Þ

Elasticity concept has received attention in many application do-
mains concerned with the design of complex systems such as trans-
portation networks (Beuthe, Jourquin, Geerts, & Koul à Ndjang’Ha,
2001; Odeck & Brathen, 2008), computer networks (Drèze & Zufry-
den, 2004) or mechanical systems (Collignan, Sébastian, Pailhès, &
Ledoux, 2011). However, in engineering design, designers are more
directly concerned with the concept of performance than the con-
cept of demand. Throughout the design process, product demand
and costs are both taken into account through marketing require-
ments, which form part of the design requirement documents,
and, consequently, result from the satisfaction of performance con-
straints. Demand and costs are perceived as a consequence of the
performance of the system being designed. Therefore, in this paper,
we propose to define elasticity as a ratio between performance and
confidence deviations related to a pair of design solutions.

Elasticity is a ratio of non-dimensional quality indicators. As a ra-
tio of non-dimensional variables, it is expressive and may be easily
interpreted as a beneficial (or detrimental) variation in one indica-
tor of a problem resulting in a detrimental (or beneficial) variation
in the other compensatory indicator. By relating solution couples to
their arc elasticity, any kind of transformation of one solution into

the other can be interpreted as detrimental, neutral or beneficial.
Due to the high interpretability of arc elasticity and from designers’
confidence appreciation of subjective models, decision-making is
supported by a numerical value equivalent to a pairwise compari-
son between the ‘‘fair’’ and ‘‘partial’’ models. This interpretability
is reinforced by the similarity in the modeling processes of the
two types of models, which, nevertheless, remain independent.

2. Elasticity and filtering algorithm

In this paragraph, we define the mathematical framework of a
design solution filtering method based on arc-elastic dominance.
This approach aims at screening solutions, starting from a refer-
ence solution, and is based on the calculation of the arc-elasticity
of couples of solutions. Arc-elasticity is related to a partial order
relation and we propose an algorithm resulting in solutions com-
bining Pareto-efficiency properties with properties derived from
the partial order relation.

2.1. Variables and models

Let us consider a candidate solution (design alternative) to
resolving a problem, which is defined from vector X containing
each of the m variables denoted xj. These variables are identified
as design variables when they are considered through a product
design process and correspond to the evaluation of the character-
istics of the solution. From the more general point of view of deci-
sion theory, design variables are identified as decision variables.
Observation variables Y are computed from design variables X
through an analytical model taking into account physical, eco-
nomic, environmental or manufacturing knowledge. The global
performance of the candidate solution is derived from the value
of response variables observed in the model. The n response vari-
ables yi are assembled in vector Y. Therefore,

X ¼ x1; x2; . . . ; xm½ �T ; Y ¼ y1; y2; . . . ; yn½ �T ð2Þ

Where,

X 2 X ð3Þ

X is the value domain of the design variables, which defines the de-
sign solution search space. Y and X variables are linked through the
model as:

Y ¼ lðXÞ ð4Þ

where l is decomposed into n elementary functions:

8i 2 f1; . . . ;ng; yi ¼ liðXÞ ð5Þ

It is also supposed that every solution is related to two different
preference functions noted uu and uv corresponding to positive
values, which must be maximized. In the following, uu and uv will
be regarded as confidence and performance indicators. The prefer-
ence function is relative to both a reference solution Xs and a candi-
date solution X. The preference value u of the candidate solution is
computed from the preference function uu:

u ¼ uuðX;XsÞ ð6Þ

More to the point, we assume that the reference solution itself is the
solution of maximal confidence and is related to the maximal pref-
erence u, namely:

8X : uuðX;XsÞ � uuðXs;XsÞ ð7Þ

The other preference function depends on the response variables
and, from these variables, it is related to the design variables from
the preference function uv :

v ¼ uvðXÞ ð8Þ



2.2. Order relation between solutions

Let us now consider a population of solutions identified through
their design variables Xi. These candidate design solutions are ob-
served through the two preference indicators u and v. One partic-
ular design solution Xs (reference solution) is selected among the
population at each step of an iterative process. Fig. 1 shows the
population of solutions Xi and highlights the Pareto-efficient (Par-
eto-dominant) solutions of the set. Pareto-efficient solutions Xi cor-
respond to solutions which are better than any other solution Xj of
the set regarding the value of at least one of the preferences u or v.
Xi is a Pareto dominant solution of the set if and only if (where
symbol ‘‘_’’ stands for ‘‘or’’):

8j : ðui � ujÞ _ ðv i � v jÞ ð9Þ

The set of Pareto dominant solutions is useful in engineering
since designers can perform tradeoffs within this set, rather than
considering the full range of every solution that satisfies the
requirements of a design problem. These solutions are regarded
as more efficient than every non-dominant solution according to
at least one criterion. For this reason, the solution filtering method
proposed in this paper aims at screening Pareto-efficient solutions
and, consequently, results in solutions combining Pareto-efficiency
properties and other assets derived from optimal elasticity.

Solution filtering based on arc-elasticity is related to an equiv-
alence hypothesis between the preference indicators u and v. Let
us consider a selection process where, starting from a reference
solution Xs, a new solution must be selected among two points
Xq and Xr (see Fig. 1) from the Pareto-efficient solution set. Xq, Xr

and Xs are ranked according to preferences u and v as (where sym-
bol ‘‘^’’ stands for ‘‘and’’):

Xr;Xq;Xs : ður � uq � usÞ ^ ðv r � vq � v sÞ
� �

ð10Þ

We now consider the case where, compared to Xs, Xq and Xr are of
similar value according to u, but Xr is much preferable to Xq accord-
ing to v:

ður � uqÞ << ðuq � usÞ ð11Þ

whereas,

ðv r � vqÞ >> ðvq � v sÞ ð12Þ

If we assume that a small increase in the reduction of preference u
(starting from Xs and selecting Xr rather than Xq) is justified by a

high increase in preference v, then this allows us to globally prefer
solution ‘‘r’’ to solution ‘‘q’’. This is expressed by a partial order rela-
tion relating points Xq and Xr:

Xq � Xr ð13Þ

On the contrary,

ður � uqÞ >> ðuq � usÞ
ðv r � vqÞ << ðvq � v sÞ

�
() Xq � Xr ð14Þ

and in any other situation that agrees with Eq. (10):

Xq ffi Xr ð15Þ

Such a relation of order makes sense provided that variables u and v
can be compared, which means that variations in u and v are detri-
mental or favorable in equivalent manner to the selection of the
solution. This point will be discussed and developed in Section 4
of the article.

Elasticity of preferences u and v is defined as a non-dimensional
ratio between variations in u and v. Therefore, we define elasticity
relative to preferences u and v as:

ej;i ¼
v j � v i

v j þ v i
	 uj þ ui

uj � ui
ð16Þ

The definition of elasticity can be used to rationalize the partial
order relation, namely to translate the relation of order into a
numerical relation. The following relations can be easily
demonstrated:

Xq � Xr ) �es;q > �es;r

Xq ffi Xr ) �es;q ffi �es;r

Xq � Xr ) �es;q < �es;r

8><
>: ð17Þ

It must be noted that we consider negative values of arc-elasticity
since it is a ratio between gain (positive) and degradation (negative)
of preference indicators. Such a ratio of indicators results in a dom-
inance indicator, which has to be maximized.

2.3. Elasticity as a dominance indicator

We propose to use elasticity as a global dominance indicator to
select design solutions in the course of an iterative optimization
process. Through elasticity optimization, it is assumed that a solu-
tion is globally preferable if:

Fig. 1. Indicators u and v and elasticity curve of a population of solutions.




 it is Pareto-efficient,

 there is no other solution which is both close to it regarding one

preference indicator (u or v) and much more preferable regarding
the other preference indicator (v or u).

Once the reference solution Xs belongs to the Pareto-efficient
solution set, the optimal elasticity solutions Xi maximizing the va-
lue of �ei,s also belong to this Pareto set. This can be demonstrated
by investigating the iso-elasticity curves derived from Eq. (16):

v i ¼ v s 	
1� ei;s 	 ðui þ usÞ=ðui � usÞ
1þ ei;s 	 ðui þ usÞ=ðui � usÞ

� �
ð18Þ

which is equivalent to a function v(u) parameterized by the elastic-
ity e and the preferences us and vs of the solution Xs (see Fig. 2),
with:

vðuÞ :¼ v s 	
ð1� eÞ 	 u� ð1þ eÞ 	 us

ð1þ eÞ 	 u� ð1� eÞ 	 us

� �
ð19Þ

In the following, we are interested in negative elasticity values since
Pareto-efficient solutions cannot be improved according to both u
and v, and, consequently, are related to negative elasticities. Iso-
elasticity functions are monotonous functions and for negative val-
ues of elasticity, we have:

ð�ei;s > 0Þ ^ ðui < ujÞ ^ ðv i < v jÞ ) ð�ei;s < �ej;sÞ ð20Þ

Therefore, if at least one solution is related to a negative value of
elasticity, a solution Xi maximizing the value of the elasticity be-
longs to the Pareto-efficient set. Indeed, if it is not, at least one other
solution Xj exists with a higher value than both u and v (see Eq. (9)),
which implies, from Eq. (20), that the efficiency of solution Xj is
higher than the efficiency of solution Xi. From this, we can derive
that Xi does not match the maximal value of �ei,s.

2.4. Filtering algorithm

From this property, an algorithm (illustrated in Fig. 3) is pro-
posed to filter Pareto-efficient solutions through the concept of
arc-elastic dominance (arc-elasticity optimality). Starting from a
Pareto-efficient solution set defined through design variable vec-
tors Xi and the index s(1) of an initial reference solution belonging
to this population, the preference values u and v are computed for
every solution of the set. The elasticity value of every solution is
then computed to determine the solution related to optimal elas-
ticity (maximal value of �e). If this arc-elasticity value is lower

than an objective arc-elasticity, then this solution belongs to the
Pareto set and is used as a new reference value to iterate the pro-
cess. The preference values are recomputed and the algorithm is
iterated until the elasticity becomes positive. The algorithm results
in a list of Pareto-efficient solutions and their corresponding arc
elasticity values; the solution number k + 1 of the list is related
to an elasticity value es(k+1),s(k) qualifying the ratio between the per-
centage in the gain of v and the percentage in the loss of u relative
to the solution number k. As a ratio between a gain (benefit) and a
loss (cost), the absolute value of elasticities can be interpreted as a
quality index related to the transformation of a solution into
another.

It must be noted that optimal elasticity solutions are dissimilar
to solutions belonging to the convex polytope distinctive of the
solution set. In Fig. 3, point P belongs to the convex polytope fron-
tier but is not a solution of optimal elasticity, whereas point Q does
not belong to the convex polytope frontier but is a solution of opti-
mal elasticity.

2.5. Filtering algorithm interpretation

Fig. 4 illustrates the interpretation of arc-elasticity values.
Highly elastic solutions correspond to highly negative values of
the elasticity and, consequently, to high gains in preference v re-
lated to low losses in preference u. Elastic solutions are of good
quality and must be given priority when considered throughout
the process of selecting new design solutions. Unit elastic solutions
or relatively inelastic solutions are less interesting since they cor-
respond to equivalent or higher degradations of preference u.

In the following, we illustrate the filtering algorithm through a
multi-objective design approach, where preferences u and v,
respectively correspond to confidence and performance prefer-
ences. Confidence relates to a pre-existing design configuration re-
garded as preferable because it has already been developed and
tested. Performance is supported by analytical models derived
from physical and economical investigations. The filtering method
aims at finding a good compromise between knowledge derived
from expertise (subjective) and knowledge derived from physical
analysis (objective).

3. Design modeling strategy

3.1. Scientific background

In the field of decision support in engineering design, problems
are formalized through criteria that evaluate design alternatives
according to several points of view. Design problem formulation
results in multi-criteria decision analysis (MCDA) problems. The
main difficulties concern the translation of the basic information
resulting from modeling into relevant criteria (observation, inter-
pretation) and the aggregation of these criteria into an appropriate
recommendation or prescription (aggregation). Due to the antago-
nistic nature of the criteria, there is often no design solution pref-
erable to every other alternative.

An examination of scientific literature shows that the statement
of preference in engineering design is addressed by developing
three types of approach (Augusto, Rabeau, Dépincé, & Bennis,
2006). Designers’ preferences are processed by formulating them
inside the model of the design problem (a priori statement),
through interactions during the numerical solving phases (interac-
tive statement) or by selecting solutions a posteriori (a posteriori
statement) that take these preferences into account. A priori state-
ments assume that designers are able to translate their knowledge
through rational rules and mathematical relations, whereas, in es-
sence, some preferences are difficult to express. Therefore, softFig. 2. Iso-elasticity curves.



computing and fuzzy logic is receiving considerable attention for
modeling preferences (Antonsson & Sebastian, 2005; Hung, Julian,
Chien, & Jin, 2010; Saridakis & Dentsoras, 2008) due to the intrinsic
fuzziness in designers’ preferences. Similar approaches consist in
using desirability functions (Harrington, 1965) to translate design
requirements and designers’ preferences into relaxed constraints.
Starting from target values derived from the requirements of the
design problem or from design heuristics, desirability functions
are used to relax these constraints and translate the design prob-
lem into a global model taking into account mathematical infer-
ences (such as Eq. (4)) and desirability functions (Jeong & Kim,
2009; Pasandideh & Niaki, 2006; Sébastian, Quirante, Ho Kon Tiat,
& Ledoux, 2010).

Preference models are related to different types of knowledge
ranging from analytical knowledge derived from physics or eco-
nomics to design rules based on expertise or case-based reasoning
(Mitra & Basak, 2005; Saridakis & Dentsoras, 2008). Every type of
model may have a fair degree of accuracy and a comparable amount
of prediction capability (Vernat, Nadeau, & Sébastian 2010), how-
ever, they can be distinguished by their levels of subjectivity. This
results in a major difficulty when combining different types of
knowledge and their respective preference models (Scott & Antons-
son, 1998). Sanchis, Martinez, and Blasco (2008) and Zang, Friswell,
and Mottershead (2005) have investigated the various methods
used in engineering design to deal with this particular difficulty.
Among these different approaches, preference aggregation meth-
ods (Dai, Scott, & Mourelatos, 2004) are based on weighting pro-
cesses of criteria and aggregation functions. They result in a
unique preference indicator, which limits the complexity of the

search space of the design problem and is used to select the proper
trade-off between preferences before calculating a Pareto frontier.
However, this approach requires the aggregation of preferences,
whatever the nature of the knowledge intrinsic to the model. Con-
sequently, subjective preferences such as, for instance, levels of
confidence must be aggregated with others derived from simula-
tion results based on physical analysis. Such a difficulty cannot be
avoided since subjective preferences are inherent to design pro-
cesses and the analysis of complex physical phenomena is essential
to many design application domains.

Some authors propose to relate both types of knowledge by per-
forming a dual process of selection/classification of solutions,

Fig. 3. Filtering algorithm and illustration with elim = 0.

Fig. 4. Interpretation of elasticity quantities.



which takes into account two different levels in the solution calcu-
lation. Subjective knowledge is used to sort solutions derived from
a numerical investigation of the Pareto frontier of a design prob-
lem. Rather than optimizing a unique preference indicator, the
optimization process merges a preference indicator and a domi-
nance indicator. Molina, Santana, Hernandez Diaz, Coello, and
Caballero (2009) uses a reference point in the design search space
to define a dominance indicator relative to the observation vari-
ables (Y) of design problem models. This approach relates to refer-
ence objectives (Wierzbicki, 1980) and, from a more general point
of view, to Goal Programming methods (Martel & Aouni, 1990;
Tamiz, Jones, & Romero, 1998).

3.2. Modeling strategy profile

In this paper, we propose to use arc-elasticity as a dominance
indicator to select and rank design solutions. Fig. 5 summarizes
the different classes of variables, functions and indicators used in
the framework of this article. Generally speaking, preferences are
computed from an indicator function inferred from a functional
composition process. Indicator functions u are composed of three
different functions:

u ¼ f � d � l ð21Þ

These functions are:

 An observation function (l), relating design variables to obser-

vation variables.

 An interpretation function (d), relating observation variables to

interpretation variables.

 An aggregation function (f), relating interpretation variables to

a preference indicator.

From design variable vector X, observation variables (Y) are
computed through physical or economic models, interpreted (Z)
and aggregated into a first indicator (v), which is called a perfor-
mance indicator. At the same time, a second indicator (u) is com-
puted from the monitored design variable vector (X) and from

the design variables of a reference design solution (Xs). Observation
variables (Y0) are related to X and Xs through a criteria analysis pro-
cedure, interpreted (Z0) through a confidence assessment process
and aggregated into the confidence indicator.

3.3. Functions and knowledge

Each of the interpretation and aggregation functions (l,d,f) are
related to different types of knowledge ranging from objective
information (such as models resulting from physical phenomena
analysis) to subjective acquaintance (such as models resulting
from confidence expression). Table 1 relates every preference
deduction function to knowledge from which it originates in the
scope of application of this paper.

The confidence observation and interpretation functions lu and
du stem from:


 The functional and technical analysis of the factors influencing
the designers’ confidence.

 The development of confidence functions based on risk assess-

ments and analysis.

These confidence factors result in the identification of relevant
variables taken into account in the confidence interpretation func-
tion. Expressing design rules is a complex topic (Brachman & Lev-
esque, 2004) linked to the field of knowledge engineering.
Considerable scientific effort has been put into developing rule-
based systems or translating engineering knowledge into rules
through, for instance, fuzzy reasoning (Wong & Lin, 1997). In this
paper, our approach is illustrated through a single rule expressing
designers’ confidence in the technical feasibility of a solution. This
unique rule is parameterized for each of the design variable xi of
vector X according to designers’ knowledge in the context of the
project. Confidence is related to one particular design situation
where the designing process is initiated from a pre-existing design
solution, regarded as reliable and experimented. From their subjec-
tive experience, these observation functions are based on the

Fig. 5. Mapping of variables and inferences.



relative distance (lu) between the design variables of the reference
solution Xs and candidate solution X. From the design variables of
the pre-existing design configuration designers assess the feasibil-
ity of the modification of every design variable (du).

This approach is motivated by the fact that many designing pro-
cesses are based on one prior design configuration, which has been
carried out, tested and validated. Designing processes are also
learning processes where designers must take into account much
significant information derived from previous projects; they refine
their own expertise through the difficulties encountered in this
global and recursive learning process. Physical processes and envi-
ronments are related to many variability and uncertainty sources.
In the course of this learning process, designers’ confidence in the
feasibility of design solutions evolves and goes through different
stages. Designers use a step by step procedure to try and improve
this prior solution by increasing its efficiency from a physical
(energetic efficiency, mechanical stress, etc.), economic (invest-
ment or operative costs) or eco-environmental (eco-indicators)
point of view. This improvement process tends to increase the dis-
tance between new and reference solutions. Designers are looking
for an optimal compromise between carefulness and innovation.

The performance observation function lv results from complex
analytical analysis of physical behavior and other scientific do-
mains. It is implemented in simulation codes and combines models
at several descriptive scales ranging from phenomenological scales
to global balances of energy, momentum or costs. Interpretation
function dv is based on the design requirements of the engineering
design problem. Design requirements (Pahl & Beitz, 1996) are de-
fined through numerical values and flexibility levels of the ex-
pected performances of the system. Through interpretation
functions, these requirements are used to translate the values of
the observation variables into satisfaction or acceptability levels.

The aggregation functions fu and fv are used to balance the dif-
ferent objectives of the design process. Balancing is performed by
adjusting the parameters of the aggregation functions according
to the hierarchy of the design objectives. This hierarchy results in
preference indicators u and v used to rank and select the most rel-
evant design solutions.

4. Observation, interpretation and aggregation

4.1. Observation functions

The confidence indicator u is built from the design variables of the
problem. It is defined by assessing, for each of the design variables xi,
a relative distance criterion between the reference solution Xs and
the candidate solution X. Rather than using the design variables xi

to define the relative distance criterion between the two solutions,

it proves useful to employ an attribute x̂i deduced from the design
variable value. Attributes x̂i are deduced from xi through a bijective
function x̂iðxiÞ. This attribute is a positive number selected because
it is more representative of the gap between solutions than the de-
sign variables by themselves. For instance, let us consider, as in Sec-
tion 5, a system for which the design variables correspond to a
number of heat exchangers placed in series or identification indexes
of three components (heat exchangers, pumps or fans). In this case,
we select the nominal powers of the heat exchangers, pumps and
fans and the number of heat exchangers as being the attributes of
the design variables. The nominal powers of heat exchangers in
Watts per Kelvin and pumps or fans in Watts are regarded as suitable
for ranking these devices through an ordinal order relation. On the
contrary, the number of exchangers positioned in series is both the
design variable and its corresponding attribute.

The observation function is defined from x̂i of a candidate solu-
tion and x̂s

i of the reference solution:

lu xi; xs
i

� �
¼

x̂i xið Þ � x̂s
i xs

i

� �
x̂i xið Þ þ x̂s

i xs
i

� � ð22Þ

It must be noted that lu is a real number ranging between 0 and 1
since the values of the attributes are constrained to be positive. The
observation variables vector Y0 is:

Y 0 ¼ luðx1; xs
1Þ;luðx2; xs

2Þ; . . . ;luðxm; xs
mÞ

	 
T ð23Þ

4.2. Performance interpretation function

Response variables derived from the resolution of Eq. (4) are
interpreted through desirability functions, a concept first intro-
duced by Harrington (1965). Every response variable yi composing
the vector Y is related to a desirability value through one threshold
function (see Fig. 6). Harrington’s threshold functions for maximiz-
ing or minimizing response variables y are:

dvðyÞ ¼ expð� expðbv þ av 	 yÞÞ ð24Þ

with respective parameters of maximizing or minimizing threshold
functions such as:

av ¼ lnðlnðz�Þ= lnðzþÞÞ
yþ�y�

bv ¼ lnð� lnðz�ÞÞ � av 	 yþ

(
ð25Þ

Desirability functions link response variables to preference levels,
where zero value corresponds to minimal preference and 1 to max-
imal preference. One-sided functions require two limit specification
parameters to be defined, namely, y� and y+. These limits corre-
spond to desirability values close to one (0.9) or zero (0.1). They
are related design requirements or objectives and bound satisfac-

Table 1
Connecting functions and knowledge.

Observation function (l) Interpretation function (d) Aggregation
function (f)

Indicator function
(u)

Preference

Notation lv dV fv
uv ¼ fv � dv � lv Performance

v ¼ uv ðXÞ
Knowledge

setting
Physics, economics, eco-environmental
analysis

Design requirements supervising
heuristics

Strategic objectives

Model Analytical model Harrington’s desirability Derringer’s
aggregation

Parameterization Physical, economical, E.-E. quantities Target values and flexibility domains Weighting
parameters

Notation lu dU fu
uu ¼ fu � du � lu Confidence

u ¼ uuðX;XsÞ
Knowledge

setting
Functional analysis, technical analysis Risk assessment and confidence

analysis
Strategic objectives

Model Criteria definition Design rules Derringer’s
aggregation

Parameterization – Functional parameters Weighting
parameters



tory domains of values for every response variable. It must be no-
ticed that, whereas one-sided Harrington’s functions are used to ex-
press preferences on threshold values, Harrington also defined two-
sided functions, which are not presented here, to characterize pref-
erences on closed value domains. Desirability values are assembled
in vector Z, therefore:

Z ¼ dvðy1Þ; dvðy2Þ; . . . ; dvðynÞ½ �T ð26Þ

4.3. Confidence interpretation function

To illustrate our approach, a simple interpretation rule of
designers’ confidence in the feasibility of a design solution is pro-
posed and presented in the right-hand part of Fig. 6. This rule as-
sumes that the confidence of the designer:


 is a piecewise linear function,

 is not necessarily continuous in zero value of the x axis and

rates one on y-axis at this point,

 is bounded to range between zero and one on x-axis and y-axis.

The function is parameterized for every component of vector Y0,
by assessing its value on two different points. For each component
y0i, this assessment is performed by determining two linguistic val-
ues (ranging from ‘nil’ to ‘extremely high’) and two numerical val-
ues (ranging between 0 and 1) of the observation variable y0i. From
these values, the linguistic evaluations of confidence levels are re-
lated to two numerical value of the interpretation variable ranging
between zero and one. Parameters au and bu of the interpretation
function are calculated from these two points:

duðyÞ ¼ au 	 yþ bu ð27Þ

with

y¼0; au; bu¼1
�bu=au6y6 ð1�buÞ=au; au¼ðzþ�z�Þ=ðyþ�y�Þ bu¼ zþ�au 	yþ

y<�bu=au; au¼0; bu¼1
y> ð1�buÞ=au; au¼0; bu¼0

8>>><
>>>:

ð28Þ

Desirability values are assembled in vector Z0, therefore:

Z0 ¼ du y01
� �

; du y02
� �

; . . . ; du y0m
� �	 
T ð29Þ

4.4. Aggregation of confidence and performance indicators

The definition of the performance indicator results from the
aggregation of the components of Z. In the following, we use an
aggregation method based on the concept of desirability index
introduced by Derringer (1994), Derringer and Suich (1980) and re-
cently developed in multi-response optimization (Jeong & Kim,
2009; Pasandideh & Niaki, 2006). The main idea underlying Derrin-
ger’s aggregation method is that any design becomes unacceptable
as soon as at least one of the values of the performance variables is
non-desirable. Starting from this principle, Derringer has proposed
to aggregate individual desirability functions into a global desir-
ability index through a weighted geometric mean:

fðZÞ ¼
Yp

i¼1

ðziÞti with
Xn

i¼1

ti ¼ 1 ð30Þ

where ti are weighting parameters, which may be derived from a
sensitivity analysis (Sébastian et al., 2010).

The performance indicators resulting from Derringer’s aggrega-
tion process are:

fu ¼ fv ¼ f; u ¼ fðZ0Þ; v ¼ fðZÞ ð31Þ

4.5. Interpretation functions and arc-elasticity consistency

It is important to highlight that the preference indicators u and
v must be defined from similar scales of values to ensure the con-
sistency of the design solution ranking process. In particular, this
scaling constraint is imperative to guarantee that the arc elasticity
concept can be used to select the most relevant design solutions
from the values of u and v. It is proposed to perform this scaling
process through the interpretation functions du and dv. Fig. 7 illus-
trates this process based on pairwise comparisons of the desirabil-
ity values using a linguistic interpretation scale. Every pair of

Fig. 6. Performance and confidence interpretation functions.



desirability values of the interpretation functions are interpreted
on the same linguistic scale ranging from ‘‘Null’’ to ‘‘Extremely
high’’. In stages of development where designers’ knowledge re-
mains vague and somewhat ambiguous, interpretation modeling
is mostly based on pairwise comparisons (Saaty, 2006) using lin-
guistic values (Dong, Xu, & Li, 2008). The strongest consistency is
ensured by pairing interpretation values linked to a couple of
observation variables through the linguistic interpretation scale.
The scales of values are consistent if, for every interpretation func-
tion du or dv, every couple of interpretation values is consistent
with the designers’ linguistic interpretation. This consistency
hypothesis is strong since the expression of designers’ knowledge
may be unclear. This difficulty can be overcome by using AHP tech-
niques to determine the parameters of the desirability functions.
Future developments of this work will also take into account the
fuzziness of these parameters.

5. Re-design of a geothermal air conditioning system

5.1. System presentation

Considerable interest is currently focused on the development
of innovative devices for low-power air-cooling of detached
houses. The most traditional air conditioning technologies are cal-
orific pumps using refrigerant compression. Due to the high invest-
ment costs and sizeable electrical energy consumption of these
devices (usually ranging between 30 and 70 W/m2, where square
meters relate to the living area of the house), geothermal systems
appear to be very good candidates for innovative developments in

this area. Typical electrical energy consumption by geothermal
cooling systems ranges between 1 and 2 W/m2. However, thermal
conductivity of soils is generally low (around 2 W/mK), which
highly constrains the overall dimensions of the thermal exchangers
harnessing the calorific energy from the ground. Consequently,
some geothermal cooling systems are dimensioned to improve
the average thermal comfort of houses, rather than meeting the
requirements of maintaining low temperatures inside the house
during unusual heat wave episodes.

Some promising developments of geothermal air conditioning
systems tend toward low power but energetically efficient sys-
tems. The typical cooling powers of the air conditioning devices
discussed in this paper range between 300 and 500 W for a
100 m2 single-family house, which is low compared to calorific
pumps generating several kilowatts of cooling power. It may be ar-
gued against calorific pumps that, generally, they are under-uti-
lized in temperate climate areas despite their high investment
costs. For several reasons, most heat pump customers are reluctant
to make use of a system that consumes a lot of energy during long
periods of time. For detached houses and in a context of sustain-
able development, air cooling systems based on refrigerant com-
pression are regarded as luxury products by significant
population brackets. Geothermal systems, on the contrary, are re-
garded as cheap, eco-friendly and efficient for most periods of time.

In such an evolutionary context, both difficult to predict and yet
promising, small- and medium-sized companies are trying to devel-
op this equipment and put it into practice. Designing geothermal air
conditioning systems is faced with the need for technological inno-
vation and risk limitation. The application presented in this article
has been carried out by a small enterprise specialized in designing

Fig. 7. Pairwise comparisons of interpretation functions.



(from assembled equipments), assembling and installing energy
systems. The company’s activity in the field of geothermal systems
concerns small equipment, for which they excavate and prepare the
ground and also assemble and install the system inside the house.

5.2. Design diagnosis and problem modeling

Geothermal systems are built from three main functional units
(see Fig. 8) and the objectives are: (i) harnessing cold calorific en-
ergy from the ground, (ii) conditioning the temperature of some
atmospheric air with this calorific energy along with its velocity
using electrical energy, and then (iii) distributing the air inside
the house. The company has identified one particular difficulty in
the design of their equipment relating to the compactness of the
air/antifreeze solution heat exchanger in the air conditioning unit.
In single-family houses, there is often little available space in the
utility room, which highly constrains the overall dimensions
(height and width) of the casing for the exchanger. Another diffi-
culty, regarded as secondary compared to the space encumbrance
problem, concerns the temperature variation in the air flowing
through the heat exchanger. The efficiency of the exchanger is
low (about 40%) but has been maximized from supplier catalogues.

Starting from basic dimensional data and fluid flow rates, it was
quickly realised that the efficiency of the exchanger could be sig-
nificantly increased and, at the same time, that the overall dimen-
sions of the exchanger could be decreased. The difficulty the
company had in designing the air conditioning system was mainly
due to the type of exchanger used for cooling the atmospheric air.
These exchangers are made of a copper tube circulating inside a
bundle of approximately one millimeter spaced aluminum plates.
Most of these exchangers are used for air conditioning applications
based on refrigerant compression. They were originally designed to
achieve an optimal compromise between maximizing the energy
transferred by the fluid circulating inside the tube (rather than
maximizing/minimizing the temperature of the air circulating out-
side the tube) and minimizing the volumes and costs of the ex-
changer. This choice is inherent in the functioning of calorific
pumps since, outside the house, atmospheric air is used as an
external environment to evacuate the calorific energy, whereas in-
side the house, air is cooled through a recirculation process.
Regarding the air-flow circuit inside the exchanger, the air path
is short (50 mm in Fig. 8) and consequently the air cooling effec-
tiveness of these exchangers is usually close to 40% around their
nominal operating point. These exchangers are not intrinsically
suitable for maximum air cooling effectiveness.

This first analysis was carried out by taking on-site experimen-
tal measurements of the air temperatures inside the conditioning
unit. Temperature measurements showed that, due to the low

efficiency of the fan moving air through the circuit, a significant
proportion (approximately 70%) of the air’s kinetic energy was de-
graded in calorific energy inside the fan and air temperature in-
creased about two degrees Celsius. In the same manner, it was
difficult to assess the relevance of the choice of liquid pump, and
the design of the conditioning unit must be regarded as a global
interaction process between the pump, fan and heat exchanger.
Based on these diagnoses and experimental observations, a model
(lu) was developed taking into account physical phenomena, pur-
chase prices or energy consumption costs in the conditioning unit;
this model aimed at observing the performance of several thou-
sands of different combinations of pumps, fans and heat exchang-
ers selected from component supplier catalogues. Because the air
path inside a single heat exchanger is short (resulting in low air
cooling efficiency), several heat exchangers can be placed in series
along the air-flow circuit inside the same casing to increase ex-
change efficiency. The exchangers are connected together in a
counter-current circuit using curved copper tubes.

The model contains four different design variables (X) corre-
sponding to three identification indexes for the fan, pump and heat
exchanger (x1, x2 and x3), along with the number of exchangers in
series (x4). It also contains five different observation variables (Y)
which are:


 The operational cost of the system (y1) derived from the pur-
chase prices and electrical energy consumption costs of the con-
ditioning unit components.

 The compactness indicator (y2) derived from the characteristic

dimension (height or width) of the space encumbrance of the
heat exchanger case.

 The system energetic Coefficient of Performances (y3), i.e. the

ratio between the cooling power efficiency and the electrical
power consumption.

 The temperature of the air at the distributing unit outlet (y4).

 The volume flow rate of the air at the distributing unit outlet

(y5).

The model lu is based on one-dimensional balances of calorific
energy and pressure along the air and liquid circuits (inside the
ground exchanger). It must be noted that:


 The friction factors and heat transfer coefficients of the air
inside the tube and fin exchangers are based on Gray and
Webb’s model (Gray & Webb, 1986) and corroborated from data
provided by the company that manufactures the exchangers.

 The global calorific energy balance inside the heat exchangers is

derived from a counter current Number of Transfer Unit model
(Rohsenow, Hartnett, & Cho, 1998).

Fig. 8. Geothermal air conditioning system.




 The characteristic functions (pressure vs. flow rate) of the fans
and pumps have been interpolated from supplier catalogues.

 The equipment refers to supplier non-negotiated costs and

energy costs refer to the most usual contractual prices in France.

In the context of small enterprises specialized in designing,
manufacturing, assembling or installing energetic systems, such a
model, on its own, is inadequate to support decision making.
Designers’ reasoning is greatly constrained by risks or uncertain-
ties as much as the need for innovation relating to their products.
Decisions are made in a bounded rationality context since any
transformation in the geothermal system configuration would re-
sult in new questionings and decision requirements beyond the
scope of the present model. In particular, designing from assem-
bled parts like fans, ducts, etc. entails co-dependent relationships
between companies, which may affect the feasibility of design
solutions whatever their performance levels. The implementation
of competitive solutions may be delayed or canceled due to practi-
cal infeasibility or lack of confidence in the feasibility of solutions.

Confidence observation and interpretation functions are based
on designers’ concerns about the presumed accessibility of parts
or components and the difficulty in assembling them. Parts or com-
ponents already present and available in suppliers’ catalogues are
regarded as highly accessible (high confidence), whereas non-stan-
dard components such as multiple heat exchangers assembled in
series in a single case are regarded as moderately accessible (aver-
age confidence). The left part of Fig. 9 shows the interpretation
functions used to express the confidence levels as a function of four
observation variables (y01 to y04). Values of y0 equal to zero corre-
spond to the existing design configuration and, consequently, are
related to a confidence value of one. Making an adjustment, even
a small one, to one of the observation variables results in a degra-
dation of its respective confidence level; this degradation is low for
the variables y01 to y03 (extremely high to very high) and more sig-
nificant for the variable y04 (extremely high to average). More to
the point, making an adjustment (relative to the existing design
configuration) to some overall characteristics of components, such
as the dimensions of fans and pumps, affects the physical environ-
ment of the initial system; this leads to necessary adaptations of
the conduits and connection components, the consequences of
which are difficult to predict in the early stages of design pro-
cesses. Therefore, the interpretation functions of confidence de-
crease while the non-dimensional deviations increase from zero
to one; since adaptations are regarded as low, interpretation func-
tions only decrease from 0.9 to 0.8 or from 0.5 to 0.4. Thus, du is de-
fined from:

y�1 ¼ y�2 ¼ y�3 ¼ y�4 ¼ 0þ

z�1 ¼ z�2 ¼ z�3 ¼ 0:9
z�4 ¼ 0:5

8><
>: and

yþ1 ¼ yþ2 ¼ yþ3 ¼ yþ4 ¼ 1
zþ1 ¼ zþ2 ¼ zþ3 ¼ 0:8
zþ4 ¼ 0:4

8><
>:

ð32Þ

The right-hand part of Fig. 9 shows the Harrington’s interpretation
function related to the temperature of the air at the conditioning
system outlet. Similar functions have been defined for every term
of Y and the parameters defining dv are:

 Relative operating cost: y�1 ¼ 100%; z�1 ¼ 0:9; yþ1 ¼ 200%;

zþ1 ¼ 0:1.

 Space encumbrance: y�2 ¼ 0:15m; z�2 ¼ 0:9; yþ2 ¼ 0:3m; zþ2 ¼ 0:1.

 Air cooling: y�3 ¼ 6:5�C; z�3 ¼ 0:1; yþ3 ¼ 10�C; zþ3 ¼ 0:9.

 Air renewal time: y�4 ¼ 1h 12 min; z�4 ¼ 0:9; yþ4 ¼ 1h 45 min;

zþ4 ¼ 0:1.

 Energetic performance (COP): y�5 ¼ 4; z�5 ¼ 0:1; yþ5 ¼ 10;

zþ5 ¼ 0:9.

For the sake of simplicity, the parameterization process of the
aggregation functions will not be justified and detailed in this pa-
per. In the following, we use:

fðZ0Þ ¼ z00:21 	 z00:42 	 z00:23 	 z00:24 ;

fðZÞ ¼ z0:1
1 	 z0:25

2 	 z0:2
3 	 z0:25

4 	 z0:2
5 ð33Þ

5.3. Results and discussion

From these performance and confidence models, each of the
750 candidate solutions of a solution set derived from a list of 5
fans, 10 liquid pumps and 3 heat exchangers (from 1 to 5 heat
exchangers positioned in series) was simulated. Fig. 10 shows the
confidence and performance indicators related to these 750 design
configurations. In this list, solution index 512 corresponds to the
design configuration currently developed by the company. Height
Pareto-dominant solutions and, among them, four arc-elastic dom-
inant solutions (including solution 512) arise from numerical com-
putations. Fig. 10 mainly highlights two clusters of solutions. On
the right of the figure, a first set of solutions corresponds to designs
related to one single heat exchanger and, consequently, to high
confidence indicator values since the initial reference solution also
includes one exchanger. On the left of the figure, the second cluster
of solutions corresponds to design solutions with multiple heat
exchangers (from 2 to 5 exchangers). These solutions degrade the
values of the confidence indicator; however some of them appear
to increase the performance indicator considerably.

Solution 262 is very close to the initial solution from the confi-
dence point of view. Despite the relatively low performances of this
solution, it emerges from the arc elasticity maximization algorithm
as being the first to take the system re-design process into consid-
eration. Table 2 presents the values of vectors X and Y correspond-
ing to the arc-elastic dominant solutions. This table shows that,
starting from solution 512, solution 262 is built by replacing ex-
changer number 3 (dimensions in millimeters 320 � 320 � 50) by
exchanger number 2 (dimensions in millimeters 250 � 250 � 50).
As exchanger 2 is smaller than exchanger 3, this alternative drasti-
cally improves the system performances relating to space encum-
brance and, to a lesser extent, decreases the cost of the system.
This new exchanger has a smaller exchange surface than the previ-
ous one, which should result in a degradation of the air cooling.
However, the decrease in air cooling proves to be very low because
the air velocity in the initial configuration is very low (about 0.5 m/
s) and most of the exchange surface is under-utilized. It must be no-
ticed that, initially, space encumbrance was the main concern of the
designers of the geothermal system. From a very simple transfor-
mation of the existing system this difficulty can be solved, whereas,
from the point of view of an expert in the physical behavior of heat
exchangers, this solution seems not particularly effective. By com-
bining subjective and objective points of view and taking into ac-
count design process constraints related to lack of information or
cognitive limitations, this approach can explain designers’ prefer-
ences in some particular contexts. Faced with specific difficulties,
designers may prefer a sub-optimal design solution when their
understanding leans towards experimented design configurations
that inspire their confidence. In a bounded rationality context, deci-
sion-makers may prefer solutions related to maximal levels of con-
fidence to solutions related to maximal levels of performance.

Solutions 322 and 371 increase the thermal power of the sys-
tem from 350 to 640 Watts by using several heat exchangers of
type number 2 positioned in series and a more powerful fan, which
jointly increase the thermal transfer surface and discharge velocity
of the air flowing inside the heat exchangers. The air renewal time
decreases from about 1 h 45 min to 1 h 30 min improving ventila-
tion in the house, while the air cooling increases from 5.2 to 8.3 �C.



These two solutions significantly improve the thermal comfort
provided by the system, however, they also increase its operative
cost. The filtering algorithm based on elasticity optimization al-
lows screening half of the Pareto-efficient solutions. By sorting
solutions according to their confidence levels (descending order)
and performance levels (ascending order), the algorithm simulates
a decision-making process in which designers jump from one solu-
tion to another by increasing the risk level inherent in their
decisions.

6. Conclusion and prospects

Design processes are constrained by the need for performance
improvement (or even innovation) and failure risk limitation of

industrial products. This paper introduces and investigates the
concept of performance/confidence arc-elasticity in mechanical
design. Arc-elasticity has been defined as a ratio of two non-
dimensional preference indicators. Preference is defined in terms
of distance between an initial solution and candidate solutions; it
tends to limit the transformations of the initial solution since
transforming well-controlled solutions tends to increase the epi-
stemic uncertainties in the design process. From the concept of
elasticity, an optimal solution screening methodology has been
proposed. This approach aims at selecting design candidate solu-
tions according to their arc-elasticity, which is relative to other
solutions. Valuable solutions maximize the performances of the
mechanical system and minimize the epistemic uncertainties aris-
ing from the complexity of the physical, economical and technical
environment of the system.

Fig. 9. Confidence interpretation functions (left) and fourth performance interpretation function (right).

Fig. 10. Performance and confidence levels of the design solutions (among 750 alternatives).



The main bottleneck in this approach derives from the consis-
tency requirement for the scales of the interpretation functions.
At the current stage of development of this work, consistency is en-
sured by assuming that designers are able to define interpretation
scales through a unique linguistic interpretation scale without
ambiguities. Future developments will take into account the fuzz-
iness of designers’ knowledge using fuzzy logic techniques. Thus
the definition parameters of the interpretation functions will be
fuzzy quantities.

This article focuses on a particular modeling method of perfor-
mance and confidence indicators. However, our future develop-
ments are concerned with more general definitions of these
indicators. In particular, preference has been considered as prior
information resulting from the investigation of pre-existing sys-
tems observable through their design variables. Design variable
values of pre-existing systems are used to guide designers’ deci-
sions by restricting the transformation of the initial configuration.
However, preference may also concern more valuable expertise
resulting from knowledge contained in the design models. Design
heuristics derived from analytical and experimental knowledge
are based on the observation of physical orders of magnitude and
may be used to define other levels of preference. For instance, heat
exchanger dimensioning and design can be guided by the simulta-
neous observation of some variables such as the exchanger com-
pactness, heat transfer coefficients, fluid velocities, heat capacity
ratios and thermal efficiency. From the order of magnitude of these
variables, designers may derive confidence levels on the model’s
validity, which may contribute to the definition of preference func-
tions. New developments of the methodology presented in this pa-
per are also interested in this type of application.
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