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HIGH LEVEL QUANTILE APPROXIMATIONS OF SUMS

OF RISKS

A. CUBEROS, E. MASIELLO, AND V. MAUME-DESCHAMPS

Abstract. The approximation of a high level quantile or of the expec-
tation over a high quantile (Value at Risk (VaR) or Tail Value at Risk
(TVaR) in risk management) is crucial for the insurance industry. We
propose a new method to estimate high level quantiles of sums of risks.
It is based on the estimation of the ratio between the VaR (or TVaR)
of the sum and the VaR (or TVaR) of the maximum of the risks. We
use results on consistently varying functions. We compare the efficiency
of our method with classical ones, on several models. Our method gives
good results when approximating the VaR or TVaR in high levels on
strongly dependent risks where at least one of the risks is heavy tailed.

1. Introduction

Because of regulatory rules (such as Solvency 2 in Europe) or for internal
risk management purposes, the estimation of high level quantiles of a sum
of risks is of major interest both in finance and insurance industry.
Consider an insurance company that has a portfolio of d ≥ 2 (possibly)
dependent risks which is represented as a random vector X = (X1, . . . , Xd)
with cumulative distribution function (c.d.f.) F(x1, . . . , xd). We assume
that all the risks are almost surely positive but we do not assume that they
are identically distributed. Let S denote the aggregated risk

S = X1 + · · ·+Xd.

We are interested here in the computation of the Value-at-Risk (VaR) and
the Tail Value-at-Risk (TVaR) of the sum,

VaR p(S) = F↼
S (p) and TVaR p(S) =

1

1− p

∫ 1

p
VaR u(S) du,

for confidence levels p ∈]0, 1[ near 1, where FS is the c.d.f. of S and F↼

is its generalized inverse. Problems like this arise for insurance companies,
for example, which are required to maintain a minimum capital requirement
which is typically calculated as the VaR for the distribution of the sum at
some high level of probability. Even when the distribution function F is
known, good estimations for VaR p(S) are not trivial since they require a
precise calculation of FS , which is given by the following integral

FS(x) =

∫
{x1+···+xd≤x}

dF(x1, . . . , xd).

Key words and phrases. consistently varying functions, value at risk estimation, risk
aggregation.
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This integral is more difficult to approximate when d is large and it is usually
more efficient to apply Monte Carlo methods to estimate it (for a compre-
hensive introduction to Monte Carlo methods see [28]). Nevertheless, when
p is near 1, the number of replications required to give precise estimations
is also large, so new methods are always well received. Classical Extreme
Value Theory (EVT) allows to get some estimation of the VaR ([15, 29]).
Anyway, using EVT based methods requires an estimation of the EVT pa-
rameters, which is known to be not an easy task. Recently, in [7, 17, 8],
some approximations on the VaR are obtained for some specific models; see
also [18] where theoretical results on the asymptotic behavior of the ratio

VaR p(S)
d∑
i=1

VaR p(Xi)

are given. Results for the tail distribution of the sum of dependent subex-
ponential risks are obtained in [19] and also in [21] when risks are non-
identically distributed and not necessarily positive. In [5], an algorithm to
compute the distribution function of S is proposed and in [12], bounds are
obtained. Nevertheless, these results may be used to estimate VaR p(S) for
small dimensions (d < 4) and give ranges in dimension 4 or 5. We shall
compare our method to the EVT driven ones as well as to the Monte Carlo
method, especially for very high level quantiles and in dimension greater
than 4 (see Sections 7.2 and 7.3 for simulations in dimension 10 and dimen-
sion 150).

Let us denote by M the maximum risk in the portfolio of the company,
M = max{X1, . . . , Xd}. The c.d.f. of M , denoted FM , is given by

FM (x) = F(x, . . . , x).

FM is directly determined by the c.d.f. F of the portfolio, so that numeri-
cal integration or Monte Carlo methods are not necessary. This also means
that VaR p(M) can be easily calculated for any given level of confidence p,
at most a simple numerical inversion is needed.

In this paper we give some conditions on X under which the Value-at-
Risk and the Tail Value-at-Risk of the sum and maximum are asymptotically
equivalent in the sense that there exists some ∆ ≥ 1 such that

VaR 1−p(S) ∼ VaR 1−∆−1p (M) and TVaR 1−p(S) ∼ TVaR 1−∆−1p (M) ,

when p → 0 and where a(t) ∼ b(t) when t → l, for l ∈ [−∞,∞] means

throughout this paper that limt→l
a(t)
b(t) = 1. This result is interesting be-

cause it allows to estimate the VaR (or TVaR ) of the sum by using the
VaR (or TVaR ) of the maximum, which is easier to calculate, and the es-
timation of ∆.

For random vectors with common marginals (Fréchet, Gumbel, Weibull)
and an Archimedean copula dependence structure [3] and [2] get an asymp-
totic approximation of the tail of S. These results are generalized in [4] to
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other dependence structures. In [6], the same results are obtained in the
multivariate regularly varying framework. Examples in which the limiting
constant ∆ can be computed explicitly are also given in [16]. Finally, we
would like to mention [23] which is related to our work, in an independent
framework and for Pareto marginals.

In this paper, we consider a more general framework with non common
marginals and consistently varying tails. We emphasize that our method
applies when there are dependences between risks as well as the presence of
heavy tailed marginal distributions (see Section 5 for more details). This
may be a typical context for risk management applications in insurance and
finance. Moreover, the proposed method is tractable, even in high dimen-
sion (dimension 150 tested). In Section 7, we compare our method to Monte
Carlo one, with the same number of simulations. Of course, by increasing
the number of simulations, the approximations would be improved but with
the same simulation cost, our method is significantly more efficient than
Monte Carlo one. Moreover, we have chosen to use the relation between
VaR (M) and VaR (S) to get estimations on VaR (S), using the relation be-
tween VaR (S) and VaR (X1) may seem more natural. In Section 7, we show
that our choice is more efficient.

The paper is organized as follows. In Section 2, we recall definitions and
classical results on regularly and consistently varying functions. Section 3
contains our main results. In Section 4, we give classes of random vectors
satisfying our hypothesis. Section 5 is devoted to a methodology for the
estimation of ∆. In Section 6, we give explicit expressions of the VaR on
some specific models (introduced in [24, 30] and also considered in [13] where
the expression of the VaR is derived). In Section 7, we compare our method
with classical ones on several models. Conclusions are given in Section 8.
Section A is an appendix which contains useful results on regularly varying
functions and their inverses.

2. Preliminaries

In this section, we will first recall the definition of regularly and consis-
tently varying functions and then give some results on consistently varying
functions and generalized inverse functions.

Definition 1. Let f be a positive measurable function on R+.

• We say that f is regularly varying at infinity if there exists a real ρ
such that

lim
x→∞

f(tx)

f(x)
= tρ,

for any t > 0. This will be denoted by f ∈ RV∞(ρ). Similarly we
say that f : R+ → R+ is regularly varying at a ≥ 0 if f(a+ 1/x) is
regularly varying at infinity. This will be denoted by f ∈ RVa(ρ).
If ρ = 0 then f is said to be slowly varying.
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• We say that f is consistently varying at infinity, denoted as f ∈ C∞,
if

lim
t↓1

lim inf
x→∞

f(tx)

f(x)
= 1.

Similarly to the regularly varying definition, f is said to be consis-
tently varying at a > 0, denoted by f ∈ Ca, if g(x) = f(a + 1/x) is
consistently varying at infinity.

Examples of regularly varying distributions are Pareto, Cauchy, Burr and
stable with exponent α < 2. Notice that every regularly varying function is
consistently varying. Examples of consistently varying functions which are
not regularly varying can be found in [11].

Definition 2. A random variable X with distribution function F is said to
have a regularly (consistently) varying upper tail if its survival function F
is regularly (consistently) varying at infinity.

2.1. Some results on consistently varying and generalized inverse
functions. It is well known that the sum and composition of regularly
varying functions are again regularly varying: if fi ∈ RV∞(ρi), i = 1, 2,
then f1 + f2 ∈ RV∞(ρ) with ρ = max{ρ1, ρ2} and if f2(∞) = ∞ then
f1 ◦ f2 ∈ RV∞(ρ) with ρ = ρ1ρ2 (see for example [9]). Below we prove that
functions which are consistently varying at infinity also satisfy this closure
property.

Proposition 2.1. Let f and g be two non-increasing functions consistently
varying at infinity, then the following is satisfied:

(i) g ◦ (1/f) is consistently varying at infinity if f(∞) = 0 = g(∞);
(ii) f + g is consistently varying at infinity.

Proof. (i) Set ε > 0 and choose s′ > 1 and s > 1 such that

lim inf
x→∞

g(s′x)

g(x)
> 1− ε and lim inf

x→∞

f(sx)

f(x)
> 1/s′.

Then

lim inf
x→∞

g(1/f(sx))

g(1/f(x))
≥ lim inf

x→∞

g(s′/f(x))

g(1/f(x))
> 1− ε,

which proves the proposition.
(ii) Set ε > 0, and define for t > 1

L(t) := lim inf
x→∞

f(tx) + g(tx)

f(x) + g(x)
= lim inf

x→∞

(
f(tx)/f(x)

1 + g(x)/f(x)
+

g(tx)/g(x)

f(x)/g(x) + 1

)
.

Then, as f and g are consistently varying at infinity, there exist reals s > 1
and N > 0 such that fi(sx)/fi(x) > 1− ε for all x > N , and i = 1, 2. Then

L(s) ≥ (1− ε) lim inf
x→∞

(
1

1 + g(x)/f(x)
+

1

1 + f(x)/g(x)

)
= (1− ε).

As L is non-increasing, then also L(s′) ≥ 1− ε for all 1 < s′ < s. Finally, as
L(t) ≤ 1 for all t > 1 we have shown

lim
t↓1

L(t) = 1.

�
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Definition 3. Let f be a non-decreasing function and h a non-increasing
function. The generalized inverses of f and h are defined respectively as

f↼(t) = inf{s : f(s) ≥ t} and h↽(t) = inf{s : h(s) ≤ t}.

Remark that if h is positive we have then h↽(t) = (1/h)↼(1/t).

Let us recall some well known facts on the generalized inverse functions.

Proposition 2.2. If f and h are two right-continuous functions, respectively
non-decreasing and non-increasing, then for any x and y the following is
satisfied:

(i) f↼(f(x)) ≤ x, f(f↼(x)) ≥ x and f↼(y) ≤ x⇔ y ≤ f(x)
(ii) h↽(h(x)) ≤ x , h(h↽(x)) ≤ x and h↽(y) ≤ x⇔ y ≥ h(x).

Proposition 2.3. If ft, t ≥ 0 are non-decreasing functions on R and ft →
f0, then f↼

t → f↼
0 in the sense that

f↼
t (x)→ f↼

0 (x)

for all x on the continuity points of f↼
0 . The same is true for non-increasing

functions changing ↼ by ↽ above.

Proof. For the proof on non-decreasing function see for example [25] page
259. Non-increasing case follows using that f↽

n (x) = ( 1
fn

)↼( 1
x). �

Below, we prove some results, that are classical for regularly varying func-
tions, for consistently varying functions.

Proposition 2.4. Let f be a consistently varying and non-increasing mea-
surable function f : R+ → R+ and a(x) and b(x) two positive sequences such
that a(x) ∼ b(x) as t→∞ and a(∞) =∞. Then the following is satisfied:

(i) The function x 7→ f↽(1/x) is consistently varying at infinity
(ii) If f(∞) = 0, then f↽ ◦ f(x) ∼ x and f ◦ f↽(1/x) ∼ 1/x when

x→∞
(iii) f(a(x)) ∼ f(b(x)) and f↽(1/a(x)) ∼ f↽(1/b(x)) when x→∞

Proof. (i) Set Hx(t) = f(tx)/f(x) and H(t) = lim infx→∞Hx(t). We will
first show that lim infx→∞H

↽
x (ω) ≤ H↽(ω) for all 0 < ω < 1. Take ω ∈

(0, 1), for each x > 0 let us denote by Ix(ω) the value

Ix(ω) = inf{H↽
s (ω) : s ≥ x}.

Then H↽
x (ω) ≥ Ix(ω) and by the last equivalence of Proposition 2.2 (ii)

ω ≤ Hx(Ix(ω)), for all x > 0. We have then that ω ≤ inf{Hs(Is(ω)) : s ≥ x}
for any x > 0. Notice now that as Ix(ω) is non-decreasing on x and that
each Hx is a non-increasing function then

ω ≤ inf{Hs(Is(ω)) : s ≥ x} ≤ inf{Hs(Ix(ω)) : s ≥ x} ≤ H(Ix(ω))

for all x > 0. By Proposition 2.2 (ii) we have

Ix(ω) ≤ H↽(ω)

for all x > 0. Thus by taking limits we find

lim inf
x→∞

H↽
x (ω) ≤ H↽(ω).
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Now, we prove the announced result. For each x > 0 and 0 < ω < 1 we have
Hx

↽(ω) = f↽(ωf(x))/x. Proposition 2.2 (ii) gives, f ◦ f↽(1/x) ≤ 1/x for
all x > 0 and then for 0 < ω < 1 we have f↽(ω/x) ≤ f↽ (ωf ◦ f↽(1/x)).
Now, we have

1 ≤ lim inf
x→∞

f↽(ω/x)

f↽(1/x)
≤ lim inf

x→∞

f↽ (ωf ◦ f↽(1/x))

f↽(1/x)
= lim inf

x→∞
H↽
x (ω) ≤ H↽(ω).

As f ∈ C∞ implies H(t) ↑ 1 when t ↓ 1, and thus, as H is non-increasing,
then H↽(ω) ↓ 1 when ω ↑ 1 and

lim
ω↑1

lim inf
x→∞

f↽(ω/x)

f↽(1/x)
= 1,

which proves the Proposition.
(ii) Proposition 2.2 (ii) gives f↽(f(x)) ≤ x for all x > 0. By definition of
the generalized inverses it follows that

0 ≤ x− f↽ ◦ f(x) ≤ lim
s↑1

f↽(sf(x))− lim
t↓1

f↽(tf(x))

where the last expression represents the size of the possible jump of f↽ at
f(x). Take ε > 0, by (i) the mapping x 7→ f↽(1/x) is consistently varying
so we can choose N > 0, 0 < s < 1 and t > 1 such that for all x > N

f↽(s/x)

f↽(1/x)
≤ 1 +

ε

2
and

f↽(t/x)

f↽(1/x)
≥ 1− ε

2
.

Then

0 ≤ 1− f↽ ◦ f(x)

x
≤ f↽(sf(x))− f↽(tf(x))

f↽ ◦ f(x)
≤ ε

where the last inequality holds for all x > f↽(1/N). As ε was arbitrary it
had been proven that f↽ ◦ f(x) ∼ x. The proof that f ◦ f↽(1/x) ∼ 1/x is
similar.
(iii) Set ε > 0, and let T be such that 1 − ε ≤ a(x)/b(x) ≤ 1 + ε for any
x ≥ T . Then as f is non-increasing, for x ≥ T we have

f((1 + ε)b(x))

f(b(x))
≤ f(a(x))

f(b(x))
≤ f((1− ε)b(x))

f(b(x))
.

Applying limits in the equation above we get,

lim inf
x→∞

f((1 + ε)b(x))

f(b(x))
≤ lim inf

x→∞

f(a(x))

f(b(x))

and

lim sup
x→∞

f(a(x))

f(b(x))
≤ lim sup

x→∞

f((1− ε)b(x))

f(b(x))
.

As f ∈ C∞ then

lim
ε↓0

lim inf
x→∞

f((1 + ε)b(x))

f(b(x))
= 1.

Similarly, as

lim sup
x→∞

f((1− ε)b(x))

f(b(x))
= lim inf

x→∞

f(b(x))

f((1− ε)b(x))
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then f ∈ C∞ implies

lim
ε↓0

lim sup
x→∞

f((1− ε)b(x))

f(b(x))
= 1.

Thus we had proved

lim
x→∞

f(a(x))

f(b(x))
= 1.

The proof of f↽(1/a(x)) ∼ f↽(1/b(x)) follows from (i). �

3. Asymptotic results on the VaR and the TVaR of the sum
and the maximum

Our main results are now stated: they link the Value-at-Risk of the sum
and the maximum in case where the survival function of the maximum,
FM , is consistently varying. The results still hold for the TVaR . Recall
that we do not assume that the marginal distributions are either identically
distributed or independent.

Theorem 3.1. Let X = (X1, . . . , Xd) be a vector of positive random vari-
ables (r.v.s). Suppose that FM is consistently varying and that δ(x) :=
FS(x)

FM (x)
→ ∆ as x→∞, for some 1 ≤ ∆ <∞. Then

VaR 1−p(S) ∼ VaR 1−∆−1p(M) as p→ 0.

The same result applies for the TVaR if TVaR p(M) exists for all p. If

moreover FM is ρ− varying then ∆ ≤ d−ρ.

Let us mention that in the case of regularly varying functions FM , the first
part of Theorem 3.1 follows from properties of regularly varying functions
and the second part follows from Karamata’s Theorem. The insterest of
Theorem 3.1 is that it holds for consistently varying functions FM .

Proof. By Proposition 2.4 (ii) and (iii) we have

t ∼ F↽

M ◦ FM (t) ∼ F↽

M

(
∆−1FS(t)

)
.

Again, by combining Proposition 2.4 (ii) and (iii) we have as p→ 0

F
↽

S (p) ∼ F↽

M

(
∆−1FS ◦ F

↽

S (p)
)
∼ F↽

M (∆−1p)

After rewriting the last equation in terms of the VaR function the result
follows. Now we prove that the result is still valid when changing the VaR
measure by the TVaR above, assuming the last exists. As we have that

VaR 1−u(S) ∼ VaR 1−∆−1u(M)

when u→ 0 then there exists a function ε(p), ε(p) ↓ 0 as p ↓ 0 such that for
any 0 < u ≤ p

(1− ε(p)) VaR 1−∆−1u(M) ≤ VaR 1−u(S) ≤ (1 + ε(p))VaR 1−∆−1u(M).

After integrating over u from 0 to p each side of the inequality above we get,

(1− ε(p)) TVaR 1−∆−1p(M) ≤ TVaR 1−p(S) ≤ (1 + ε(p))TVaR 1−∆−1p(M),

and then as ε(p) ↓ 0 it is clear from the last inequality that

TVaR 1−p(S) ∼ TVaR 1−∆−1p(M)
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when p → 0. Remark that as we assume that marginal risks are almost
surely positive we always have that

{max{X1, . . . , Xd} > t} ⊂ {X1 + · · ·+Xd > t} ⊂ {max{X1, . . . , Xd} > t/d}

and thus δ(t) ≤ FM (t/d)/FM (t). So that if FM is regularly varying with
index ρ then ∆ ≤ d−ρ.

�

Classes of random vectors such that the tail of the maximum is regularly
or consistently varying will be given in Section 4 while in Section 5 we will
provide a method to estimate ∆. The hypothesis of the convergence of δ(x)
in Theorem 3.1 can be relaxed if we assume regularity of the maximum.
Before explaining that point, we need to prove the following lemma.

Lemma 3.2. Let X = (X1, . . . , Xd) be a vector of positive r.v.s. If both FM
and FS are regularly varying at infinity then they have the same variation
index.

Proof. Suppose that FM ∈ RV∞(−ρM ) and that FS ∈ RV∞(−ρS), for
some positive values ρS and ρM . As before, because X has positive compo-
nents, FM (t) ≤ FS(t) ≤ FM (t/d) for any t > 0 and then

1 ≤ FS(t)

FM (t)
≤ FM (t/d)

FM (t)

for any t > 0. Regular variation of FM implies then that

(3.1) 1 ≤ FS(t)

FM (t)
≤ dρM + ε

for some positive values ε, T and any t > T . Now let LM and LS be the
slowly varying functions that satisfy

FM (t) = t−ρMLM (t) and FS(t) = t−ρSLS(t),

then
FS(t)

FM (t)
= tρ

LS(t)

LM (t)
,

with ρ = ρM − ρS . Rewriting last equation as

FS(t)

FM (t)
=

tρ/2LS(t)

t−ρ/2LM (t)
,

allows us to check, by Proposition 1.3.6 in [9], that as t→∞ either FS(t)

FM (t)
→

∞ if ρ > 0 or FS(t)

FM (t)
→ 0 if ρ < 0. As both possibilities contradict inequality

(3.1) we must have ρ = 0 and thus ρM = ρS .
�

Theorem 3.3. Let X = (X1, . . . , Xd) be a vector of positive r.v.s. If the

function δ(x) = FS(x)

FM (x)
is continuous but not convergent and FM and FS

are both regularly varying with negative indexes then

VaR 1−βpn(S) ∼ VaR 1−∆−1βpn(M)
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for some sequence pn → 0, some ∆ ≥ 1 and any β > 0. The same result
applies for the TVaR if TVaR p(M) exists for any p.

Proof. We have FM (t) ≤ FS(t) ≤ FM (t/d) for any t > 0, so FM ∈ RV∞(ρ),
ρ < 0, implies that eventually 1 ≤ δ(t) ≤ d−ρ. So if δ(t) is not convergent
there exist two strictly increasing and unbounded real sequences (un)n>0,
(vn)n>0 such that b(un) → ∆1 and b(vn) → ∆2 as n → ∞, for some 1 ≤
∆1 < ∆2 ≤ d−ρ. Without loss of generality we may suppose also that
∆(vn) > ∆ and ∆(un) < ∆ for all n > 0 with ∆ = (∆1 + ∆2)/2. As both
sequences vn and un are unbounded we can construct two natural sequences
(ji)i>0 and (ki)i>0 such that uki < vji < uki+1

for all i = 0, 1, . . .. Continuity
of δ(t) allows us then to pick up a strictly increasing and unbounded real
sequence (tn)n>0, such that ukn < tn < vjn and such that ∆(tn) = ∆. Then

FS(tn) = ∆FM (tn),

for all n > 0. As both FS and FM are regularly varying with same index,
for any s > 0

FS(stn) ∼ ∆FM (stn)

and then after applying Proposition A.2 (ii) we get

F
↽

S (βpn) ∼ ∆−ρ
−1
F

↽

M (βpn) ∼ F↽

M (∆−1βpn),

where pn = 1/tn and β = 1/s. Rewriting last equation with the VaR notation
finishes the proof. The TVaR case follows exactly as in the proof of Theorem
3.1. �

In theory this theorem allows us to approximate the VaR 1−p(S) at any
level p, by taking β = p/pn, for n big. However, in practice, it will not be
usable as the sequence pn is in general not known.

4. On the regular and consistently variation of the tail of
the max

In this section we explore several situations in which FM is regularly or
consistently varying. We also exhibit some classes of random vectors for
which the limit ∆ exists.

4.1. Multivariate regular framework.
Alink et al. ([3], [2] and [4]) studied the asymptotic behaviour of the tail
of the sum when the marginals of the vector X = (X1, . . . , Xd) are iden-
tically distributed as one of the three extreme value families: Gumbel,
Fréchet or Weibull and when the dependence within the vector is given
by an Archimedean copula. Then Barbe et al. ([6]) generalized these re-
sults under the framework of the multivariate regular variation distributions.
Their main contribution is the explicit calculation of the limit

lim
t→∞

FS(t)

F 1(t)
,

where F1 is the common distribution function of the marginal risksX1, . . . , Xd.
This kind of results suggest that we may approximate the VaR (and

TVaR) of the sum simply by the VaR (and TVaR) of X1. Our main re-
sults based on the maximum would then not be very interesting. This point
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will be detailed in Section 7.4 where it will be shown that maximum based
estimation gives indeed better results than F1 based one.

Let us recall the definition of multivariate regularly varying random vec-
tors.

Definition 4 (Multivariate Regular Variation). A random vector X is said
to be multivariate regularly varying of index β > 0 if there exists a probabil-

ity measure µ on Γd =
{

x
‖x‖ : x ∈ Rd \ {0}

}
, a function b : (0,∞)→ (0,∞)

and a scalar γ, such that for all x > 0 and all A ⊂ Γd,

lim
t→∞

tPr

(
‖X‖ > xb(t),

X

‖X‖
∈ A

)
=

γ

xβ
µ(A),

where γ = γ(‖ · ‖, b) depends on both the norm ‖ · ‖ used and the function b.

As shown in Barbe et al. (2006) ([6]), using the L1 norm, ‖X‖1 = |X1|+
· · ·+ |Xd|, and b(t) = F↼

1 (1− 1/t) in Definition 4, one finds

lim
t→∞

FS(t)

F 1(t)
= lim

t→∞

FS(b(t))

F 1(b(t))
= lim

t→∞
tPr(‖X‖1 > b(t)) = γ(L1, b).

Similarly, we can use the L∞ norm, ‖X‖∞ = max{[X1|, . . . , |Xd|} to get

lim
t→∞

FM (t)

F 1(t)
= lim

t→∞
tPr(‖X‖∞ > b(t)) = γ(L∞, b).

We conclude then that when X is multivariate regularly varying

lim
t→∞

FS(t)

FM (t)
=

γ(L1, b)

γ(L∞, b)
= ∆.

So that, when X is multivariate regularly varying Theorem 3.1 applies.
We are also interested in random vectors whose coordinates are not iden-

tically distributed. Results for identically distributed marginals will not lead
to results for arbitrary marginals. This is the purpose of the next section
where different kinds of dependence structure are also considered.

4.2. The case of independence or Archimedean copula dependence
structure.
In this section the results presented in appendix A are used to prove, in the
case of independence and for random vectors with an Archimedean copula
dependence structure, that the maximal survival function is regularly or
consistently varying.
Let us remark that considering a random vector with regularly varying
marginals does not imply that FM is regularly varying. Nevertheless, some
bounds may be obtained. Denote by F i the survival function of Xi and
assume that F i ∈ RV∞(−ρi) for i = 1, . . . , d with ρi > 0.
Fréchet bounds imply that for any t > 0

1−min
i
{Fi(t)} ≤ FM (t) ≤ 1−

(
1−

d∑
i=1

F i(t)

)
+

,
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where (·)+ stands for the positive part function, and so when t is such that
F i(t) ≤ d−1 for all i = 1, . . . , d

max
i
{F i(t)} ≤ FM (t) ≤

d∑
i=1

F i(t) ≤ dmax
i
{F i(t)}.

So
maxi{F i(tx)}
dmaxi{F i(t)}

≤ FM (tx)

FM (x)
≤ dmaxi{F i(tx)}

maxi{F i(t)}
.

Then if there exists j such that eventually F j(x) ≥ F i(x) for any i and

that for such a j, F j ∈ RV∞(−ρj), then for FM∗(x) = lim inf
t→∞

FM (tx)

FM (x)
and

F
∗
M (x) = lim sup

t→∞

FM (tx)

FM (x)
,

d−1x−ρj ≤ FM∗(x) ≤ F ∗M (x) ≤ dx−ρj

F j(t) ≤ FM (t) ≤
d∑
i=1

F i(t).

Now as (see e.g. [9])
∑d

i=1 F i(t) is in RV∞(−ρ∗) with ρ∗ = min{ρi : i =
1, . . . d} = ρj , then there exists g and h in RV∞(−ρj) such that

g(t) ≤ FM (t) ≤ h(t).

Under some additional hypothesis, we now get that FM is regularly varying.

Proposition 4.1. Let X = (X1, . . . , Xd) be a vector of positive r.v.s. If
F j(x)/F 1(x) → 0 when x → ∞ for all 2 ≤ j ≤ d, then FM (x) ∼ F 1(x).

Then if F 1 ∈ RV∞(−ρ), ρ > 0 so does FM .

Proof. It follows directly from the remark that

FM (t) ≥ F 1(t) and FM (t) ≤
d∑
i=1

F i(t).

�

We now consider the case where the dependence structure between com-
ponents of the random vector is given by an Archimedean copula and study
conditions under which the tail of the maximum is regularly or consistently
varying. We first recall the definition of Archimedean copula.

Definition 5. (Archimedean Copulas)
C is an Archimedean copula with generator ψ if

C(u1, . . . , ud) = ψ←{ψ(u1) + · · ·+ ψ(ud)},

for all ui ∈ [0, 1] and i = 1, . . . , d, where the generator ψ is a function
ψ : [0, 1]→ [0,∞] that satisfies:

(i) ψ is strictly decreasing with ψ(1) = 0;
(ii) The first k derivatives of ψ↽ exist and are continuous;
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(iii) For k = 0, 1, . . . , d,

(−1)k
dkψ←(t)

dtk
≥ 0, for all t > 0.

Proposition 4.2. Let X = (X1, . . . , Xd) be a random vector with regularly
varying tails, F i ∈ RV∞(−ρi), i = 1, . . . , d. Suppose that the copula C of
X is Archimedean with generator ψ and ψ ∈ RV1(−θ) with θ > 0.

Then the tail of the maximum is regularly varying, FM ∈ RV∞(−ρ), with
index ρ = mini{ρi}.

Proof. By definition

FM (x) = 1− ψ−1

(
d∑
i=1

ψ(Fi(x))

)
.

Lemma A.4 gives
ψ ◦ Fi ∈ RV∞(−ρiθ)

for each i = 1, . . . d, and then

φ :≡
d∑
i=1

(ψ ◦ Fi) ∈ RV∞(−ρθ)

with ρ = mini{ρi}. Lemma A.3 (ii) implies that

1− ψ−1 ∈ RV0(θ−1)

and applying again Lemma A.4 gives

FM ≡ (1− ψ−1) ◦ φ ∈ RV∞(−ρ)

as required.
�

Corollary 4.3. Let X = (X1, . . . , Xd) be a vector of positive r.v.s. If the
marginals are independent and their survival functions F i ∈ RV∞(−ρi),
ρi > 0, i = 1, . . . , d, then

FM ∈ RV∞(−ρ)

with ρ = mini{ρi}.

Proof. It suffices to notice that the independent copula is an Archimedean
copula with generator ψ(t) = − ln(t). �

Proposition 4.4. Let X = (X1, . . . , Xd) be a random vector with consis-
tently varying marginal tails. Suppose that the copula C of X is Archimedean
with generator ψ and that x 7→ ψ(1− 1/x) is consistently varying. Then the
tail of the maximum is consistently varying.

Proof. The proof is exactly the same as before, but instead of Lemmas A.3
and A.4, we use here Propositions 2.4 (i) and 2.1 (i). The closure by sums
of the consistently varying functions stated in Proposition 2.1 (ii) is also
required. �

In the case of survival Archimedean copulas, we derive the regular vari-
ation property for the tail of the maximum M and the minimum m in the
following proposition.
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Proposition 4.5. Let X = (X1, . . . , Xd) be a random vector with regularly
varying marginal tails, F i ∈ RV∞(−ρi), i = 1, . . . , d. Suppose that the cop-

ula C of X is the survival copula of an Archimedean copula C̃ with generator
ψ with ψ ∈ RV0(θ), θ > 0. Then

(i) The tail of the minimum of X, m := min{X1, . . . , Xd}, is regularly
varying, Fm ∈ RV∞(−ρ∗), with index ρ∗ = maxi{ρi}.

(ii) If there exists a distribution F such that

(4.1) lim
x→∞

F i(x)

F (x)
= ai,

where 0 ≤ ai ≤ 1 for all i = 1, . . . d and at least one is non-zero,
then the tail of the maximum is regularly varying, FM ∈ RV∞(−ρ),
with index ρ = mini{ρi}.

Proof. (i) Notice first that

Fm(x) = Pr(X1 > x, . . . ,Xd > x).

The survival copula dependence of X implies

Fm(x) = C̃(F 1(x), . . . , F d(x)),

and then by definition,

Fm(x) = ψ−1

(
d∑
i=1

ψ(F i(x))

)
.

Lemma A.4 gives, for each i = 1, . . . , d, ψ ◦ F i ∈ RV∞(ρi × θ) and thus

d∑
i=1

ψ(F i(x)) ∈ RV∞(ρ∗ × θ)

with ρ∗ = max{ρi, i = 1, . . . d}. Combining Lemmas A.3 (i) and A.4 as in
the proof of Proposition 4.2 allows us to conclude that Fm ∈ RV∞(−ρ∗).
(ii) For i = 1, . . . , d set Ai = {Xi ≤ x}, and A =

⋂d
i=1Ai. Then, by the

inclusion-exclusion principle, we have that

(4.2) FM (x) = Pr(Ac) =

d∑
k=1

(−1)k+1
∑

i1,...,ik∈{1,...,d}

Pr(Aci1 , . . . , A
c
ik

).

Notice that by (i), for each k = 1, . . . , d and each set I = {i1, . . . , ik} ⊂
{1, . . . , d} each addend in the sum above, in absolute value, is regularly
varying. That is because if mI = min{Xi1 , . . . , Xik} then

FmI (x) = Pr(Aci1 , . . . , A
c
ik

) ∈ RV∞(−ρ∗)

with ρ∗ = max{ρi1 , . . . , ρik}. However as not all elements in the sum are

positive we can just conclude that FM is the difference of two regularly
varying functions, and even if the difference is known to be positive we can-
not conclude directly on its regularity (see for example [20]). Nevertheless
if there exists a distribution function F such that

lim
x→∞

F i(x)

F (x)
= ai
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whence 0 ≤ ai ≤ 1 for all i = 1, . . . d with at least one ai non-zero, then the
regularity of FM can be proved. In this case for k = 1, . . . , d and each set
I = {i1, . . . , ik} ⊂ {1, . . . , d} we have∑

i∈I
ψ(F i(x)) ∼

∑
i∈I

ψ(aiF (x)) ∼ ψ(F (x))
∑
i∈I

a−θi

and by Lemma A.3 and Proposition 2.4 (iii)

(4.3) FmI (x) = ψ↽

(∑
i∈I

ψ(F i(x))

)
∼

(∑
i∈I

a−θi

)−1/θ

F (x).

Then combining equations (4.2) and (4.3) gives

lim
x→∞

FM (x)

F (x)
=

d∑
k=1

(−1)k+1
∑

i1,...,ik∈{1,...,d}

 k∑
j=1

a−θij

−1/θ

.

Remark that for any index i and any x ∈ R, FM (x) ≥ F i(x), so that

FM (x)

F (x)
≥ F i(x)

F (x)

x→∞−→ ai.

Since we assume that at least for one index i, ai > 0, we conclude that
FM ∈ RV∞(−ρ) where −ρ is the index of regularity of F . Let us check that
the index of F should be ρ = mini{ρi}. By hypothesis there exists i such
that ai 6= 0, and thus (4.1) implies F ∈ RV∞(−ρi). If there exists j 6= i
such that ρj < ρi then F j(x)/F (x)→∞ as x→∞ which contradicts that
0 ≤ aj ≤ 1. This shows that ρ = mini{ρi}. �

4.3. On the convergence of δ(x) = FS(x)/FM (x). We complete this
section by some remarks on the convergence of δ(x) = FS(x)/FM (x). As
above (see proof of Lemma 3.2), we have

FM (t) ≤ FS(t) ≤ FM (t/d)

so that

1 ≤ lim inf
t→∞

FS(t)

FM (t)
≤ lim sup

t→∞

FS(t)

FM (t)
≤ lim sup

t→∞

FM (t/d)

FM (t)
.

When FM is regularly varying with index −ρ < 0 we have that the
quotient FS(t)/FM (t) is eventually bounded, i.e., for any ε > 0, there exists
T such that

1 ≤ FS(t)

FM (t)
≤ dρ + ε

for any t > T . Then, in this case, the monotonicity of FS(x)/FM (x) would
be sufficient to prove the convergence of δ(x).

Now, if we assume also that FS is regularly varying, by Lemma 3.2 we
must have that the index of variation is the same as in FM and then it can

be easily shown that L(t) = FS(t)

FM (t)
is a slowly varying function. However

this does not allow us to conclude anything on the convergence because a
slowly varying function, even bounded, does not converge necessarily (see
for example [27]).
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In the simple case where one of the components of X has a strictly heavier
tail than the others then the convergence holds.

Proposition 4.6. Let X = (X1, . . . , Xd) be a vector of positive regularly
varying r.v.s with indexes −ρi < 0, i = 1, . . . , d. If ρ1 < ρi, for any i =
2, . . . , d then

FS(x)

FM (x)
→ 1,

when x→∞.

Proof. By Proposition 4.1 it follows that FM (x) ∼ F 1(x) as x → ∞. Sim-
ilarly it is easy to show that FS(x) ∼ F 1(x) and thus the proposition fol-
lows. �

5. Approximation of the limit ∆

In this section, we show how to estimate the limit ∆ using samples of X.
We will use this estimation to approximate VaR 1−p(S), for different values
of p close to 0 using Theorem 3.1.

Recall that δ is the real valued function defined by δ(t) = FS(t)/FM (t)
and continue to denote by ∆ its limit at infinity if it exists.

If a sample of X is available, the function δ can be estimated using the
empirical cumulative distribution function (e.c.d.f.) of S and M . As we
assume that FM can be easily calculated by the c.d.f. F of the portfolio, at
least two versions of the empirical delta should interest us:

δ̂(t) =
1− F̂S(t)

1− FM (t)
and δ̃(t) =

1− F̂S(t)

1− F̂M (t)

where F̂S and F̂M are the e.c.d.f.s of S and M respectively, based on the

sample of X. The first version δ̂ may be more tractable statistically, while
the second δ̃ has the nice property that δ̃ ≥ 1. In order to obtain some
insight on the convergence of δ to its limit ∆, we plot, in Figure 1, functions

δ̂ and δ̃ for four different models.
In the first model we notice that the limit δ(t) seems to be one but the

convergence is not fast enough to consider using this limit to approximate
V aRp(S) even for higher confidence levels p. For the second model the con-
vergence is a lot faster, δ(t) seems to be close to its limit for t greater than
the VaR at the 95% confidence level. The two models in the lower side
behave the same as the ones in the upper side.
The models on the right side of Figure 1 correspond to cases where our

method will be applicable: the limit ∆ is reached by δ̂(t) for t near the
V aR0.95. These models exhibit a strong dependence combined with at least
one of the marginal risks with a very heavy tail. Even if this is a limitation
of our method we should remark that this kind of models are also those
where Monte Carlo methods are less efficient to approximate the VaR or
the TVaR , so that it may be interesting to have an alternative method of
approximation.

On a possible estimator of ∆
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Figure 1. Four plots of δ̂ (solid) and δ̃ (dashed) for different
models, based on samples with size 104. Vertical lines are dis-
played at the empirical VaR of the sum at confidence levels
95%, 99%, 99.5%, 99.9%. Each model is a sum of 10 Pareto
distributions with different tail indexes and different depen-
dence structures. From top-left to bottom-right, we find: 1)
independent Pareto distributions with tail index one; 2) the
tail index is still one but dependence is given by a Gumbel
copula of parameter 1.5; 3) independent Pareto distributions:
five with tail index one and the other five with tail index 3; 4)
the same as 3) but dependence is given by a Gumbel copula
of parameter 1.5.

Let (S1, . . . , Sn) be an i.i.d. sample of S. According to Donsker’s Theo-
rem, the empirical process

√
n(F̂S(t)− FS(t))

converges in distribution to a Gaussian process with zero mean and covari-
ance given by

FS(t1)− FS(t1)FS(t2)

for t1 ≤ t2. Thus, given any sequence 0 < t1 < · · · < tk, the vector
√
n
(
δ̂(t1)− δ(t1), . . . , δ̂(tk)− δ(tk)

)
converges in law to a centred Gaussian vector with covariances given by

FS(ti)− FS(ti)FS(tj)

(1− FM (ti))(1− FM (tj))
=

δ(tj)

1− FM (ti)
− δ(ti)δ(tj)

for any i ≤ j. As a consequence

√
n

(
1

k

k∑
i=1

δ̂(ti)−
1

k

k∑
i=1

δ(ti)

)
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converges to a normal distribution with zero mean and variance

(5.1)
1

k2

∑
1≤i≤j≤k

{
δ(tj)

1− FM (ti)
− δ(ti)δ(tj)

}
.

If we assume that the values ti are large enough, the approximation δ(ti) ≈
∆ holds for each i = 1, . . . , k and the variance (5.1) can be approximated by

∆

k2

k∑
i=1

{
i

1− FM (ti)

}
− ∆2(k + 1)

2k
.

In practice we should plot points
(
S(i), δ̂(S(i))

)
where S(1) < · · · < S(n) is

the ordered sample of S and then choose a threshold in such a way that
the approximation δ(S(n−i)) ≈ ∆ holds for any 0 ≤ i ≤ k. The choice of
the threshold is a recurrent and difficult problem in EVT, for which few
theoretical results exist and are generally hardly applicable in practice. We
propose then to estimate ∆ by

(5.2) ∆̂ =
1

k

k∑
i=1

δ̂(S(n−i)).

As an example, the behavior of δ̂(x) for the Pareto-Clayton model, which

will be described in Section 6, may be seen on Figure 2. The estimation ∆̂
is represented by the solid line while dashed lines are for the estimated 95%
confidence interval. See also Figure 3 for the shape of the δ function and
the limit ∆.

6. Some Explicit Calculations

In this section we will consider a simplified model in order to obtain
explicit formulas for FS and FM and so better understand the scope and
the limitations of our ∆ estimation. The model is described by the fol-
lowing compound process: let Λ be a positive random variable and let
X = (X1, . . . , Xd) be a random vector such that

(6.1) Pr(X1 > x1, . . . , Xd > xd |Λ = λ) =
d∏
i=1

e−λxi ,

for each x1, . . . , xd ≥ 0.
That means that conditionally on the value of Λ the marginals of X

are independent and exponentially distributed. The final distribution of
X will not have, in general, independent marginals and they will not be
exponential either. Actually the dependence structure of X and its marginal
distributions will depend on the distribution of Λ.

Some particular Λ distributions define some well-known models in which
the explicit calculation of FS and FM is possible. For example when Λ
is Gamma distributed, then the marginals of X are of Pareto type with
dependence given by a survival Clayton copula. When Λ is Levy distributed
the marginals will be Weibull distributed with a Gumbel survival copula.
These models have been studied in [24, 30] and used in [1] where explicit
formulas for ruin probabilities have been derived. In [10, 22], explicit results
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Figure 2. Shape of the δ̂ function of the Pareto Clayton
model with parameters α = 1, β = 1 and d = 10 based
on samples of size 104. Vertical lines are displayed at the
empirical VaR of the sum at confidence levels 95%, 99%,

99.5%, 99.9%. The estimation ∆̂ with its estimated 95%
confidence interval is represented by the horizontal lines.

for the minimum of some risk indicators are obtained for this kind of models.
We also would like to mention that the computation of the VaR for this
model is given in [13].

Let us consider the case where Λ is Gamma(α, β) distributed with density

fΛ(x) =
βα

Γ(α)
xα−1e−βx.

In this case, the Xi’s are Pareto(α, β) distributed with tail given by

F i(x) =

(
1 +

x

β

)−α
and the dependence structure is described by a survival Clayton copula
with parameter 1/α. Through this paper we will refer to this model as a
Pareto Clayton vector with parameters (α, β). This model is a particular
Multivariate Pareto of type II with location parameters µi = 0 and scale
parameters σi = β for i = 1, . . . , d (see [30]).

In the Pareto Clayton model, the exact distribution function of S =∑d
i=1Xi can be calculated. Conditionally to Λ = λ,

∑d
i=1Xi is Gamma(1/λ, d)

distributed, distribution also known as the Erlang distribution. Then, as
here we are assuming that Λ is Gamma(α, β) distributed, the total distri-
bution of S is the result of compounding two Gamma distributions, more
precisely

S ∼ Gamma(1/Λ, d) where Λ ∼ Gamma(α, β).
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It is well known that the result of this compound distribution is the so-called
Beta prime distribution (see [14]). The c.d.f. of S can be expressed in terms
of Fβ, the c.d.f. of the Beta(dβ, α) distribution, as

FS(x) = Fβ

(
x

1 + x

)
.

Naturally, the inverse of FS can also be expressed in function of the inverse
of the Beta distribution

F↼
S (p) =

F↼
β (p)

1− F↼
β (p)

.

In this example, the δ function is explicitly calculated (see Figure 3).
Moreover, computer algebra softwares allow us to calculate explicitly the
limit ∆ for specified parameters.

Figure 3. Shape of the δ function of the Pareto Clayton
model, with parameters α = 1, β = 1 and d = 10. Verti-
cal lines are displayed at the VaR of the sum at confidence
levels 95%, 99%, 99.5%, 99.9%. The limit ∆ ≈ 3.4142 is
represented by the horizontal line.

In order to see how fast the function δ converges to its limit ∆, we plot
the function p 7→ δ(VaR p(S)) for different values of the parameter α and
different dimensions d (see Figure 4). We remark that δ(x) is already very
close to ∆ when x = VaR 0.95(S), for α ≤ 2.5. The lower the value α, the
flatter the tail of δ and thus the limit ∆ is attained rapidly. Remark that the
lower the levels of α, the heavier the tails of the Pareto marginals. Finally,
this plot confirms the intuition that for heavier marginals the tail of the sum
is better approximated by the tail of the maximum.
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Figure 4. Four plots of the p 7→ δ(VaR p(S)) function of
the Pareto Clayton model for dimensions d = 2, 6, 10 and
14 (from top-left to bottom-right) are represented. For each
dimension, the curves with α = 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4
are plotted and they can be seen from bottom to top on each
chart.

7. Some numerical examples

In this section we show how the ideas presented in the above section can
help to estimate in practice the VaR and the TVaR of a sum at confidence
levels close to 1. We compare our results with the empirical quantiles of
the sample used to estimate ∆ and with three different quantile estimation
methods from the Extreme Value Theory.

We first consider the Pareto Clayton model presented in Section 6 (di-
mension 2 and 10), where exact values for the Value-at-Risk are computable.
Then we test our method with a different model where exact values are not
known. We compare the estimation done via the ∆-limit estimation with
other common quantile estimation methods:

(1) The direct Monte Carlo quantile estimation (MC).
(2) The quantile estimation from a GPD fitted distribution where pa-

rameters are estimated using maximum likelihood method (GPD 1).
(3) The quantile estimation from a GPD fitted distribution where pa-

rameters are estimated using the moment method (GPD 2).
(4) The high quantile estimate based on a method by Weissman [29]

(Weiss.).

In order to study the performance of our estimator and to compare with
the main competitors, we consider the root-mean-squared error (RMSE) loss
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function. When n estimations have been performed, it is defined by

RMSE =

√√√√ 1

n

n∑
i=1

(
V̂aR p(Si)−VaR p(S)

)2
,

where V̂aR p(S
i) represents the estimate of VaR p(S) for any of the different

methods presented above, on the ith sample.

7.1. Pareto Clayton model dimension 2. Here we consider the model
presented in Section 6. We first consider d = 2 and α = 1 which corresponds
to a model with Pareto marginals with α = 1 and dependence given by a
survival Clayton copula with parameter θ = 1.

In Table 1, the exact VaR at different confidence levels (from 95% to
99.95%) is presented. In Table 2 and Table 3, we present the RMSE crite-
rion in percentage of the real value based on 1000 simulations at different
confidence levels. At each simulation a sample of size 104 in Table 2 and size
105 in Table 3 is used to estimate the VaR. On each method (New, GPD 1,
GPD 2 and Weiss) the threshold used on each estimation corresponds to the
empirical 95% quantile. Clearly, in term of RMSE, our method performs
better than classical methods at each confidence level, even for very high
levels. When increasing the size of the sample (105 instead of 104) classical
methods improve but our method still produces the best results.

VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

194.5 994.5 1994.5 9994.5 19994.5

Table 1. Exact Value-at-Risk at different confidence levels
on the Pareto Clayton model in dimension d = 2 with α = 1.

Method VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

New 1.9% 1.7% 1.7% 1.7% 1.7%
MC 4.4% 10.3% 14.1% 38.2% 76.2%
GPD 1 11.3% 8.5% 11.8% 23.8% 30.2%
GPD 2 4.4% 11.1% 15.1% 25.1% 29.9%
Weiss. 4.4% 11.2% 15.1% 25.0% 29.6%

Table 2. RMSE in percentage of the real value based on
1000 simulations. At each simulation a sample of size 104 is
used to estimate the VaR.

7.2. Pareto Clayton model dimension 10. We consider again the Pareto-
Clayton model but here d = 10 and α = 1 which corresponds to a model
with Pareto marginals with α = 1 and dependence given by a survival Clay-
ton copula with parameter θ = 1. Results are presented in Tables 4, 5 and
6. As above, on each method (New, GPD 1, GPD 2 and Weiss) the thresh-
old used on each estimation corresponds to the empirical 95% quantile. We
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Method VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

New 0.7% 0.5% 0.6% 0.6% 0.6%
MC 1.4% 3.1% 4.4% 9.7% 14.4%
GPD 1 5.2% 2.6% 3.6% 7.2% 8.9%
GPD 2 1.4% 3.7% 4.7% 7.7% 9.1%
Weiss. 1.4% 3.9% 4.9% 7.7% 9.0%

Table 3. RMSE in percentage of the real value based on
1000 simulations. At each simulation a sample of size 105 is
used to estimate the VaR.

mention that even in dimension 10, the estimation remains efficient for high
level quantiles.

VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

194.5 994.5 1994.5 9994.5 19994.5

Table 4. Exact Value-at-Risk at different confidence levels
on the Pareto Clayton model in dimension d = 10 with α = 1.

Method VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

New Method 8.4% 7.8% 7.7% 7.7% 7.7%
MC 4.5% 10.1% 14.5% 43.6% 85.5%
GPD 1 10.7% 8.5% 12.1% 25.0% 32.1%
GPD 2 4.5% 11.3% 15.6% 26.5% 31.8%
Weiss. 4.5% 11.4% 15.5% 26.1% 31.2%

Table 5. RMSE in percentage of the real value based on
1000 simulations. At each simulation a sample of size 104 is
used to estimate the VaR.

Method VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

New 2.6% 2.2% 2.2% 2.3% 2.3%
MC 1.4% 3.2% 4.6% 10.1% 14.8%
GPD 1 4.3% 2.7% 3.8% 7.4% 9.2%
GPD 2 1.4% 3.6% 4.8% 7.8% 9.2%
Weiss. 1.4% 4.1% 5.2% 7.9% 9.1%

Table 6. RMSE in percentage of the real value based on
1000 simulations. At each simulation a sample of size 105 is
used to estimate the VaR.

We also remark that our method is more efficient than classical ones from
level 0.99.
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7.3. A model with 150 different Pareto marginals and Gumbel cop-
ula. We apply now our method to a model where the exact value of VaR p(S)
is not known. The model is composed of 150 marginals Pareto(αi, βi) dis-
tributed with parameters αi = (3− i mod (3)) /2 and βi = 5 − i mod (5)
for i = 1, . . . , 150, where i mod (j) denote the reminder of i divided by j.
The model is then composed of fifty Pareto marginals of tail index 0.5, fifty
of tail index 1 and fifty with tail index 1.5, and different scale parameters
within 1, 2, . . . , 5. The dependence structure is given by a Gumbel copula of
parameter 1.5.

Table 7 presents the VaR estimation based on a classical Monte Carlo
quantile estimation with a sample of size 3×108. We assume this estimation
is the “real VaR” in the computation of the RMSE presented in Table 8.
On each method (New, GPD 1, GPD 2 and Weiss) the threshold used on
each estimation corresponds to the empirical 99% quantile. It is notable
that our method is very stable with respect to others and is more efficient
to approximate the V aRp from p = 0.99.

VaR VaR VaR VaR
99% 99.5% 99.9% 99.95%

8.1981e06 3.2770e07 8.1545e08 3.2561e09

Table 7. Estimated Value-at-Risk at different confidence
levels for the model described in Section 7.3 estimated with
a sample of size 3× 108.

Method VaR VaR VaR VaR
99% 99.5% 99.9% 99.95%

New 5.0% 4.9% 5.0% 5.0%
MC 6.2% 9.2% 21.2% 30.9%
GPD 1 5.9% 7.7% 12.4% 16.3%
GPD 2 5.9% 7.9% 13.1% 15.4%
Weiss. 5.9% 7.9% 13.0% 15.3%

Table 8. RMSE in percentage of the estimated VaR pre-
sented in Table 7 based on 1000 simulations. At each simu-
lation a sample of size 105 is used to estimate the VaR.

7.4. Comparison of the method using max(X) vs X1. The method
of estimation of the Value-at-Risk of the sum proposed in this paper relies
on the convergence of the function δ(t) = FS(t)/FM (t). When the conver-
gence is assured and it is fast enough, it has been shown that the proposed
method gives accurate and stable estimations of the VaR at high levels. In
theory, similar results could be obtained if the maximum M is replaced by
X1 where X1 is assumed to have the heaviest tail in the vector X. In this
section we compare numerically the estimation of the VaR using, on one
side, δ(t) = FS(t)/FM (t) and, on the other side, δ′(t) = FS(t)/FX1(t),
i.e we compare the approximation of VaR 1−p(S) by VaR 1−p/∆(M) and
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VaR 1−p/∆′(X1) where ∆ and ∆′ are the approximated limits of δ(t) and
δ′(t) respectively estimated using (5.2).

We first consider the model (X1, . . . , X10) where X1 is Pareto distributed
with α = 0.9 and X2, . . . , X10 are Pareto distributed with α = 1. The depen-
dence structure is given by a Gumbel copula with parameter 2. Empirical
δ and δ′ functions are displayed in Figure 5.

Figure 5. Shape of an empirical δ(x) (solid) and δ′(x)
(dashed) functions based on 105 simulations. Vertical lines
are displayed at the empirical VaR of the sum at confidence
levels 95%, 99%, 99.5%, 99.9%.

The δ function becomes almost horizontal before the VaR of the sum
at the 95% confidence level whereas δ′ does not seem to be close to the
limit on the displayed range. Then, the estimation of the VaR using δ′

seems to be not accurate. This is confirmed by Table 9 where some VaR
estimations are presented. From now on, the threshold used for the ∆ and
the ∆′ approximations using formula (5.2) corresponds to the 95% empirical
quantile and for each estimation a sample of size 105 is generated.

VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

MC (3× 108) 200 1058 2166 11201 22809
New method 203 1067 2188 11665 24083
using max(X) (2%) (2%) (2%) (5%) (6%)
New method 188 1126 2432 14549 31428
using X1 (6%) (7%) (12%) (30%) (38%)

Table 9. First line: Monte Carlo VaR estimation using
3×108 simulations. Second and third lines: mean and RMSE
of 1000 VaR estimations using the max and the ∆′ approxi-
mations. The RMSE is presented in % of the MC estimation.
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Even in the case where all the marginal risks are equal the use of the max
seems to give better results. We consider the model (X1, . . . , X10) where all
the Xi’s are Pareto distributed with the same index α = 1. The dependence
structure is given by a Gumbel copula with parameter 2. Empirical δ and
δ′ functions are displayed in Figure 6.

Figure 6. Shape of an empirical δ(x) (solid) and δ′(x)
(dashed) functions based in 105 simulations. Vertical lines
are displayed at the empirical VaR of the sum at confidence
levels 95%, 99%, 99.5%, 99.9%

As above the δ function seems to converge faster than δ′ but in this
case the difference is not as important as in Figure 5. In table 9 some
VaR estimations are presented. Again, estimations provided by using the
estimation of ∆ are of better quality than the ones provided by using the
estimation of ∆′.

VaR VaR VaR VaR VaR
95% 99% 99.5% 99.9% 99.95%

MC (3× 108) 196 1003 1996 9977 19931
New method 202 1068 2189 11671 24097
using max(X) (4%) (7%) (10%) (17%) (21%)
New method 188 1126 2434 14556 31444
using X1 (5%) (13%) (22%) (46%) (58%)

Table 10. First line: Monte Carlo VaR estimation using
3×108 simulations. Second and third lines: mean and RMSE
of 1000 VaR estimations using the max and the ∆′ approxi-
mations. The RMSE is presented in % of the MC estimation.
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8. Conclusion

In this paper, we give some conditions under which the tail distribution
of the sum can be approximated by using the tail of the maximum of a vec-
tor. We show how, basically whenever the maximum is consistently varying,
the VaR or the TVaR on high levels for the sum can be approximated, by
first estimating a limiting constant ∆. The models in which our results can
be applied include those where marginals are consistently varying and such
that dependence is given by an Archimedean copula or survival copula. We
do not require the marginals to be identically distributed and the method
works for very high dimensions d (d = 150 for exemple). Our method gives
a good approximation for the VaR and the TVaR when the convergence of
δ(x) to ∆ is fast enough. This generally happens when at least one of the
marginal risks is strongly heavy tailed and when the dependence is strong.
In particular, the method is not suitable e.g. for the case of two independent
Pareto distributions. We also remark that the models for which our method
applies correspond generally to those where Monte Carlo approximations
are less efficient ant there so is a real need for alternative methods.

Appendix A. Some general properties on regularly varying
functions and their inverses

The results given in this section are used in Section 4.2.

Proposition A.1. (i) Suppose f is non-decreasing, and f ∈ RV∞(ρ),
ρ > 0. Then

f↼ ∈ RV∞(ρ−1) and f ◦ f↼(x) ∼ f↼ ◦ f(x) ∼ x.

(ii) Suppose f is non-increasing, and f ∈ RV∞(ρ), ρ < 0. Then

f↽ ∈ RV0(−ρ−1), f ◦ f↽(1/x) ∼ 1/x and f↽ ◦ f(x) ∼ x.

Proof. (i): For the proof see [26] Chapter 2. (ii): Now suppose f is non-
increasing and that f ∈ RV∞(ρ), ρ < 0. Then (1/f) ∈ RV∞(−ρ), and by
the non-decreasing case (1/f)↼ ∈ RV∞(−1/ρ) which is equivalent to say
that f↽(1/x) ∈ RV∞(−1/ρ) and this by definition implies f↽ ∈ RV0(−1/ρ).
To show that f ◦ f↽(1/x) ∼ 1/x simply note that this is equivalent to show
that (1/f) ◦ (1/f)↼(x) ∼ x.

�

Proposition A.2. (i) Suppose f1 and f2 are non-decreasing, ρ−varying
at infinity, ρ > 0. Then for 0 < c <∞

f1(x) ∼ cf2(x) iff f↼
1 (x) ∼ c−ρ−1

f↼
2 (x).

(ii) Suppose f1 and f2 are non-increasing, ρ-varying at infinity, ρ < 0.
Then for 0 < c <∞

(A.1) f1(x) ∼ cf2(x) iff f↼
1 (1/x) ∼ c−ρ−1

f↼
2 (1/x).

Proof. The proof for the non-decreasing functions can be found on [26]
Chapter 2. The non-increasing case then follows immediately by noticing
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that f1 ∼ cf2 iff (1/f1) ∼ (1/c)(1/f2) iff (1/f1)↼ ∼ (1/c)ρ
−1

(1/f2)↼ iff

f↼
1 (1/x) ∼ c−ρ−1

f↼
2 (1/x).

�

Lemma A.3. Let ψ : [0, 1]→ R+ be a non-increasing function with ψ(0) =
+∞ and ψ(1) = 0.

• (i) If ψ ∈ RV0(θ0) for θ0 > 0 then

ψ↽ ∈ RV∞(−θ−1
0 )

• (ii) If ψ ∈ RV1(−θ1) for θ1 > 0 then

(1− ψ↽) ∈ RV0(−θ−1
1 )

Proof. i) Set f(x) = ψ(1/x), then f ∈ RV∞(θ0). By Proposition A.1 (i)
f↼ ∈ RV∞(θ−1

0 ), and as f↼ = 1/ψ↽ then ψ↽ ∈ RV∞(−θ−1
0 ).

ii) Set f(x) = ψ(1 − 1/x), then f ∈ RV∞(−θ1). By Proposition A.1 (ii)
f↽ ∈ RV0(θ−1

1 ) and as f↽ = 1/(1− ψ↽) then (1− ψ↽) ∈ RV0(−θ−1
1 )

�

Lemma A.4. If f ∈ RV∞(−ρ) with f(t) ↓ 0 as t→∞, ψ0 ∈ RV0(θ0) and
ψ1 ∈ RV1(−θ1) then

ψ0 ◦ f ∈ RV∞(−ρ× θ0) and ψ1 ◦ (1− f) ∈ RV∞(−ρ× θ1).

Proof. Notice that as f(tx) ∼ t−ρf(x) then

ψ ◦ f(tx) ∼ ψ(t−ρf(x)) ∼ t−ρ×θ0ψ ◦ f(x).

Notice that the first ∼ is consequence from the Proposition 2.4 (iii). To prove
the other equation let h(x) = ψ1(1−1/x), then by definition h ∈ RV∞(−θ1).
The proof follows by noticing that ψ1 ◦ (1− f) = h ◦ (1/f). �
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