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ON A CHARACTERISTIC OF THE FIRST EIGENVALUE OF

THE DIRAC OPERATOR ON COMPACT SPIN SYMMETRIC

SPACES WITH A KÄHLER OR QUATERNION-KÄHLER

STRUCTURE

JEAN-LOUIS MILHORAT

Abstract. It is shown that on a compact spin symmetric space with a Kähler
or Quaternion-Kähler structure, the first eigenvalue of the Dirac operator is
linked to a “lowest” action of the holonomy, given by the fiberwise action on
spinors of the canonical forms characterized by this holonomy. The result is
also verified for the symmetric space F4/Spin9, proving that it is valid for all
the “possible” holonomies in the Berger’s list occurring in that context. The
proof is based on a characterization of the first eigenvalue of the Dirac operator
given in [Mil05] and [Mil06]. By the way, we review an incorrect statement in
the proof of the first lemma in [Mil05].

1. Introduction

Let (Mn, g) be a spin compact Riemannian manifold with positive scalar curva-
ture, more precisely such that Scal◦ := minm∈M Scal(m) > 0. Under this assump-
tion, the only groups G in Berger’s list such that the restricted holonomy group of
M verifies Hol◦ ⊂ G are (cf. for instance [Bes87]) G = Um, n = 2m, (M is then
Kähler), G = Spm · Sp1, n = 4m, (M is then Quaternion-Kähler) or G = Spin9,
n = 16, and then M is isometric to the Cayley plane OP 2 = F4/Spin9, [Ale68],
[BG72].
Assuming n = 4m in order to compare all the possible cases, there exist sharp lower
bounds for the square of the eigenvalues of the Dirac operator whose dependence
on the holonomy is summarized in the following illustration:

0 Scal◦
4

n
n−1

Scal◦
4

Friedrich’s
inequality
[Fri80]

n
n−2

Scal◦
4

Hol◦ ⊂ U2m
(Kähler)
[Kir86]

n+12
n+8

Scal◦
4

Hol◦ ⊂ Spm · Sp1
(Quaternion-Kähler)

[KSW99]

n = 16
Hol◦ = Spin9

OP2 = F4/Spin9

The study of limiting manifolds, that are manifolds for which there exists a spinor-
field Ψ such that

(1.1) D2Ψ = λ2 Ψ ,
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where D is the Dirac operator, and where λ2 is one of the bounds quoted above is
due to C. Bär in the general case, [Bär93], to A. Moroianu in the case of Kähler
manifolds, [Mor95], [Mor99], and to W. Kramer, U. Semmelmann and G. Weingart
in the case of Quaternion-Kähler manifolds, [KSW98].
The study of limiting manifolds in the Kähler and Quaternion-Kähler cases involves
a special condition for spinor fields Ψ verifying (1.1), which is linked to the decom-
position of the spinor space Σ into irreducible components under the action of the
holonomy group.
The spinor bundle Σ(M) of a spin Kähler manifold (M, g, J) of complex dimension
m decomposes into a sum of parallel subbundles Σ(M) = ⊕m

r=0Σr(M), each section
of the bundle Σr(M) being an eigenvector for the eigenvalue i (m − 2r), for the
fiberwise action of the Kähler form Ω on spinors, [Kir86].
It is then a characteristic of limiting Kähler manifolds that in the space of spinor
fields Ψ verifying (1.1), there always exists an element such that Ω · Ψ = 0 if m is
even, or Ω ·Ψ = ±i, if m is odd. We also may formulate this property as :

• In the space of spinor fields Ψ verifying (1.1), there always exists an element
such that

(1.2)
‖Ω ·Ψ‖2

‖Ψ‖2
is minimal.

In order to illustrate how this property corresponds to a “lower action” of the
“Kähler holonomy”, recall that the above decomposition of the spinor bundle cor-
responds to the decomposition of the spinor space Σ2m under the action of the
groups U1 × SUm when m is even, or S(U1 ×Um) when m is odd, actions given by
the commutative diagrams

U1 × SUm
//

(m even)

''O
O

O

O

O

O

O

O

O

O

O

O

Spin2m

��

S(U1 ×Um) //

(m odd)

((P
P

P

P

P

P

P

P

P

P

P

P

Spin2m

��

Um ⊂ SO2m Um ⊂ SO2m

This decomposition may be easily expressed in the case m even, [Sal93],

(1.3) Σ2m =

m⊕

r=0

L− 1
2
(m−2r) ⊗ ΛrE ,

where Lk := L⊗k is the k-symmetric power of the standard representation L of U1,
and E is the standard representation of the group SUm.
The action of the Kähler form corresponds to twice the action of the Lie algebra
of U1 on Σ2m, hence is equal to i (m− 2r) id on each component of the sum (1.3).
So, limiting Kähler manifolds of even complex dimension are characterized by the
existence of a spinor field verifying (1.1), which is also a section of the bundle
corresponding to the component L0⊗Λm/2 in (1.3), this component being, roughly
speaking, the one with minimal “U1 holonomy” in (1.3). There is an analogous
description in the case m odd.
There exists an analogous criterion for Quaternion-Kähler limiting manifolds. The
spinor bundle Σ(M) of a spin Quaternion-Kähler manifold (M, g) of dimension 4m
decomposes into a sum of parallel subbundles Σ(M) = ⊕m

r=0Σr(M) , each section
of the bundle Σr(M) being an eigenvector for the eigenvalue 6m−4r(r+2), for the
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fiberwise action of the fundamental 4-form Ω on spinors, [HM95a]. This decompo-
sition corresponds to the decomposition of the spinor space Σ4m into irreducible
components under the action of the group Spm × Sp1 given by the commutative
diagram

Spm × Sp1 //

((Q
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Spin4m

��

Spm.Sp1 ⊂ SO4m

One gets [BS83], [Wan89], [HM95a],

(1.4) Σ4m =

m⊕

r=0

SrH ⊗ Λm−r
◦ E ,

where SkH is the k-symmetric power of the standard representation H of Sp1 in
the space H ≃ C2, E is the standard representation of the group Spm in the space
Hm ≃ C2m, and Λk

◦E is the irreducible hermitian complement of ω ∧ Λk−2
◦ E in

ΛkE, ω being the standard symplectic form on E.
Quaternion-Kähler limiting manifolds are characterized by the fact that, among
the spinor fields Ψ verifying (1.1), there always exists a section of the bundle cor-
responding to the space S0H ⊗ Λm

◦ E.
This space may be characterized by the fact that it is the only component in
the decomposition (1.4) on which the Casimir operator of the subgroup Sp1 acts
trivially (roughly speaking, one could say that this is the component with minimal
“Sp1 holonomy” in (1.4)). From a geometrical point of view, the invariant given by
this action of the Casimir operator, gives raise to the operator Ω−6m id, where Ω is
the 4-fundamental form Ω acting on spinor fields by Clifford multiplication. Hence,
we may re-formulate the characterization of Quaternion-Kähler limiting manifolds
as:

• In the space of spinor fields Ψ verifying (1.1), there always exists an element
such that (Ω− 6m id) ·Ψ = 0.

• In the space of spinor fields Ψ verifying (1.1), there always exists an element
such that

(1.5)
‖(Ω− 6m id) ·Ψ‖2

‖Ψ‖2
is minimal.

Now, the following example makes think that the above criteria are not character-

istic of limiting manifolds. Consider the grassmannian Gr2(C
m+2) = SUm+2

S(U2×Um) , en-

dowed with its canonical metric induced by the Killing form of SUm+2 sign-changed,
which is both Kähler and Quaternion-Kähler (cf. 14.53 in [Bes87] for details). It
is shown in [Mil98] that there exists a spinorfield Ψ such that (1.1) is verified for
the first eigenvalue λ and (1.5) is verified for the fundamental “Quaternion-Kähler”
4-form. Actually, it may also be checked that (1.2) is also verified for the Kähler
form.
Hence it seems natural to conjecture that the above property is not a characteristic
of limiting manifolds and the aim of this paper is to prove that the conjecture is
true for compact spin symmetric spaces.
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Proposition 1.1. Any spin compact simply connected irreducible symmetric space

G/K of “type I”, endowed with a Kähler or Quaternion-Kähler structure, verifies

the following criterion.

Among the spinorfields Ψ verifying D2Ψ = λ2 Ψ, where λ is the first eigenvalue of

the Dirac operator, there exists at least one such that

‖Ω ·Ψ‖2

‖Ψ‖2
, respectively

‖(Ω− 6m id) ·Ψ‖2

‖Ψ‖2
, is minimal,

where Ω is respectively the Kähler form or the fundamental “Quaternion-Kähler”

4-form of the manifold under consideration.

There is an analogous result for the Cayley plane OP 2 = F4/Spin9, Ω being in this

case the canonical 8-form on manifolds with holonomy Spin9.

2. Preliminaries for the proof

2.1. Spectrum of the Dirac operator on spin compact irreducible symmet-

ric spaces. We consider a spin compact simply connected irreducible symmetric
space G/K of “type I”, where G is a simple compact and simply-connected Lie
group and K is the connected subgroup formed by the fixed elements of an involu-
tion σ of G. This involution induces the Cartan decomposition of the Lie algebra
g of G into

g = k⊕ p ,

where k is the Lie algebra of K and p is the vector space {X ∈ g ; σ∗ ·X = −X}.
The symmetric space G/K is endowed with the Riemannian metric induced by the
restriction to p of the Killing form of G sign-changed.
The spin condition implies that the homomorphism

α : h ∈ K 7−→ AdG(h)|p ∈ SO(p)

lifts to a homomorphism α̃ : H −→ Spin(p) such that ξ ◦ α̃ = α where ξ is the
two-fold covering Spin(p) → SO(p), [CG88].
Then the group K inherits a spin representation given by

ρ̃K : K
α̃
−→ Spin(p)

ρ
−→ GLC(Σ) ,

where ρ is the spinor representation in the complex spinor space Σ.
The Dirac operator has a real discrete spectrum, symmetric with respect to the
origin. A real number λ belongs to the spectrum if and only if there exists an irre-
ducible representation γ : G → GLC(Vγ) whose restriction ResGK(γ) to the subgroup
K, contains in its decomposition into irreducible parts, a representation equivalent
to some irreducible component of the decomposition of the spin representation ρ̃K
of K. Then

(2.1) λ2 = cγ + n/16 ,

where cγ is the Casimir eigenvalue of the irreducible representation γ (which only
depens on the equivalence class of γ) and where n = dim(G/K), n/16 being Scal/8
for the choice of the metric (cf. [BHM+] or [Gin09] for details).
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2.2. A characterization of the decomposition of the spin representation

of K. We henceforward assume that G and K have same rank and consider a fixed
common maximal torus T . Hence G/K has even dimension n = 2m.
It is shown in [Mil05] that the lowest eigenvalue λmin of the Dirac operator verifies

(2.2) λ2
min = 2 min

1≤i≤N
‖βi‖

2 +
n

8
,

where the βi, 1 ≤ i ≤ N , are the dominant weights (relative to the choice of T )
occurring in the decomposition of the spin representation ofK, and where the norm
‖ · ‖ on the space of weights is induced by the Killing form of G sign-changed.
The proof of proposition (1.1) is based on a characterization of those dominant
weigths βi for which ‖βi‖2 is minimum, a characterization which appears implicitly
in [Mil06]. It is based on a lemma of R. Parthasaraty in [Par71] (cf. lemma 2.2),
which gives the following characterization of dominant weights occurring in the
decomposition of the spin representation of K.
Let Φ be the set of non-zero roots of the group G with respect to T . According to
a classical terminology, a root θ is called compact if the corresponding root space is
contained in kC (that is, θ is a root of K with respect to T ) and non compact if the
root space is contained in pC. Let Φ

+
G be the set of positive roots of G, Φ+

K be the

set of positive roots of K, and Φ+
p be the set of positive non compact roots with

respect to a fixed lexicographic ordering in Φ. The half-sums of the positive roots
of G and K are respectively denoted δG and δK and the half-sum of non compact
positive roots is denoted by δp. The Weyl group of G is denoted WG. The space of
weights is endowed with the WG-invariant scalar product 〈, 〉 induced by the Killing
form of G sign-changed.
To introduce the result of Parthasaraty first note that the common torus T may be
chosen in such a way that the weights of the spin representation of K are

(2.3)
1

2
(±α1 ± α2 · · · ± αm) ,

where α1, . . . , αm is an enumeration of the non compact positive roots, the weights
of the half-spin representations Σ± corresponding to an even (resp. odd) number
of negative signs.
Thus weights of the spin representation of K have the form

(2.4) δp −
∑

i∈I

αi , I ⊂ {1, . . . ,m} .

Lemma 2.1 (R. Parathasaraty, [Par71]). Let

(2.5) W := {w ∈ WG ; w · Φ+
G ⊃ Φ+

K} .

The spin representation of K decomposes into irreducible components as

(2.6) ρ̃K =
⊕

w∈W

ρ̃K |w ,

where ρ̃K |w has for dominant weight

(2.7) βw := w · δG − δK .
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2.3. A characterization of highest weights of the spin representation of

K with minimal norm.

Proposition 2.2. Let

I− :={i ∈ {1, . . . ,m} , 〈δK , αi〉 < 0} ,

and

I0 :={i ∈ {1, . . . ,m} , 〈δK , αi〉 = 0} .

Then, for any subset I ⊂ I0

(2.8) βI := δp −
∑

i∈I−

αi −
∑

i∈I

αi ,

is a highest weight of the spin representation of K with minimal norm.

So there are exactly 1 + #I0 such highest weights.

Proof. Let I be a subset of I0. First βI is a weight of the spin representation of K
by (2.4). If βI is not a highest weight, then there exists a K-positive root θ such
that βI + θ is a weight. So there exists a subset J ⊂ {1, . . . ,m} such that

βI + θ = δp −
∑

i∈J

αi .

Then,

−
∑

i∈I−\J

αi −
∑

i∈I\J

αi + θ = −
∑

i∈J\(I−∪I)

αi .

Now, it is well known that 〈θ, δK〉 > 0, (cf. for instance § 10.2 in [Hum72]), hence
〈−

∑
i∈I−\J αi−

∑
i∈I\J αi+θ, δK〉 > 0, whereas 〈−

∑
i∈J\(I−∪I) αi, δK〉 ≤ 0, hence

a contradiction.
By the lemma 2.1, there exists a wI ∈ W such that

βI = wI · δG − δK = δp −
∑

i∈I−

αi −
∑

i∈I

αi .

Now, using the WG-invariance of the scalar product,

‖βI‖
2 = ‖δG‖

2 + ‖δK‖2 − 2〈wI · δG, δK〉

= ‖δG‖
2 + ‖δK‖2 − 2 〈βI + δK , δK〉

= ‖δG‖
2 + ‖δK‖2 − 2 〈δG, δK〉+ 2

∑

i∈I−

〈αi, δK〉

= ‖δp‖
2 + 2

∑

i∈I−

〈αi, δK〉 .(2.9)

Hence all the highest weights βI , with I ⊂ I0 have the same norm. In order to
prove that among the highest weights of the spin representation of K, they are
those with lower norm, we use the same argument as in [Mil06].
Let θ1, . . . , θp be an enumeration of the K-positive roots. Let w ∈ W (or ∈ WG as
well). By the lemma 3.1 in [Mil06], using the expression of w in reduced form, one
has

w · δG = δG −
∑

i∈Iw

αi −
∑

j∈Jw

θj ,

where Iw is a subset of {1, . . . m}, and Jw a subset of {1, . . . p}.
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Since 〈θj , δK〉 > 0, j = 1, . . . , p, as we remark before, and since 〈αi, δK〉 > 0 if i
does not belong to I− or I0, one gets

〈w · δG, δK〉 ≤ 〈δG −
∑

i∈Iw∩(I−∪I0)

αi, δK〉(2.10)

≤ 〈δG −
∑

i∈I−∪I0

αi, δK〉

≤ 〈δG −
∑

i∈I−

αi, δK〉 = 〈w∅ · δG, δK〉 .

Hence

‖w · δG − δK‖2 = ‖δG‖
2 + ‖δK‖2 − 2 〈w · δG, δK〉

≥ ‖δG‖
2 + ‖δK‖2 − 2 〈w∅ · δG, δK〉 = ‖β∅‖

2 .

Note that if the above inequality is an equality, then all the inequalities (2.10) are
equalities, hence Jw = ∅ and Iw = I− ∪ I, where I ⊂ I0, so w · δG − δK = βI .
As the above result is valid for any w ∈ WG, it may be concluded that for any
subset I ⊂ I0,

min
w∈WG

‖w · δG − δK‖2 = min
w∈W

‖w · δG − δK‖2 = ‖βI‖
2 .

�

Now the proof of (2.2) consists in the following steps ([Mil05]):

(1) For any w ∈ W such that the highest weight w ·δG− δK has minimal norm,
δG − w−1 · δK is the dominant weight of an irreducible representation γ of
G.

(2) The restriction of γ to K contains in its decomposition into irreducible
components a representation with dominant weight w · δG − δK .

(3) The Casimir eigenvalue for γ is given by cγ = 2 ‖w · δG − δK‖2 + n
16 (hence

equal to 2 ‖δp‖2 + 4
∑

i∈I−
〈αi, δK〉+ n

16 , by (2.9)).

(4) The above Casimir eigenvalue gives the lowest eigenvalue of the Dirac op-
erator.

In the preparation of this paper, we found a gap in the proof of the first item. We
give a different proof in appendix, which is indeed based on the result of proposi-
tion 2.2.

2.4. The space of eigenvectors of the Dirac operator corresponding to the

lowest eigenvalue. In order to understand the action of a form characterized by
the holonomy on the eigenvectors of the Dirac operator for the lowest eigenvalue,
we now review some well-known results (see [BHM+] for details).
First, recall that a spinor field Ψ on G/K may be viewed as a function

Ψ : G 7−→ Σ , ∀g ∈ G , ∀k ∈ K , Ψ(gk) = ρ̃(k−1) ·Ψ(g) .

Denoting by Σw the irreducible K-space of Σ with dominant weight βw, w ∈ W ,
and by Πw the projection Σ → Σw, any spinor field Ψ decomposes into

(2.11) Ψ =
∑

w∈W

Ψw , Ψw := Πw ◦Ψ .
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Since the restricted holonomy group ofG/K isK, the spin Levi-Civita connection∇
respects the above decomposition, hence by the Lichnerowicz-Schrödinger formula,

D2 = ∇∗∇+
Scal

4
,

if a spinor field Ψ is an eigenspinor of the Dirac operator D for the eigenvalue λ,
then each non-trivial component Ψw in the above decomposition is an eigenspinor
of D2 for the eigenvalue λ2.
Now, as it was recalled above (see (2.1)), any eigenvalue λ of the Dirac opera-
tor D corresponds (up to equivalence) to an irreducible complex G-representation

γ : G → GLC(Vγ), whose restriction ResGK(γ) to the subgroup K, contains in its
decomposition into irreducible parts, a representation with dominant weight βw,
w ∈ W . The corresponding eigenvectors are given by a pair (vγ , Aγ), where vγ ∈ Vγ

and Aγ ∈ HomK(Vγ ,Σ) := {A ∈ HomC(Vγ ,Σ) , ∀k ∈ K , A ◦ γ(k) = ρ̃K(k) ◦ A},
giving raise to the spinor field

Ψvγ ,Aγ
: G −→ Σ , Ψvγ ,Aγ

(g) = Aγ

(
γ(g−1) · vγ

)
.

Moreover
dim HomK(Vγ ,Σ) =

∑

w∈W

mult.(ResGK(γ), ρ̃K |w) ,

where mult.(ResGK(γ), ρ̃K |w) denotes the multiplicity of the irreducible representa-

tion ρ̃K |w in ResGK(γ).

So, if mult.(ResGK(γ), ρ̃K |w) 6= 0, then the component Ψw in the decomposition of

Ψ given by (2.11) is a non-trivial eigenvector of D2 for λ2.
All that discussion applies to the irreducible G-representation γ with dominant
weight δG − w−1 · δK , where βw = w · δG − δK is a highest weight of the spin
representation of K with minimal norm (cf. prop. 4.1). As we recall it above,
this irreducible G-representation gives raise to the lowest eigenvalue λ of the Dirac
operator. Moreover by prop. 4.2, the representation ResGK(γ) contains in its de-
composition into irreducible components all the irreducible K-representations with
dominant weights (2.8).
Hence we may conclude

Lemma 2.3. For any subset I ⊂ I0 = {i ∈ {1, . . . , n} , 〈δK , αi〉 = 0}, denoting by

ΣI the irreducible component of Σ with highest weight βI = δp−
∑

i∈I−
αi−

∑
i∈I αi,

there exists a spinor field ΨI : G → ΣI , such that

D2ΨI = λ2 ΨI ,

where λ is the lowest eigenvalue of the Dirac operator.

Now let Ω be a parallel form on G/K. First, Ω may be viewed as a K-equivariant
function

Ω : G −→ Λ∗(p) , ∀g ∈ G , ∀k ∈ K , Ω(gk) = α(k−1) · Ω(g), .

By the fundamental principle of holonomy, parallel forms correspond toK-invariants
of Λ∗(p). Hence there exists a K-invariant Ω in Λ∗(p) such that Ω is the constant
function

∀g ∈ G , Ω(g) = Ω .

Note that as Ω is K-invariant, Ω is K-equivariant since

∀g ∈ G , ∀k ∈ K , Ω(gk) = Ω = α(k−1) ·Ω = α(k−1) · Ω(g) .
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The form Ω acts on a spinor field Ψ by Clifford multiplication, giving a spinor field
Ω ·Ψ defined by the function

Ω ·Ψ : G −→ Σ , Ω ·Ψ(g) := Ω(g) ·Ψ(g) = Ω ·Ψ(g) ,

where Ω is viewed as an element of the Clifford algebra, which acts on the spinor
Ψ(g) by means of the standard representation of this algebra.
Since Ω is K-invariant, the Schur lemma implies that the action of Ω on spinor
fields with values in some K-irreducible subspace Σw, w ∈ W , of Σ, is a scalar
multiple of the identity, the value of the scalar depending only of w ∈ W .
In particular, the spinor fields ΨI , I ⊂ I0, introduced in lemma 2.3, which are
eigenspinors for the square of the Dirac operator for the lowest eigenvalue, are also
eigenvectors for the action of any parallel form.

3. Proof of the result

3.1. The Kähler case. On a spin Kähler manifold of complex dimension m, the
Kähler 2-form Ω acts fiberwise on spinors as an anti-hermitian operator with eigen-
values i (m− 2r), r = 0, . . . ,m, [Kir86]. Hence

(3.1) min
Ψ 6=0

‖Ω ·Ψ‖2

‖Ψ‖2
=

{
0 , if m is even

1 , if m is odd .

We are going to prove that (3.1) is verified for one of the spinor fields ΨI of
lemma 2.3.
First, an irreducible symmetric space G/K is Kähler if and only if K has a center
Z ≃ U1, [KN69].
Let p+

C
, (resp. p−

C
) be the space generated by root-vectors corresponding to the

positive non compact roots (resp. negative non compact roots). Any element H
in the Lie algebra z of the center has a K-invariant adjoint action on p+

C
, (resp.

p−
C
), hence by the Schur lemma acts as a scalar multiple of identity. The element

H is chosen such that ad(H)|p+

C

= i id (hence αj(H) = i, j = 1, . . . ,m) and

ad(H)|p−

C

= −i id. This action defines a K-invariant homomorphism J of p such

that J2 = −id, which induces a Kähler structure on G/K. The Kähler form is
then defined by the K-invariant Ω corresponding to α∗(H) by the isomorphism
Λ2(p) ≃ so(p). Hence the action of the Kähler form on spinor fields is given by the
action of Ω on Σ, which corresponds to 2 times the action of H on Σ by the spinor
representation of K, since viewed as a 2-form, Ω is identified with an element of
the Clifford algebra, whereas viewed as α∗(H) ∈ so(p), it acts on spinors by the
isomorphism ξ∗ : spin(p) → so(p), which generates a factor 2. Finally, as H belongs
to the Lie algebra of the maximal torus1 T , the Kähler form acts on spinor fields
with values in Σw, w ∈ W , as a scalar multiple of identity, the eigenvalue being
given by 2 βw(H).
Hence we only have to prove that there exists a subset I ⊂ I0 = {i ∈ {1, . . . ,m} ,
〈δK , αi〉 = 0}, such that βI(H) = 0 if m is even and βI(H) = ±i/2, if m is odd,
where βI = δp −

∑
i∈I−

αi −
∑

i∈I αi.

Let I+ = {i ∈ {1, . . . ,m} , 〈αi, δK〉 > 0}. Then

βI(H) =
1

2

∑

j∈I+

αj(H)−
1

2

∑

j∈I−

αj(H) +
1

2

∑

j∈I0\I

αj(H)−
1

2

∑

j∈I

αj(H) .

1since the center of K is the intersection of the maximal tori.
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Lemma 3.1. The sets I+ and I− have the same number of elements.

Proof. Let Φ−
K be the set of negative roots of K. There exists an element w0 in the

Weyl group of K (hence in the Weyl group of G) which sends Φ+
K to Φ−

K , see for
instance theorem 3.1.9. in [GW09].
Note that, as H belongs to the Lie algebra z of the center Z of K, one has for any
K-root θ, θ(H) = 0, since for any root vector Yθ,

0 = [H,Yθ] = θ(H)Yθ .

From this remark, one deduces that w0(Φ
+
p ) ⊂ Φ+

p . Indeed, as H belongs to z, if
k ∈ K is some representative of w0, one has since Ad(k

−1) ·H = H , and αj(H) = i,
j = 1, . . . ,m,

w0 · αj(H) = αj(Ad(k
−1) ·H) = αj(H) = i , j = 1, . . . ,m .

Now let j ∈ I+ so that 〈αj , δK〉 > 0. Then 〈w0 ·αj , w0 ·δK〉 > 0, so as w0 ·δK = −δK ,
one gets

〈w0 · αj , δK〉 < 0 ,

hence there exists ij ∈ I− such that αij = w0 · αj . This defines a one-to-one
correspondence between I+ and I−.

�

Hence since αj(H) = i, j = 1, . . . ,m, we obtain from the lemma

βI(H) =
1

2

∑

j∈I0\I

αj(H)−
1

2

∑

j∈I

αj(H) .

Now if m is even, then by the result of the lemma, the set I0 has an even number
of elements. If I0 = ∅, then β∅(H) = 0. If I0 6= ∅, then choosing a subset I ⊂ I0
such that # I = 1

2 # I0, one gets βI(H) = 0.
If m is odd, then by the result of the lemma, the set I0 has an odd number 2r + 1
of elements. Choosing now a subset I ⊂ I0 such that # I = r, (resp. r + 1) , one
gets βI(H) = 1

2 i, (resp. −
1
2 i), and the result is proved.

3.2. The Quaternion-Kähler case. A Quaternion-Kähler manifold is a n = 4m-
dimensional Riemannian manifold (M, g) whose restricted holonomy group is con-
tained in the group Spm.Sp1 = Spm ×Z2

Sp1, m ≥ 2. This group is identified with
a subgroup of SO4m by the representation

(A, q) ∈ Spm.Sp1 7−→
(
x ∈ H

m ≃ R
4m 7→ Axq̄

)
.

Let i, j,k be the standard basis of imaginary quaternions. The action on the right
of −i,−j,−k on Hm defines three hermitian operators I, J, K, verifying the same
multiplication rules as the imaginary quaternions. The space Q generated by I,
J, K is K-invariant, hence by transport on the fibres, it defines a globally parallel
subbundleQ(M) of the bundle End(TM). By transporting the operators I, J, K on
fibres with the help of a trivialization, one gets three local almost complex structures
I, J , K, for which the metric g is hermitian, verifying the same multiplication rules
as the imaginary quaternions. Using the metric, one obtains three local 2-forms
ΩI , ΩJ , ΩK . Now, the 4-form

Ω = ΩI ∧ ΩI + ΩJ ∧ ΩJ +ΩK ∧ ΩK ,

is well-defined over M , parallel and non-degenerate, [Kra66], [Bon67].
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On any spin Quaternion-Kähler manifold this 4-form Ω acts fiberwise on spinors
as an hermitian operator with eigenvalues 6m− 4r(r + 2), r = 0, . . . ,m, [HM95a].
Hence

(3.2) min
Ψ 6=0

‖(Ω− 6m id) ·Ψ‖2

‖Ψ‖2
= 0 .

We are going to prove that (3.2) is verified for one of the spinor fields ΨI of
lemma 2.3.
Compact symmetric spaces with a Quaternion-Kähler structure were classified by
J. A. Wolf in [Wol65]. It is well known in the theory of representations of compact
groups that any root associated to the choice of a maximal torus gives raise to a
subgroup of G isomorphic to Sp1. J. A. Wolf has shown that compact symmetric
spaces with a Quaternion-Kähler are all inner symmetric space of type I of the
form G/K, where G is a simple group and K = K1 Sp1, where K1 is the centralizer
of Sp1 in G. The subgroup Sp1 of K in consideration here being defined by the
maximal root β (for a fixed ordering of roots).
Indeed, let Hβ ∈ t such that for any H ∈ t, 〈Hβ , H〉 = −i β(H). Then ‖Hβ‖

2 =
−i β(Hβ) = ‖β‖2. Let H◦

β := 2/‖β‖2Hβ .
Let Xβ be a root-vector for the root β. There exists a root-vector X−β for the root
−β such that [Xβ , X−β] = −iH◦

β.

Then (H◦
β , Yβ := i (X−β +Xβ), Zβ := X−β −Xβ) defined a basis of a subagebra of

g isomorphic to sp1 as

[H◦
β , Yβ ] = 2Zβ , [H◦

β , Zβ] = −2 Yβ and [Yβ , Zβ ] = 2H◦
β .

Now, the condition that β is the maximal root implies that ad(H◦
β)|p+

C

= i id,

[Wol65], so the action of H◦
β , Yβ and Zβ on p by α∗ : k → so(p), induces three

hermitian operators I, J, K, verifying the same multiplication rules as the vectors
i, j,k of the standard basis of imaginary quaternions. The space Q generated by I,
J, K, which is K-invariant, generates the Quaternion-Kähler structure on G/K.
Identifying I, J and K with 2-forms ΩI, ΩJ, ΩK, via the metric, one gets the
K-invariant 4-form on p

Ω = ΩI ∧ΩI +ΩJ ∧ΩJ +ΩK ∧ΩK ,

which induces the Quaternion-Kähler parallel fundamental 4-form Ω on G/K.
Now, if the symmetric space has a spin structure, the 4-form Ω acts on the spinor
space Σ as the operator ([HM95b])

Ω = 6m id +ΩI ·ΩI +ΩJ ·ΩJ +ΩK ·ΩK ,

where the 2-forms ΩI, ΩJ, ΩK act by Clifford multiplication. Hence 2

(3.3) Ω− 6m id = 4
(
ρ̃∗(H

0
β)

2 + ρ̃∗(Yβ)
2 + ρ̃∗(Zβ)

2
)
.

Note that the second term in the r.h.s. of the above equation is the Casimir
operator3 of the representation ρ̃∗ restricted to sp1.

2here again the presence of the scalar factor 4 is due to the use of the isomorphism ξ∗ : spin(p) →
so(p), when the two-forms ΩI, ΩJ, ΩK are identified with H◦

β , Yβ , Zβ , acting on spinors by the

representation ρ̃∗ of k.
3up to some normalization.
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Expressing the r.h.s. of (3.3) in the basis (Hc

β := −iH◦
β, Xβ, X−β) of sp1,C ≃ sl2,C,

one gets

Ω− 6m id = −4
(
ρ̃∗(H

c

β)
2 + 2 ρ̃∗(Xβ) ◦ ρ̃∗(X−β) + 2 ρ̃∗(X−β) ◦ ρ̃∗(Xβ)

)

= −4
(
ρ̃∗(H

c

β)
2 + 2 ρ̃∗(H

c

β) + 4 ρ̃∗(X−β) ◦ ρ̃∗(Xβ)
)
.(3.4)

Hence we may conclude

Lemma 3.2. For any subset I ⊂ I0,

(Ω− 6m id) ·ΨI = 0 ⇐⇒ βI(H
◦
β) = 0 .

Proof. By the Schur lemma, Ω− 6m acts on the K-irreducible space ΣI as a scalar
multiple of identity. If cI is the eigenvalue, one then has (Ω− 6m id) ·ΨI = cI ΨI .
To compute the eigenvalue, one applies (3.4) to a highest weight vector of ΣI . Since
the action of ρ̃∗(Xβ) is zero on such a vector, whereas ρ̃∗(H

c

β) acts by a non-negative

integer multiple of identity on it, one has cI = 0 if and only if ρ̃∗(H
c

β) acts trivially,
hence the result.

�

Let I+ = {i ∈ {1, . . . ,m} , 〈αi, δK〉 > 0}. Then

(3.5) βI(H
◦
β) =

1

2

∑

j∈I+

αj(H
◦
β)−

1

2

∑

j∈I−

αj(H
◦
β)+

1

2

∑

j∈I0\I

αj(H
◦
β)−

1

2

∑

j∈I

αj(H
◦
β) .

Lemma 3.3. Apart from G2/SO4, for any Quaternion-Kähler compact spin sym-

metric space, one has

# I− +# I0 = # I+ .

Proof. Note first that

(3.6) ∀θ ∈ ΦK , θ 6= ±β , 〈β, θ〉 = 0 .

Indeed if Xθ is a root-vector for the root θ, one has [Hβ , Xθ] = 0, since K1 is the
centralizer of Sp1 in K. So θ(Hβ) = 0. Now, let Hθ ∈ t be such that for any H ∈ t

〈Hθ, H〉 = −i θ(H). We then have 〈Hθ, Hβ〉 = 0, hence 〈θ, β〉 = 0.
By this remark, positive non compact roots α are then characterized by the condi-
tion 〈α, β〉 = 1

2 ‖β‖
2.

Let αi be a positive non compact root. Then β − αi is a positive compact root. It
is a root since 〈αi, β〉 > 0 (cf. for instance4 § 9.4 in [Hum72]). And it is positive
since 〈β − αi, β〉 = 1

2 ‖β‖
2. Note furthermore that β − αi 6= αi, since otherwise

2αi = β should be a root, which is impossible.
Now by (3.6), 〈δK , β〉 = 1

2 ‖β‖
2, hence

〈δK , β − αi〉 =
1

2
‖β‖2 − 〈δK , αi〉 .

Hence, if j ∈ I− ∪ I0, then 〈δK , β−αj〉 ≥
1
2 ‖β‖

2, hence β−αj = αij , with ij ∈ I+.
We thus get an injective map I−∪I0 → I+, so we may conclude # I−+# I0 ≤ # I+.
On the other hand, if 〈δK , αj〉 > 0, then as δK is an integral weight5, one has
〈δK , αj〉 ≥

1
2 ‖αj‖2, hence

〈δK , β − αj〉 ≤
1

2
(‖β‖2 − ‖αj‖

2) .

4or note that σβ(αi) = αi − β, where σβ the reflection across the hyperplane β⊥.
5since δK is a difference of integral weights: δK = w · δG − (w · δG − δK), w ∈ W .
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Now as G is a simple group, the root system is irreducible and there are at most
two root lengths (see for instance § 10.4. in [Hum72]).
If all the roots have same length, then 〈δK , β−αj〉 ≤ 0, so β−αj = αij , where ij ∈
I−∪I0. In this case, there is an injective map I+ → I−∪I0, so # I+ ≤ # I−+# I0,
and the result is proved.
Now by the result [Wol65], using furthermore the result [CG88], the list of spin
compact Quaternion-Kähler symmetric spaces is given by

G K G/K dim G/K Spin structure
Spm+1 Spm × Sp1 Quaternionic 4m (m ≥ 1) Yes (unique)

projective
space HPm

SUm+2 S(Um ×U2) Grassmannian 4m (m ≥ 1) iff m even
Gr2(C

m+2) unique in that case
Spinm+4 SpinmSpin4 Grassmannian 4m (m ≥ 3) iff m even,

G̃r4(R
m+4) unique in that case

G2 SO4 8 Yes (unique)

F4 Sp3SU2 28 No

E6 SU6SU2 40 Yes (unique)

E7 Spin12SU2 64 Yes (unique)

E8 E7SU2 112 Yes (unique)

Note that all of them are inner as it was noticed in [Wol65].
Now, apart from6 Sp(m+ 1) and G2, there are only one root length for the groups
G in the above list, hence the result is proved for the corresponding symmetric
spaces.
So it remains to prove the result for quaternionic projective spaces HPm =
Sp(m+ 1)/Sp(m)× Sp1, m ≥ 1.
We consider the standard maximal torus T of Spm+1 made up of diagonal ma-

trices with entries of the form eβ i := cos(β) + sin(β) i, β ∈ R. We denote by
(x0, x1, . . . , xm) the standard basis of t∗ such that the value of xk on a diagonal
matrix with entries (β0 i, . . . , βm i) is βk, k = 0, . . . ,m. We set x̂k = i xk. The
scalar product on i t∗ induced by the Killing form sign-changed verifies 〈x̂i, x̂j〉 =

1
4(m+2) δij . We choose as positive roots

x̂i ± x̂j , 0 ≤ i < j ≤ m ; 2 x̂i , 0 ≤ i ≤ m.

The roots x̂i− x̂i+1, 0 ≤ i ≤ m−1, and 2 x̂m then define a basis of the root system.
In order to avoid a re-ordering of roots, we consider K = Sp1 × Spm, (instead of
Spm × Sp1) in such a way that the positive compact roots are

x̂i ± x̂j , 1 ≤ i < j ≤ m ; 2 x̂i , 0 ≤ i ≤ m.

6there are two root lengths for G = F4, but the corresponding symmetric space is not spin.
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Then, the positive non compact roots are

x̂0 ± x̂k , 1 ≤ k ≤ m.

The maximal root is β = 2 x̂0. Note that x̂0± x̂k = β−(x̂0∓ x̂k), and 〈β, x̂0± x̂k〉 =
1/2 ‖β‖2.
Now δK = x̂0 +

∑m
k=1(m− k + 1) x̂k. Hence it is easy to verify that

〈δ, x̂0 + x̂k〉 > 0 , 1 ≤ m,

〈δ, x̂0 + x̂k〉 < 0 , 1 ≤ m− 1 ,

〈δ, x̂0 + x̂m〉 = 0 .

So # I− +# I0 = # I+.
�

Going back to (3.5), one deduces from the above lemma, as ad(H◦
β)|p+

C

= i id,

βI0(H
◦
β) =

1

2
i (# I+ −# I− −# I0) = 0 .

Hence by the lemma 3.2, (Ω− 6mid) ·ΨI0 = 0, and the result of proposition 1.1 is
proved.

3.3. The case of G2/SO4. The group SO4 is identified with Sp1·Sp1 ≃ Sp1×Z2
Sp1.

The inclusion Sp1 · Sp1 ⊂ Sp2 · Sp1 is not the “natural” one since the group acts
irreducibly on H2 = R8 with highest weight 3ω1+ω2, where (ω1, ω2) is the standard
basis of fundamental weights corresponding to the half spinors representations, see
for instance §11 in [Sal89].
We use the result of [See99], where all the roots data for G and K are expressed in
the basis (ω1, ω2) by

Φ+
G = {2ω1,−3ω1 + ω2,−ω1 + ω2, ω1 + ω2, 2ω2, 3ω1 + ω2}

Φ+
K = {2ω1, 2ω2} ,

Φ+
p = {−3ω1 + ω2,−ω1 + ω2, ω1 + ω2, 3ω1 + ω2} .

The scalar product on weights induced by the Killing form sign-changed is given
by

〈a1 ω1 + a2 ω2, b1 ω1 + b2 ω2〉 =
1

16

(
1

3
a1b1 + a2b2

)
.

The highest weights of the spin representation are obtained by means of the Partha-
saraty formula, [See99]

4ω1 , 2ω2 and 3ω1 + ω2 .

The half spin representation Σ−
8 is irreducible with highest weight 3ω1+ω2, the half

spin representation Σ+
8 decomposes into two components with respective highest

weights 4ω1 and 2ω2. So, denoting by H the standard representation of Sp1, the
spin representation decomposes as

(3.7) Σ8 = (S3 H ⊗ S1 H)⊕ (S4 H ⊗ S0 H)⊕ (S0 H ⊗ S2 H) .

There are two weights for which the norm is minimal: β∅ = 2ω2 = δp and βI0 =
3ω1 + ω2 = δp − (−3ω1 + ω2).
Hence the spinor field Ψ∅ verifies DΨ∅ = λ2 Ψ∅, where λ is the lowest eigenvalue
of the Dirac operator, and is also a section of the bundle corresponding to the
component S0 H⊗S2 H in the decomposition (3.7), on which the action (on the first
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component) of Sp1 is trivial, thus our “holonomy criterion” is verified. However, it
has to be noticed that the Quaternion-Kähler structure of G2/SO4 corresponds to
the action of Sp1 on the second component, and that this criterion is not verified
for that action.
Indeed, it easy to see that θ1 = 2ω1 and θ2 = −3ω1 + ω2 are simple G-roots, and
that the maximal root is β := 2ω2 = 3 θ1 + 2 θ2. Now note that

{
〈β, α〉 = 0 if α ∈ ΦK , α 6= ±β,

〈β, α〉 = 1
2 ‖β‖

2 if α ∈ Φ+
p ,

hence we are in the description of Wolf spaces given above. It may be checked that
for any positive non compact positive root α, 〈δK , α〉 = 0, 1/24, 1/12 or 1/8, so
# I+ = 3, # I0 = 1 and # I− = 0, hence the result of lemma 3.3 is not verified
here.
Moreover note that, by definition of H◦

β , β∅(H
◦
β) =

2 i
‖β‖2 〈β, β∅〉 6= 0 and βI0(H

◦
β) =

2 i
‖β‖2 〈β, βI0 〉 6= 0, so by lemma 3.2, the criterion is not verified for the action of Sp1
on the second component.
As an additional argument, one may remark that since 〈β, 4ω1〉 = 0, 4ω1(H

◦
β) = 0,

so by the proof of lemma 3.2, the action of Ω − 6m id on spinors is zero only on
the K irreducible subspace of Σ with highest weight 4ω1. But, by the results of
[See99], this is not a highest weight for the restriction to K of the G2 irreducible
representation giving raise to the lowest eigenvalue of the Dirac operator.
Indeed, the action of Sp1 on the first component may also be described in terms of
the action of fundamental 4-form on spinors by Clifford multiplication. This is a
consequence of a more general result.

Lemma 3.4. The eigenvalue of the Casimir operator of the spin representation of

K has the same value for all irreducible components.

Proof. By the Parthasaraty formula, any highest weight of the spin reresentation
of K has the form βw := w · δG − δK , where w is an element of the Weyl group
WG of G. By the Freudenthal formula, the eigenvalue of the Casimir operator of
K acting on the K-representation with highest weight βw is given by

〈βw + 2 δK , βw〉 .

Hence, by the WG-invariance of the scalar product,

〈βw + 2 δK , βw〉 = 〈w · δG + δK , w · δG − δK〉

= ‖δG‖
2 − ‖δK‖2 .

�

Hence, since ‖δG‖2 − ‖δK‖2 = 1
2 here, the Casimir operator CK of the spin repre-

sentation of K acts on each irreducible component as 1
2 id.

Denote by C1 (resp. C2) the Casimir operator of the restriction of the spinor repre-
sentation to the first (resp. second) Sp1 component in K, (for the scalar product
given by the Killing form sign-changed of G2). One has CK = C1 + C2. The eigen-
value of C1 (C2) acting on SkH is a scalar multiple of k(k + 2) times the identity.
Using the result of the above lemma, one gets by (3.7)

C1|SkH =
1

48
k(k + 2) id and C2|SkH =

1

16
k(k + 2) id .
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Hence using (3.4), one obtains

C1 =
1

2
id− C2 =

1

64
(Ω+ 20 id) .

So for the symmetric space G2/SO4, the holonomy criterion is valid for the 4-
fundamental form acting (by Clifford multiplication) on spinors as Ω + 20 id.

3.4. The Cayley plane F4/Spin9. The above “holonomy criterion” is also valid
for the Cayley plane F4/Spin9. As it is said in [Bes87], the Spin(9) holonomy
is extremely special since a Riemannian manifold whose holonomy group is con-
tained in Spin(9) is either flat or (locally) isometric to the Cayley plane F4/Spin9,
or its non-compact dual, [Ale68], [BG72]. There is an analogy between Spin(9)-
structures (for 16-dimensional manifolds) and Quaternion-Kähler structures, since
such a structure on a manifold M may be characterized by the existence of a 9-
dimensional subbundle of the bundle End(TM), with local sections Iα, 1 ≤ α ≤ 9,
satisfying

I2α = id , I∗α = Iα , IαIβ = −IβIα , α 6= β ,

[Fri01]. There is also an analogy by the existence of a canonical 8-form Ω, which
corresponds to the unique parallel 8-form on F4/Spin9. This canonical 8-form
was first introduced in [BG72] by means an integral formula. Explicit algebraic
expressions of this form are far from being simple [BPT85], [AM96], [LGM10],
[PP12]. Roughly speaking, the form is constructed by means of the Kähler 2-forms
associated to the almost complex structures Jαβ := Iα ◦ Iβ , [LGM10], [PP12]. To
avoid an explicit expression, we will use here the fact that it may be expressed in
terms of “higher Casimir operators”, see §125 and §126 in [Žel73] or [Hom04].
Indeed, this parallel 8-form is induced by an Ad(K)-invariant 8-form Ω on p = R

16.
From the expression of Ω given in [LGM10], [PP12], the action of Ω on spinors is
(up to a shift by a scalar multiple of the identity) a sum of terms of the form
ρ̃K∗(Ωα1β1

)◦ ρ̃K∗(Ωα2β2
)◦ ρ̃K∗(Ωα3β3

)◦ ρ̃K∗(Ωα4β4
), where the Ωαβ are the Kähler

2-forms, identified with elements of the Lie algebra spin9, associated to the almost
complex structures Jαβ . We thus may identify the action of Ω on spinors as the
action of an element of the universal enveloping algebra U(spin9,C), also denoted Ω.
Furthermore this element belongs to the center Z of U(spin9,C) since Ω is Ad(K)-
invariant.
Now it is known that the center Z is algebraically generated by a system of “higher
Casimir elements”, cf. §.125 and §.126 in [Žel73], which we briefly introduce in that
context.
Let (ei)1≤i≤9 be the standard basis of R9. Denote by eij = ei∧ej the standard basis
of spin9 ≃ so9 ≃ Λ2(R9). For any non negative integer q, consider eqij ∈ U(so9,C)
defined by

eqij :=

{∑
1≤k1,...,kq−1≤9 eik1

ek1k2
. . . ekq−1j , q ≥ 1 ,

δij , q = 0 .

Then the trace of eqij , Cq :=
∑9

i=1 e
q
ii belongs to the center Z. For q = 0, C0 = 9,

for q = 1, C1 = 0 and for q = 2, C2 =
∑

ij eijeji is the usual Casimir element.
It may be shown that the center Z is algebraically generated by C2, C4, C6 and C8,
[Žel73].
Now, the above description of the element Ω ∈ U(spin9,C) shows that it is expressed
only in terms of C2 and C4. If we consider an irreducible component of the spin
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representation, then the Schur lemma implies that ρ̃K∗(C2) and ρ̃K∗(C4) acts on
it as scalar multiples of identity. Furthermore, we already note in lemma 3.4, that
ρ∗(C2) acts on each irreducible component as a scalar multiple of identity with the
same eigenvalue. Finally, to prove our holonomy criterion, we only have to examine
the eigenvalues of ρ∗(C4) on the irreducible components of the spin representation
of K. Those eigenvalues may be computed with the help of a formula given in
[CGH00].
Denoting by (e1, e2, e3, e4) the standard basis of R4, the root system of F4 is the set

of elements x =
∑4

i=1 xi ei with integer or half-integer coordinates in R4 such that
‖x‖2 = 1 or 2, [Hum72],[BMP85]. Using the results in [CG88], we may consider

Φ+
G = {ei , i = 1, 2, 3, 4 ; ei ± ej , 1 ≤ i < j ≤ 4 ;

1

2
(e1 ± e2 ± e3 ± e4)}

Φ+
K = {ei , i = 1, 2, 3, 4 ; ei ± ej , 1 ≤ i < j ≤ 4} ,

Φ+
p = {

1

2
(e1 ± e2 ± e3 ± e4)} .

Thus

δG =
1

2
(11 e1 + 5 e2 + 3 e3 + e4) ,

δK =
1

2
(7 e1 + 5 e2 + 3 e3 + e4) ,

δp = 2 e1 .

The scalar product induced by the Killing form sign-changed is a scalar multiple
of the restriction to the set of roots of the usual scalar product on R4. Using
the “strange” formula of Freudenthal and De Vries, [FdV69], one obtains ‖δG‖

2 =
dimg

24 = 13/6, hence this scalar product is given by

〈
4∑

i=1

xi ei,

4∑

i=1

yi ei〉 =
1

18

4∑

i=1

xi yi .

With the help of the Parthasaraty formula, it is easy to find the highest weights
of the spin representation of K. The half spin representation Σ−

16 is irreducible
with highest weight 1

2 (3 e1+ e2+ e3+ e4), whereas the half spin representation Σ+
16

decomposes into two components with highest weights e1 + e2 + e3 and 2 e1.
Note that the sets I− and I0 have both only one element since for any positive
non compact root α, one has 〈δK , α〉 < 0 ⇐⇒ α = 1

2 (e1 − e2 − e3 − e4), and

〈δK , α〉 = 0 ⇐⇒ α = 1
2 (e1 − e2 − e3 + e4).

Indeed, there are two weights for which the norm is minimal

β∅ =
1

2
(3 e1 + e2 + e3 + e4) = δp −

1

2
(e1 − e2 − e3 − e4) ,

and

βI0 = e1 + e2 + e3 = δp −
1

2
(e1 − e2 − e3 − e4)−

1

2
(e1 − e2 − e3 + e4) .

By the result of [Mil05], the square of the first eigenvalue of the Dirac operator is
then given by 2 ‖β∅‖

2 + 2 = 2 ‖βI0‖
2 + 2, hence
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Proposition 3.5. On the symmetric space F4/Spin9 endowed with the Riemann-

ian metric induced by the Killing form of F4 sign-changed, the square of the first

eigenvalue λ of the Dirac operator verifies

λ2 =
7

3
=

7

6

Scal

4
.

We now verify the holonomy criterion by determining explicitly the eigenvalues
of the operator ρ̃K∗(C4). This may be done with the help of a formula given in
[CGH00] which applies here as follows.
For each dominant weight µ of SO9 (relatively to the usual maximal torus), denote
by d(µ) the dimension of a complex K-irreducible representation (ρµ, V (µ)) with
highest weight µ.
Let V (µ◦) be the standard representation of SO9 corresponding to the weight µ◦ =
(1, 0, 0, 0). For each highest weight β1, β2, β3 of the spin representation of K where

β1 =
1

2
(3 e1 + e2 + e3 + e4) , β2 = e1 + e2 + e3 and β3 = 2 e1 ,

denote by Πi the set of highest weights occurring in the decomposition into irre-
ducible components of the tensor product V (βi)⊗ V (µ◦). So

V (βi)⊗ V (µ◦) =
∑

λij∈Πi

V (λij) .

For each highest weight λij , let m(λij) be the so called conformal weight given by

m(λij) :=
1

2
(9− ‖δK + λij‖

2 + ‖δK + βi‖
2 − 1) ,

where ‖·‖ is the standard norm on the sets of weights of SO9: if µ = (µ1, µ2, µ3, µ4),

then ‖µ‖2 =
∑4

i=1 µ
2
i .

The eigenvalue cβi,k of the operator (ρβi
)∗(Ck) is then given by (see for instance

[Hom04])

cβi,k =
1

d(βi)

∑

λij∈Πi

(
−m(λij)

)k
d(λij) .

The values of cβi,k, i = 1, 2, 3, k = 2, 3, 4 are given in the following table. They
were obtained with the help of the LiE Program7.

β1 = 1
2 (3, 1, 1, 1) β2 = (1, 1, 1, 0) β3 = (2, 0, 0, 0)

cβi,2 36 36 36
cβi,3 -126 -126 -126
cβi,4 1863/2 684 1404

The first line is not a surprise by lemma 3.4. The second line too since C3 may be
expressed in terms of C2. Finally, the last line shows that the lowest eigenvalue of
the operator ρ̃K∗(C4) is obtained for the space with highest weight β2 = (1, 1, 1, 0).
But β2 = βI0 , which as we saw it before, is linked to the first eigenvalue of the
Dirac operator. Hence the “holonomy criterion” of prop. 1.1 is verified.

7http://www-math.univ-poitiers.fr/~maavl/LiE/.
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4. Appendix

Recall that the highest weights of the spin representation of K are given by

βw = w · δG − δK , w ∈ W ,

where W is the subset of the Weyl group WG defined by

W := {w ∈ WG ; w · Φ+
G ⊃ Φ+

K} .

In this appendix, we review the proof of the following result.

Proposition 4.1. Let w0 ∈ W be such that

(4.1) ‖βw0
‖2 = min

w∈W
‖βw‖

2 .

Then the weight

βG
w0

:= w−1
0 · βw0

= δG − w−1
0 · δK ,

is G-dominant.

We will also justify the following remark :

Proposition 4.2. Let w0 and w1 ∈ W be such that

‖βw1
‖2 = ‖βw0

‖2 = min
w∈W

‖βw‖
2 .

Then the G-dominant weights

βG
w0

:= w−1
0 · βw0

= δG − w−1
0 · δK and βG

w1
:= w−1

1 · βw0
= δG − w−1

1 · δK

verify

βG
w0

= βG
w1

.

4.1. Review of the proof of prop. 4.1. The main error in the proof given in
[Mil05] concerns a technical assumption which is used at the end, asserting that
the highest weights with same minimal length may be ordered with respect to the
usual order of K-weights. As it can be seen in (2.8), this is actually not correct
since two such highest weights may only differ by a non compact positive root8.
Before that, there is also an imprecise statement, asserting that a certain weight of
the spin representation does lie in the WG-orbit of a highest weight, which makes
the proof not satisfactory.
Hence we propose here an alternative proof we think correct.

Proof. First note that considering the sets

Λ+
w0

:= {θ ∈ Φ+
G , w0 · θ ∈ Φ+

p } and Λ−
w0

:= {θ ∈ Φ+
G , −w0 · θ ∈ Φ+

p } ,

one has

βw0
=

1

2

∑

θ∈Φ+

G
\w−1

0
(Φ+

K
)

w0 · θ =
1

2

∑

θ∈Λ+
w0

w0 · θ +
1

2

∑

θ∈Λ−

w0

w0 · θ .

Hence since

δp =
1

2

∑

θ∈Λ+
w0

w0 · θ −
1

2

∑

θ∈Λ−

w0

w0 · θ ,

(4.2) βw0
= δp +

∑

θ∈Λ−

w0

w0 · θ .

8whereas, if it is a root, a sum of compact roots is necessarily a compact one.
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Now by the result of prop. 2.2, there exists a subset Iw0
⊂ I0 such that

(4.3) βw0
= δp −

∑

i∈I−

αi −
∑

i∈Iw0

αi .

Comparing (4.2) and (4.3), we get the following alternative : if a positive G-root
is such that w0 · θ is a non compact root, then either w0 · θ is negative and then
w0 ·θ = −αi, i ∈ I−∪Iw0

, so 〈w0 ·θ, δK〉 ≥ 0, or w0 ·θ is positive and then w0 ·θ = αi,
i /∈ I− ∪ Iw0

, so 〈w0 · θ, δK〉 ≥ 0.
So we may conclude that

Remark 4.3. If α is a positive G-root such that w0 · α is a non compact root then,
whatever w0 · α is positive or not, one always has

〈δK , w0 · α〉 ≥ 0 .

Let ΠG = {θ1, . . . , θr} ⊂ Φ+
G be the set of simple roots. It is sufficient to prove that

2
〈βG

w0
,θi〉

〈θi,θi〉
is a non-negative integer for any simple root θi. First, as T is a maximal

common torus of G and K, βw0
, which is an integral weight for K is also an integral

weight for G. Now since the Weyl group WG permutes the weights, βG
w0

= w−1
0 ·βw0

is also a integral weight for G, hence 2
〈βG

w0
,θi〉

〈θi,θi〉
is an integer for any simple root θi.

So we only have to prove that 〈βG
w0

, θi〉 = 〈δG − w−1
0 · δK , θi〉 ≥ 0, or equivalently

(by the WG-invariance of the scalar product) that

(4.4) 〈w0 · δG − δK , w0 · θi〉 ≥ 0 .

Let θi be a simple root. Suppose first that w0 · θi ∈ ΦK .
In this case, necessarily w0 · θi ∈ Φ+

K , otherwise since w0 ∈ W , −θi = w−1
0 (−w0 · θi)

should be a positive root.
Then since w0 ·δG−δK is K-dominant, inequality (4.4) is verified in this case, since
w0 · θi is a linear combination with non-negative integer coefficients of K-simple
roots.
Suppose now that w0 · θi /∈ ΦK , that is w0 · θi is a non compact root. We are going
to prove that

(4.5) 〈w0 · δG − δK , w0 · θi〉 < 0 ,

is impossible. Suppose that (4.5) is true. Note first that since 2 〈δG,θi〉
〈θi,θi〉

= 1, (see

for instance §10.2 in [Hum72]) and since the scalar product 〈·, ·〉 is WG-invariant,
inequation (4.5) is equivalent to

(4.6) 〈δK , w0 · θi〉 >
1

2
‖θi‖

2 .

This implies that

〈δK , w0 · θi〉 > 0 .

Now since δK is a linear combination with non-negative coefficients of K-simple
roots, this implies that there exists a K-simple root θ′ such that

(4.7) 〈θ′, w0 · θi〉 > 0 .

By property of roots (cf. for instance §9.4 in [Hum72]), this implies that

θ′ − w0 · θi ,

is a root, and moreover a non compact root by the bracket relations [k, p] ⊂ p.
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By the definition of W , θ := w−1
0 · θ′ is a positive G-root. By inequality (4.7)

〈θ, θi〉 > 0, hence θ − θi is a root, and moreover a positive root.
Now, the non compact root θ′ − w0 · θi being the image by w0 of the G-positive
root θ − θi, the above remark 4.3 applies:

(4.8) 〈δK , θ′ − w0 · θi〉 ≥ 0 .

Since θ′ is a K-simple root, 〈δK , θ′〉 = 1
2 ‖θ

′‖2, hence we obtain from inequality
(4.6)

(4.9)
1

2
‖θi‖

2 < 〈δK , w0 · θi〉 ≤
1

2
‖θ′‖2 .

Now as G is a simple group, the root system is irreducible and there are at most
two root lengths (see for instance § 10.4. in [Hum72]).
If all roots are of equal length, then the above inequality is impossible, and the
result is proven.
If there are two distinct root lengths, then the above inequality is only possible if
θ′ is a long root and θi a short one.
We rewrite inequalities (4.9) as

1 < 2
〈δK , w0 · θi〉

〈θi, θi〉
≤

‖θ′‖2

‖θi‖2
.

Now ‖θ′‖2/‖θi‖2 is equal to 2 or 3, see for instance § 9.4 in [Hum72].
Let us examine the case where ‖θ′‖2/‖θi‖2 = 2 first.
If the inequality (4.8) is strict, one obtains

1 < 2
〈δK , w0 · θi〉

〈θi, θi〉
<

‖θ′‖2

‖θi‖2
,

hence a contradiction, since as δK = w0 · δG − (w0 · δG − δK) is an integral weight,

2 〈δK ,w0·θi〉
〈θi,θi〉

is an integer.

Thus (4.8) is an equality :

(4.10) 〈δK , θ′ − w0 · θi〉 = 0 .

This implies that there exists j ∈ I0 such that θ′ − w0 · θi = ±αj .
So, by the result of prop. 2.2

• either θ′ − w0 · θi = αj and j ∈ Iw0
or θ′ − w0 · θi = −αj and j /∈ Iw0

and
then

µ0 := (w0 · δG − δK) + (θ′ − w0 · θi)

is a highest weight of the spin representation with minimal length,
• either θ′ − w0 · θi = αj and j /∈ Iw0

or θ′ − w0 · θi = −αj and j ∈ Iw0
and

then

µ0 := (w0 · δG − δK)− (θ′ − w0 · θi)

is a highest weight of the spin representation with minimal length.

In the first case, one gets using ‖µ0‖2 = ‖w0·δG−δK‖2, (4.10) and 〈δG, θi〉 =
1
2 ‖θi‖

2,

0 = 2 〈w0 · δG − δK , θ′ − w0 · θi〉+ ‖θ′ − w0 · θi‖
2 ,

= 2 〈w0 · δG, θ
′〉 − ‖θi‖

2 + ‖θ′ − w0 · θi‖
2 ,

= 2 〈δG, w
−1
0 · θ′〉 − ‖θi‖

2 + ‖θ′ − w0 · θi‖
2 ,
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whereas in the second case, one obtains

0 = −2 〈δG, w
−1
0 · θ′〉+ ‖θi‖

2 + ‖θ′ − w0 · θi‖
2 ,

But inequality (4.7) implies as 2 〈θ′,w0·θi〉
〈θ′,θ′〉 is an integer

2 〈θ′, w0 · θi〉 ≥ ‖θ′‖2 .

Hence

‖θ′ − w0 · θi‖
2 = ‖θ′‖2 − 2 〈θ′, w0 · θi〉+ ‖θi‖

2 ≤ ‖θi‖
2 .

This implies that θ′ − w0 · θi is a short root, hence that

‖θ′ − w0 · θi‖
2 = ‖θi‖

2 , and 2 〈θ′, w0 · θi〉 = ‖θ′‖2 .

In the first case, this implies

〈δG, w
−1
0 · θ′〉 = 0 ,

which is impossible, since w−1
0 · θ′ is a positive root, because 〈δG, θj〉 > 0 for any

simple G-root θj .
In the second case, one obtains

0 = −2 〈w0 · δG, θ
′〉+ 2 ‖θi‖

2

= −2 〈w0 · δG, θ
′〉+ ‖θ′‖2

= −2 〈w0 · δG, θ
′〉+ 2 〈θ′, w0 · θi〉 ,

hence

〈w0 · δG, θ
′〉 = 〈w0 · θi, θ

′〉 .

Let σi be the reflection across the hyperplane θ⊥i . Since σi · δG = δG − θi (see for
instance § 10.2 in [Hum72]), we obtain

〈w0σi · δG, θ
′〉 = 0 ,

hence using the WG-invariance of the scalar product

(4.11) 〈δG, σi w
−1
0 · θ′〉 = 0 .

But w−1
0 · θ′ is a positive root which, being a long root, is different from θi. Hence

as σi permutes the positive roots other than θi, (see for instance § 10.2 in [Hum72]),
σi w

−1
0 · θ′ is a positive root. Then as 〈δG, θj〉 > 0 for any simple G-root θj , (4.11)

is impossible.
So the result is proven in the case where ‖θ′‖2/‖θi‖2 = 2.
We finally examine the case where ‖θ′‖2/‖θi‖2 = 3. The only simple group for
which this is possible is the group G2, and there is only one symmetric space of
type I to be considered: G2/SO4. So we may give a direct proof of proposition 4.1
in that case.
We use the result of [See99], where all the roots data for G and K are expressed in
terms of the fundamental weights (ω1, ω2) of SO4, corresponding to the half spinors
representations.

Φ+
G = {2ω1,−3ω1 + ω2,−ω1 + ω2, ω1 + ω2, 2ω2, 3ω1 + ω2}

Φ+
K = {2ω1, 2ω2} .

Note that θ1 = 2ω1 and θ2 = −3ω1 + ω2 are simple G-roots, and that

δG = ω1 + 3ω2 and δK = ω1 + ω2 .
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The scalar product on iT∗ induced by the Killing form sign-changed is given by

〈a1 ω1 + a2 ω2, b1 ω1 + b2 ω2〉 =
1

16

(
1

3
a1b1 + a2b2

)
.

The highest weights of the spin representation are ([See99]):

β1 = 4ω1 , β2 = 2ω2 and β3 = 3ω1 + ω2 .

Note that there are two highest weights for which the norm is minimal: β2 and β3.
One has

β2 = δG − δK and β3 = σ2 · δG − δK ,

where σ2 is the reflection across the hyperplane orthogonal to the simple root θ2.
Note that

σ−1
2 · β3 = σ2 · β3 = 2ω2 .

Now

2
〈2ω2, θ1〉

〈θ1, θ1〉
= 0 and 2

〈2ω2, θ2〉

〈θ2, θ2〉
= 1 ,

hence the weight 2ω2 = β2 = σ−1
2 · β3 is G-dominant, so the result is also proven

in that case.
�

4.2. Proof of prop. 4.2. By the result of prop. 2.2, there exist two distinct ele-
ments w0 and w1 in W such that ‖βw1

‖2 = ‖βw0
‖2 = minw∈W ‖βw‖2, only if I0 6= ∅.

Hence we suppose I0 6= ∅. Let i ∈ I0 and let I = {i}.
By (2.8), βI = β∅ − αI .
Since ‖βI‖2 = ‖β∅‖

2, one obtains

2 〈β∅, αi〉 = 〈αi, αi〉 ,

hence denoting by σαi
the reflection across the hyperplane α⊥

i ,

σαi
· β∅ = β∅ − αi = βI .

On the other hand, as i ∈ I0, 〈δK , αi〉 = 0, so

σαi
· δK = δK .

Hence, considering w∅ and wI ∈ W such that β∅ = w∅·δG−δK , and βI = wI ·δG−δK ,
one gets

wI · δG − δK = βI = β∅ − αI = σαi
· β∅ = σαi

w∅ · δG − δK .

This implies

w−1
I σαi

w∅ · δG = δG .

But this is only possible if

wI = σαi
w∅ ,

(see for instance § 122 in [Žel73]). Thus

βG
I = δG − w−1

I · δK = δG − w−1
∅ σαi

· δK = δG − w−1
∅ · δK = βG

∅ .

Repeating the argument, the result follows by induction on the cardinal of I ⊂ I0.
�
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[Fri01] T. Friedrich, Weak Spin(9)-structures on 16-dimensional Riemannian manifolds, Asian
J. Math. 5 (2001), no. 1, 129–160.

[Gin09] N. Ginoux, The Dirac spectrum, Lecture Notes in Mathematics 1976, Springer, 2009.
[GW09] R. Goodman and N. R. Wallach, Symmetry, Representations, and Invariants, Graduate

Texts in Mathematics 255, Springer, 2009.
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E-mail address: jean-louis.milhorat@univ-nantes.fr


